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Background: Hepatocellular carcinoma (HCC) has become the main cause of cancer
death worldwide. More than half of hepatocellular carcinoma developed from hepatitis
B virus infection (HBV). The purpose of this study is to find the key genes in the
transformation process of liver inflammation and cancer and to inhibit the development
of chronic inflammation and the transformation from disease to cancer.

Methods: Two groups of GEO data (including normal/HBV and HBV/HBV-HCC) were
selected for differential expression analysis. The differential expression genes of HBV-
HCC in TCGA were verified to coincide with the above genes to obtain overlapping
genes. Then, functional enrichment analysis, modular analysis, and survival analysis
were carried out on the key genes.

Results: We identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2)
that may be closely related to the transformation of hepatitis B. The survival and
prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2,
DEPDC1, and ZWINT were constructed, which performed well in predicting the
overall survival rate.

Conclusion: The findings of this study have certain guiding significance for further
research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic
inflammation, and molecular targeted therapy of cancer.

Keywords: hepatitis B, hepatocellular carcinoma, inflammation and cancer transformation, bioinformatics,
differentially expressed genes, survival rate, biomarkers

INTRODUCTION

Epidemiological studies have shown that chronic low-level inflammation can significantly increase
the risk of cancer. On the one hand, during chronic inflammation caused by viral infections, a
long-term abnormal expression of related proteins may induce physiological diseases and form a
potential carcinogenic microenvironment. On the other hand, the occurrence and development
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of tumors also affect the inflammatory response process (Colotta
et al., 2009; Huang et al., 2019). The global burden of hepatitis
B virus (HBV) is enormous, with 257 million people chronically
infected, causing more than 880,000 deaths worldwide each year
(Iannacone and Guidotti, 2021). HBV has all the characteristics
of ancient human pathogens, has chronic infections, including
a prolonged asymptomatic period, and then gradually develops
into clinical diseases. Persistent antiviral inflammation during
chronic infection, immune clearance of virally infected cells, and
hepatocyte regeneration all increase the risk of viral infectious
liver disease developing into liver cancer (Xu et al., 2017;
Revill et al., 2020). At present, vaccines and nucleoside or
nucleotide drugs have been developed, with high coverage and
efficacy. However, related studies have shown that vaccination
and antiviral therapy can reduce infections but not completely
eliminate risks, and reduce the rate of new infections and
the development of liver disease (Chan et al., 2016; Fanning
et al., 2019; Musa et al., 2019). Overall, up to 40% of men
and women infected with HBV during the perinatal period will
die from cirrhosis or hepatocellular carcinoma (Trépo et al.,
2014; Schweitzer et al., 2015). There are many studies on the
basis of clinical epidemiological studies on the mechanism of
the relationship between hepatitis B and hepatitis B-related
hepatocellular carcinoma, and significant progress has been
made (Huang et al., 2019; Sun et al., 2019; Xie et al., 2020).
However, few molecular targeted studies can comprehensively
summarize the diagnosis, treatment, and prognosis of patients
with progressive hepatitis B.

The rise of high-throughput gene chips and transcriptome
sequencing and other transcriptome research methods has
completely changed the previous systematic analysis methods for
disease research (Kulasingam and Diamandis, 2008; Mair et al.,
2019; Bustoros et al., 2020). High-throughput microarrays and
RNA sequencing can detect changes in disease gene expression
and transcriptome levels. These methods help to find reliable
biological markers, classify diseases, and reveal the molecular
mechanisms of disease development (Chen S. et al., 2020; Jin
et al., 2020; Li C. Y. et al., 2020). The purpose of this study
is to find the key genes in the process of liver inflammation
and cancer transformation and to provide reference for further
study of the transformation of hepatitis B inflammatory cancer,
inhibition of chronic inflammation, and molecular targeted
therapy of cancer. In this study, we conducted a comprehensive
analysis, selecting microarray data of normal tissues and HBV
samples and microarray data of chronic hepatitis B-induced

Abbreviations: BP, biological process; CC, cell component; CCNA2, Cyclin-A2;
CDK1, Cyclin-dependent kinase 1; DEGs, differentially expressed genes; DEPDC1,
DEP domain-containing protein 1A; FDR, false discovery rate; GEO, Gene
Expression Omnibus database; GEPIA, Gene Expression Profiling Interactive
Analysis; GO, Gene Ontology; HBV, hepatitis B virus; HCC, Hepatocellular
Carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAD2, Mitotic
arrest defect protein 2; MAD2L1, Mitotic spindle assembly checkpoint protein
MAD2A; MCODE, Molecular Complex Detection; MF, molecular function; NEK2,
Serine/threonine-protein kinase Nek2; NEK2, Serine/threonine-protein kinase
Nek2; OS, overall survival; PCLAF, PCNA-associated factor; PPI, protein-protein
interaction; PTTG1, Securin; RRM2, Ribonucleoside-diphosphate reductase
subunit M2; TCGA, the Cancer Genome Atlas Projec; TPX2, Targeting protein
for Xklp2; ZWINT, ZW10 interactor.

HCC and adjacent normal tissues, and separately analyzing the
differentially expressed genes (DEGs) of the two groups of gene
chips. Combining the TCGA DEG data of human hepatitis
B-related hepatocellular carcinoma and normal liver tissue with
the abovementioned chip data to obtain the key DEGs that
directly affect the diagnosis and treatment of hepatitis B and later.
Afterward, further functional enrichment analysis was conducted
to analyze the main biological functions regulated by DEGs.
Finally, through the use of protein–protein interaction (PPI)
networks and survival analysis, key genes affecting the diagnosis,
treatment, and prognosis of patients with progressive hepatitis
B are identified. The detailed workflow of the study is shown in
Figure 1.

MATERIALS AND METHODS

Gene Expression Profile Data
Gene expression profiles were extracted from the GSE83148
and GSE121248 data set, which was downloaded from the
publicly available Gene Expression Omnibus database (GEO)1

(Clough and Barrett, 2016). GSE83148 (Zhou et al., 2017; Li
et al., 2018; Chen Y. Y. et al., 2019) and GSE121248 (Wang
et al., 2007) are both based on the GPL570 ([HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array). The title
of the GSE83148 data set is “Expression data of HBV infected
liver tissue.” All hepatitis samples were HBV infected, which
was validated by positive HBsAg or serum HBV-DNA. The
samples with HCV infection or metabolic liver injury (e.g.,
fatty liver, chronic alcoholic hepatitis) were excluded. GSE83148
contains six human normal liver tissue samples and 122 HBV-
infected hepatitis samples. The title of the GSE121248 data set is
“Gene expression profiling of chronic hepatitis B induced HCC
and adjacent-normal tissues.” Tissues from chronic hepatitis
B-induced HCC and their adjacent normal tissues were isolated,
and total RNA was extracted for Affymetrix gene microarray
analysis. GSE121248 contains 37 chronic hepatitis B-induced
HCC adjacent normal tissues and 70 human chronic hepatitis
B-induced HCC liver tissues.

Screening of DEGs and Functional
Enrichment Analysis
The limma software package in the R 3.6.3 software2 was used
to normalize the matrix data of each GEO data set and the
logarithm conversion based on 2. The DEG between the two
groups of controls was screened through the limma software
package. Corrected p < 0.05 and | log FC| > 1 were used as the
cutoff criteria (Ritchie et al., 2015; Zhou et al., 2020). After that,
functional enrichment analyses were performed on the obtained
differential genes, including Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Rhee et al., 2008;
Kanehisa et al., 2017). The DEGs of GO and KEGG pathway
analysis were performed using Bioconductor clusterProfiler,
org.Hs.eg.db, and DOSE, which are three R packages used for the

1http://www.ncbi.nlm.nih.gov/geo/
2https://cran.r-project.org/doc/FAQ/R-FAQ.html#Citing-R
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FIGURE 1 | The workflow for identifying key genes associated with HBV in inflammation and cancer transformation.

enrichment analysis of gene clusters (Yu et al., 2012; Zou et al.,
2019). p < 0.05 and q < 0.05 were defined as the cutoff criteria.
In the GO analysis, p < 0.01 and q < 0.05 were defined as the
cutoff criteria. Furthermore, in the KEGG analysis, p < 0.05 and
q < 0.05 were defined as the cutoff criteria.

DEG Validation by TCGA
Using the RNA sequencing data in the TCGA HBV-related
HCC data set, the results of the comprehensive analysis of the

differential genes in the two GEO data sets were verified (Liu
et al., 2018). The TCGA-Liver Hepatocellular Carcinoma (HCC)
cohort with publicly available data3 was used for this study.
From this cohort, 78 HCC cases with gene expression data set,
epigenetic data, and copy number alteration data were selected.
It contained 60 cases of HBV-related HCC, and 18 cases were
HBV-related adjacent tissues. The above data were analyzed by

3http://sangerbox.com/TcgaDown
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the edgeR software package in the Sanger box.4 Genes with | log
FC| > 1 and FDR < 0.05 are considered significant (FDR: false
discovery rate). The common up-and-down overlapping genes
between TCGA and the two GEO data sets were integrated for
the next study. These genes are considered to be overlapping
genes related to the occurrence and development of hepatitis
B-related inflammation and cancer transformation. The obtained
overlapping DEGs were visualized by TBtools for heat map
analysis (Chen C. et al., 2020).

GO and KEGG Pathway Enrichment
Analysis of Key Genes
To elucidate potential biological processes, molecular functions,
cellular components, and signaling pathways associated with
the overlapping DEGs, we performed GO enrichment analysis
and KEGG enrichment analysis utilizing the Database for
Annotation, Visualization and Integrated Discovery5 (DAVID
6.8) (Dennis et al., 2003; Huang da et al., 2009). FDR < 0.05 was
defined as the cutoff criterion. The results of the GO functional
enrichment analysis were visualized via GOplot software package
in the R 3.6.3 software (Walter et al., 2015). The results of KEGG
functional enrichment analysis are drawn by Sanger box.6

PPI Network and Module Analysis
The String 11.0 database7 is a database that searches for
interactions between known proteins and predicted proteins
(Szklarczyk et al., 2017). The database is used to study PPI
networks, which helps to mine core regulatory genes. In this
study, we selected protein interaction results with confidence
greater than 0.7 for the next analysis. Data of protein interaction
were imported into Cytoscape 3.7.18 for visual analysis (Franz
et al., 2016). In addition, in order to detect the hub cluster module
in the PPI network, we used the Molecular Complex Detection
(MCODE) application with default parameters in Cytoscape 3.7.1
for module analysis (Zhang et al., 2020).

Expression Level Analysis and
Correlation Analysis of the Key Genes
The violin diagram tool in Sanger Box9 was used to show the
difference in the expression of key genes in HBV-related HCC
tissues and normal tissues. Gene Expression Profiling Interactive
Analysis10 (GEPIA) is the dynamic analysis of gene expression
profiling data. It is a newly developed public database for cancer
and normal gene expression profiling. GEPIA analyzed the RNA
sequencing expression data of 9,736 tumors and 8,587 normal
samples from TCGA and GTEx projects (Tang et al., 2017).
Perform pairwise gene correlation analysis on any given TCGA
and/or GTEx expression dataset and check the relative ratio
between the two genes.

4http://sangerbox.com/AllTools?tool_id=9699507
5https://david.ncifcrf.gov/
6http://sangerbox.com/AllTools?tool_id=9698327
7https://string-db.org/
8http://www.cytoscape.org/
9http://sangerbox.com/AllTools?tool_id=9698305
10http://gepia.cancer-pku.cn/index.html

Survival Analysis
Clinical information for patients with hepatocellular carcinoma
can also be downloaded from TCGA (see text footnote 3).
After screening HBV-related HCC, after deleting patients without
overall survival (OS) data and overlapping DEG gene expression
profiles, 60 patients with HBV-related HCC were used for
survival analysis. Univariate Cox proportional hazards regression
analysis was used to identify candidate genes that were highly
correlated with survival. Cox proportional hazards regression
analysis screened prognostic gene signatures from DEGs,
p < 0.05. A Cox proportional hazards regression model was
constructed with key prognostic genes as dependent variables,
with the purpose of evaluating the relative contribution of
key prognostic genes to patient survival prediction. We have
constructed a prediction formula for gene characteristics. The
following formula of the model is as follows: risk score = gene
1× β1 gene 1 expression+ gene 2× β2 gene 2 expression+ . . .
gene n× βn expression gene. The formula is a linear combination
in which the gene expression value of each gene and the
regression coefficient (β) were obtained from the multiple Cox
proportional hazards regression model (George et al., 2014; Zhou
et al., 2016; Huang et al., 2017, 2018; Liu et al., 2019). The
survminer package and ggrisk package in the R language were
used to draw a riskplot and K-M survival curves (Cox, 1972; Zhou
et al., 2016; Li X. et al., 2020). The LIRI data were downloaded in
the ICGC database,11 and 260 primary solid tumor tissue samples
were extracted. Samples with complete expression profile data
and clinical information were selected, and RNA-seq data and
clinical information of 231 tumor samples were obtained. These
samples were mainly from Japanese people with hepatocellular
carcinoma, and the FPKM values from genes were used. The data
in ICGC were taken as the test set. Nine prognostic genes in
the current TCGA were selected as the test set, the training set
and the test set were modeled, and the model was verified (He
et al., 2020; Liang et al., 2020). In order to analyze the accuracy
of survival prediction performance through a risk scoring model,
a time-dependent receiver operating characteristic (ROC) curve
was constructed. The ability of prognostic gene signatures to
predict clinical outcome depends on the area of the AUC curve.
When AUC > 0.5, the closer AUC is to 1, the better the prognosis
(Heagerty and Zheng, 2005).

RESULTS

Identification of DEGs
The GSE83148 data set includes six human normal liver
tissue samples and 122 HBV-infected hepatitis samples.
Supplementary Table 1 and Figure 2A show the results of
the differential analysis of the GSE83148 data set, including
263 DEGs, 83 down-regulated genes, and 180 up-regulated
genes. GSE121248 contains 37 chronic hepatitis B-induced
HCC adjacent normal tissues and 70 human chronic hepatitis
B-induced HCC liver tissues. Supplementary Table 2 and
Figure 2B show the results of the differential analysis of the

11https://icgc.org

Frontiers in Genetics | www.frontiersin.org 4 September 2021 | Volume 12 | Article 654517

http://sangerbox.com/AllTools?tool_id=9699507
https://david.ncifcrf.gov/
http://sangerbox.com/AllTools?tool_id=9698327
https://string-db.org/
http://www.cytoscape.org/
http://sangerbox.com/AllTools?tool_id=9698305
http://gepia.cancer-pku.cn/index.html
https://icgc.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-654517 August 17, 2021 Time: 14:28 # 5

Zhang et al. Hepatitis B Inflammation-Cancer Transformation

FIGURE 2 | (A) Volcano map of differential genes in the GSE83148 data set. (B) Volcano map of differential genes in the GSE121248 data set. Blue indicates
down-regulated genes, red indicates up-regulated genes.

GSE121248 data set, including 798 DEGs, 559 down-regulated
genes, and 239 up-regulated genes.

Enrichment Analysis of Two Groups of
DEGs
The two groups of DEGs in GSE83148 and GSE121248
were analyzed by GO and KEGG enrichment, respectively
(Figures 3A–D). The DEGs in the GSE83148 data set are enriched
in different functional entries. In GO analysis, DEGs are mainly
enriched in the entry of leukocyte migration in the biological
process (BP), mainly in the side of membrane in terms of cell
component (CC), and mainly in glycosaminoglycan binding
in terms of molecular function (MF). According to KEGG
pathway enrichment analysis, the DEGs are mainly enriched in
the cytokine–cytokine receptor interaction pathway, cell cycle
pathway, hepatitis B pathway, oocyte meiosis pathway, viral
carcinogenesis pathway, etc. Then, in the DEG enrichment
analysis of GSE121248, DEGs were mainly enriched in the
organic acid catabolic process, extracellular matrix, and cofactor
binding in BP, CC, and MF. In addition, in the KEGG pathway,
DEGs are mainly enriched in chemical carcinogenesis pathway,
cell cycle pathway, etc. The results of KEGG pathway enrichment
suggested that there were two identical pathways in the two data
sets, including cell cycle pathway and P53 signaling pathway.

Overlapping DEGs
In the mRNA sequencing data in TCGA, 60 HBV-positive HCC
and 18 HBV-related adjacent tissue RNA-seq reading count data
were screened. The clinical characteristics of all patients are
shown in Supplementary Table 3. The results of the DEG analysis
of TCGA are listed in Supplementary Table 4. By sequencing
TCGA HBV-related HCC, 1,641 DEGs were obtained, including
1,104 up-regulated genes and 537 down-regulated genes. The
DEGs in the above two HBV-related liver disease gene chip

data sets and the genes identified as differentially expressed in
the TCGA HBV-related HCC sequencing data set are taken to
intersect to screen for common overlapping DEGs. The common
overlapping DEGs were screened. Figure 4 shows that a total of
22 overlapping DEGs were obtained, including 17 overlapping
up-regulated DEGs (Figure 4A) and 5 overlapping down-
regulated DEGs (Figure 4B). They may be the DEGs during
the progression of HBV infection to HBV-related hepatocellular
carcinoma. The visual analysis of 22 overlapping DEGs was
performed by TBtools (Figure 4C). The green band in the
figure represents the normal group samples, and the red band
represents HBV-related HCC samples. The gradual change of
color from blue to red represents the process of gene down-
regulation to up-regulation.

Functional Annotation of Overlapping
DEGs by GO and KEGG Pathway
Analyses
Through the GO and KEGG pathway analysis, 22 overlapping
DEGs were functionally annotated to clarify their potential
biological functions. GO analysis of overlapping DEGs induced
by HBV was enriched in items with significant differences
(Figure 5A and Supplementary Table 5). These three entries are
cell division, mitotic sister chromatid segregation, and nucleus.
To further analyze the pathogenic mechanism of HBV, KEGG
pathway analysis was performed on the identified overlapping
DEGs (Figure 5B and Supplementary Table 6). The results
showed that the overlapping DEGs were mainly enriched on the
oocyte meiosis pathway and cell cycle pathway (Figure 5C).

Key Gene Analysis
PPI Network and Module Analysis
A PPI network was constructed in the STRING 11.0 database,
including 56 nodes and 869 interactions. As shown in Figure 6A,
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FIGURE 3 | Functional enrichment analysis of the two groups of DEGs. (A) GO analysis of DEGs in the GSE83148 data set. (B) KEGG analysis of DEGs in the
GSE83148 data set. (C) GO analysis of DEGs in the GSE121248 data set. (D) KEGG analysis of DEGs in the GSE121248 data set.

the size of the node is proportional to the degree value. Red
nodes indicate up-regulated genes, blue nodes indicate down-
regulated genes, and green nodes indicate secondary proteins
obtained by protein interaction. The protein interaction results
show that the nodes with interactions are mainly up-regulated
genes. The top 5 genes with the highest degree are considered
key genes, and they are all up-regulated genes. In addition,
this study uses MCODE plug-in in Cytoscape to analyze the
PPI network module and obtains important cluster modules.
A total of three modules were obtained (Figure 6B–D). Module 1
has the highest score of 29.722. In addition, five key genes are
concentrated in module 1, which also indicates that it may be
the main functional module. The score of module 2 is 6.222,
and the score of module 3 is 3. The five key genes include
cyclin-dependent kinase 1 (CDK1), mitotic spindle assembly
checkpoint protein MAD2A (MAD2L1), Cyclin-A2 (CCNA2),
Securin (PTTG1), and serine/threonine-protein kinase Nek2
(NEK2). They are defined as the main hub nodes in the
PPI network; the change in gene expression is shown in
Figure 6E.

Correlation Analysis of Key Gene Expression Levels
We applied GEPIA to capture the correlation of expression levels
between key genes. Correlation analysis was conducted on any
two genes of CDK1, MAD2L1, CCNA2, PTTG1, and NEK2
and five key genes (Figure 6F). The results showed that the
significance between any two genes was p < 0.01, indicating that
the correlation coefficient was statistically different. The larger the
correlation coefficient “R” is, the better the correlation between
the two genes is. The four results (CCNA2-CDK1, CCNA2-
MAD2L1, PTTG1-CCNA2, CCNA2-NEK2) are relatively weakly
correlated (R < 0.5), but p is still extremely low. The above
results indicate that the up-regulation of one of them will affect
the high expression of other genes. This may indicate that
they are all regulated by the same transcription factors and
epigenetic modifications.

Survival Analysis
Cox Regression Analysis
The univariate Cox proportional hazards regression model was
used to analyze 22 overlapping DEGs, and nine genes that were
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FIGURE 4 | Identification of genes common to chronic HBV infection and hepatocellular carcinoma. (A) The Venn diagram of the up-regulated DEGs between the
two GEO data sets and the TCGA HBV-HCC data set (drawn by SangerBox, http://sangerbox.com/Signin). (B) The Venn diagram of the down-regulated DEGs
between the two GEO data sets and the TCGA HBV-HCC data set (drawn by SangerBox, http://sangerbox.com/Signin). (C) The heat map of 5 down-regulated
DEGs and 17 up-regulated DEGs in the integrated microarray analysis. The green band in the figure represents the normal group samples, and the red band
represents HBV-related HCC samples. The gradual color ranging from blue to red represents the changing process from down-regulation to up-regulation.

significantly related to survival time were identified (p < 0.05).
After using the multivariate Cox proportional hazards regression
model, a prognostic gene signature consisting of nine genes was
developed, including Securin (PTTG1), mitotic spindle assembly
checkpoint protein MAD2A (MAD2L1), PCNA-associated factor
(PCLAF), ribonucleoside-diphosphate reductase subunit M2
(RRM2), targeting protein for Xklp2 (TPX2), cyclin-dependent
kinase 1 (CDK1), serine/threonine-protein kinase Nek2 (NEK2),
DEP domain-containing protein 1A (DEPDC1), and ZW10
interactor (ZWINT) (Supplementary Table 7). Figure 7A shows
the forest plot of Cox regression. Using the survminer software
package to multiply gene expression by the linear combination
regression coefficient obtained through multiple Cox regression,
the optimal cutoff threshold can be calculated, and more suitable
high-risk groups and low-risk groups can be obtained. The
risk scores of the patients are ranked, and then the survival
status of the patients is displayed through a dot graph, and the
expression of nine prognostic genes is displayed through a heat
map. Figure 7B shows the patients’ risk scores in order from low
to high: red indicates the high-risk group, and blue indicates the
low-risk group. Different patients have different survival times:
blue indicates survival during follow-up, and red indicates death

during follow-up. The heat map of the nine prognostic genes
shows that as the risk value increases, the survival time of patients
tends to be shortened, the proportion of deaths tends to increase,
and the nine prognostic genes tend to be highly expressed. The
K-M curve in Figure 7C shows the relationship between patient
survival time and survival probability (p < 0.0001, statistically
significant). The red and blue solid lines represent the changes
in survival rates of the high-risk group and the low-risk group,
and the dotted lines represent the 95 and 5% confidence intervals.
Figure 7D is the ROC curve of the patient in the training set. The
results showed that the AUC of 1-, 2-, 3-, 4-, and 5-years OS were
0.86, 0.82, 0.83, 0.83, and 0.74, respectively, so the prognostic gene
characteristics showed good performance in survival prediction.

Cox Model Verification
The 260 primary solid tissue tumor samples can be screened from
the ICGC portal website12 (Supplementary Table 8). Samples
with complete expression profile data and clinical information
were selected, and RNA-seq data and clinical information of
231 tumor samples were obtained. These samples were mainly

12https://dcc.icgc.org/projects/LIRI-JP
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FIGURE 5 | Functional enrichment analysis of the overlapping DEGs (genes common to chronic HBV infection and hepatocellular carcinoma). (A) GO enrichment
analysis of the overlapping DEGs. Red indicates the up-regulated gene, and blue indicates the down-regulated gene. The thicker the red circle in the middle of the
graph, the more significant the difference, and the darker the red, the greater the proportion of up-regulated genes in the entry. (B) GO enrichment analysis of the
overlapping DEGs. The right side of the outermost circle is the term, and the color corresponding to the gene on the left is the gene expression multiple. The inner
circle on the left indicates the significance p of the gene corresponding pathway. (C) The key targets and key biological processes involved in hepatitis B-related
inflammation and cancer transformation.

from Japanese people with hepatocellular carcinoma, and the
FPKM values from genes were used. Sixty patients in TCGA
were taken as the training set, and 231 patients in ICGC were

taken as the test set for modeling. Because the PCLAF gene was
not found in the test set, the remaining eight genes were thus
used for fitting the model in the test set. The coefficients of the
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FIGURE 6 | (A) The PPI network of overlapping DEGs (genes common to chronic HBV infection and hepatocellular carcinoma). (B) Module 1 (MCODE
score = 29.722). (C) Module 2 (MCODE score = 6.222). (D) Module 3 (MCODE score = 3). Blue circles represent down-regulated genes, red circles represent
up-regulated genes, and green circles indicate secondary proteins obtained by protein interaction. (E) Expression of the five key DEGs in HBV-related HCC and
normal tissues (TCGA data set). (F) Correlation analysis of five key genes. From left to right, from top to bottom: CDK1-MAD2L1, CDK1-CCNA2, CDK1-PTTG1,
CDK1-NEK2, PTTG1-NEK2, MAD2L2-CCNA2, MAD2L1-PTTG1, MAD2L1-NEK2, CCNA2-PTTG1, CCNA2-NEK2.

training set were extracted, and the expression of eight genes in
the test set was multiplied to verify the model. The survminer
package was used to recalculate the optimal cutoff threshold
to obtain a more suitable high- and low-risk group. The risk
score can be calculated by multiplying the gene expression by
the linear combination regression coefficient obtained through
multiple Cox regression. Figure 7E shows the forest plot of
Cox regression. The survminer software package was used to
recalculate the optimal cutoff threshold to obtain more suitable
high-risk and low-risk populations. Figure 7F shows that the
cutoff is 0.32, and the patients’ risk scores are sorted from low to
high: red represents the high-risk group, and blue represents the
low-risk group. Different patients have different survival times:
blue indicates survival during follow-up, and red indicates death
during follow-up. The heat map of the eight prognostic genes
shows that as the risk value increases, the survival time of patients
tends to be shortened, the proportion of deaths tends to increase,
and the eight prognostic genes tend to be highly expressed. The
K-M curve in Figure 7G shows the relationship between patient
survival time and survival probability (p = 0.00042, statistically
significant). The red and blue solid lines represent the changes

in survival rates of the high-risk group and the low-risk group,
and the dotted lines represent the 95 and 5% confidence intervals.
Figure 7H shows the ROC curve of patients in the training set.
The results showed that the AUC of the 2-, 3-, and 4-year OS
were 0.73, 0.69, and 0.73, respectively, so the prognostic gene
signatures showed good performance in survival prediction. The
results show that the area under the ROC curve in the training set
and the test set is more than 0.5, and the model is better.

DISCUSSION

The risk factors of chronic hepatitis B disease progression can be
divided into three categories: host factor element, virus factor,
and liver factor (Wong et al., 2013). Host factors include age,
male, family history of liver cancer, obesity, genetic susceptibility,
smoking, alcoholism, diabetes, and immune status (Wong and
Janssen, 2015). The viral factors include HBsAg positive, HBeAg
positive, high level of HBV DNA, HBV genotype, and HBV
mutant. Especially, high viral load is an independent and
effective predictor (Wong and Sung, 2012). Liver factors include
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FIGURE 7 | Prognostic analysis of the nine-gene signature model in the TCGA cohort. (A) Training set forest diagram. (B) Risk score in the TCGA cohort.
(C) Kaplan–Meier curve of OS for patients in the high-risk group and low-risk group. (D) The AUC of the time-dependent ROC curve in the TCGA cohort. Validation
of the eight-gene signature in the ICGC cohort. (E) Test set forest diagram. (F) Risk score in the ICGC cohort. (G) Kaplan–Meier curve of OS for patients in high-risk
group and low-risk group. (H) The AUC of the time-dependent ROC curve in the ICGC cohort.

progressive fibrosis and cirrhosis, poor liver function, hepatitis
activity, and other accompanying liver diseases, such as hepatitis
C virus or coinfection of alcoholic and non-alcoholic fatty
liver (Wong and Wong, 2013). Inflammatory reaction of the
liver caused by virus replication in patients with chronic HBV
infection is the main factor of liver disease progression. Chronic
hepatitis B-cirrhosis-hepatocellular carcinoma is a common law
of disease development and transformation in clinic, and its
disease transformation process can also be regarded as a typical
“inflammatory cancer transformation” process. Finding the key
genes in the process of inflammatory cancer transformation
is helpful to inhibit the progression of chronic hepatitis B
and the transformation from chronic inflammation to cancer.
The analysis of comprehensive bioinformatics mainly focuses
on the screening of DEGs, the construction of related protein
interaction networks, the screening and survival analysis of key
genes, and the analysis of gene association. The above method
has been widely used to identify potential biomarkers related
to the diagnosis, treatment, and prognosis of HBV and HCC.
Xie et al. (2020) studied the genetic characteristics of HBV
positive (HBV +) HCC and revealed its potential carcinogenic
mechanism by using the methods of differential gene screening,
functional enrichment analysis, protein interaction network
construction, survival analysis, immunohistochemistry, and
statistical analysis. Sun et al. (2019) characterized the genome
size of HBV and HCV-infected HCC by comparing the
publicly available data of the Cancer Genome Atlas Project
(TCGA), comparing their gene expression patterns, methylation
profiles, and copy number variation. Huang et al. (2019)

identified common gene disorders between HBV and HCC by
screening DEGs. In addition, through modular methods such
as PPI networks and hypergeometric tests, targeted drugs with
regulatory effects on diseases are predicted.

In this study, we obtained two microarray data sets about
hepatitis progression and integrated them. GSE83148 identified
263 DEGs between the normal group and HBV, including 180
up-regulated genes and 83 down-regulated genes; GSE121248
identified 798 DEGs of HBV and HBV-related HCC, including
239 up-regulated genes and 559 down-regulated genes. The
above two microarray data sets were integrated with TCGA’s
RNA sequencing data to identify 22 DEGs, including 17 down-
regulated genes and 5 up-regulated genes. They are considered
to be differential genes that jointly affect the occurrence and
development of hepatitis B inflammatory cancer transformation.
GO analysis of overlapping differential genes induced by HBV
showed that the differential genes were enriched in cell division,
mitotic sister chromatid separation, and nuclear entries. The
results of KEGG pathway enrichment analysis showed that
overlapping differential genes were mainly enriched in meiosis
pathway and cell cycle pathway of oocytes.

In addition, we also identified five key genes in the PPI
network and module analysis, namely, CDK1, MAD2L1, CCNA2,
PTTG1, and NEK2. Coincidentally, they are all up-regulated
genes in HBV disease changes. The CDK family is a Ser/Thr
kinase system that corresponds to the cell cycle progression.
Various CDKs are alternately activated along the cell cycle
phase, phosphorylating the corresponding substrate. Through
synergy with cyclin, cell cycle events proceed in an orderly
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manner. The activity of CDK1 is closely related to the content
of CyclinB. CyclinB is generally synthesized in the late G1
phase. Through the S phase and G2 phase, the CyclinB content
reached a certain level, entered the nucleus, and bound to
CDK1. Then, CDK1 kinase activity began to appear (Yang et al.,
2011; Hu et al., 2018). Activated CDK1 can phosphorylate target
proteins to produce corresponding physiological effects, such as
phosphorylation of nuclear laminin leading to the disintegration
of nuclear fibrils, disappearance of nuclear membrane, and
phosphorylation of histone H1, leading to the condensation of
chromosomes. The final result of these effects is to keep the
cell cycle running. Li and other researchers also found that
CDK1 is an important biomarker in the study of lncRNA-
related comprehensive analysis of ceRNA network to reveal
potential biomarkers for the prognosis of hepatitis B virus-related
hepatocellular carcinoma. They verified the upregulation of liver
cancer CDK1 in the microarray data set and TCGA database
(Li H. et al., 2019). In addition, some researchers believe that
HBx is different from other viral proteins. HBx can continuously
activate the cyclin B1-CDK1 kinase. However, the results of
some researchers indicate that HBx induces G2/M arrest and
apoptosis, which in turn inhibits the growth of HCC cells and
vascular endothelial cells in vitro and in vivo. Another part of
the researchers believed that HBx accelerates the appearance of
cells entering the S phase from Go/Gland by promoting the
rapid and strong activation of CDK kinase activity. HBx may
promote viral carcinogenesis through molecular mechanisms
(Benn and Schneider, 1995; Cheng et al., 2009; Kim et al., 2015).
The contradiction between them may be due to differences of
experimental environment and experimental materials, or the
different expression levels of HBx. High HBx expression leads
to cell cycle arrest and apoptosis, while low HBx expression
indicates adverse effects (Bréchot et al., 2000). The results of
the study reflect that the persistent chronic expression of HBX
may be an important factor in the final progression of HBV
to HCC. Mitotic arrest defect protein 2 (MAD2), also known
as mitotic spindle assembly checkpoint protein, is encoded by
the MAD2L1 gene (Chen Z. et al., 2019). Moreover, it has
been reported that MAD2 and CDC20 form mitotic checkpoint
complexes to monitor the attachment process of mitochondria
spindle and inhibit the activity of late-stage promoting complexes
(Luo et al., 2000). It regulates the mitotic process of cells and
then affects the malignant progression of a variety of tumors
(Fang et al., 1998; Guo et al., 2020). For example, the work of
researchers using integrated bioinformatics analysis has shown
that MAD2L1 may be a potential therapeutic target for HCC
(Yang et al., 2019). The results of another study showed that
MiR-200c-5p inhibited the proliferation, migration, and invasion
of HCC cells by down-regulating MAD2L1 (Li et al., 2017).
This indicates that the expression of MAD2L1 in HCC is
significantly higher and is related to poor prognosis. Cyclin A2
(CCNA2) is a member of the cyclin family. Different cyclins
can selectively activate specific substrates and cause different
cell cycle events (Manni et al., 2001; Loog and Morgan, 2005;
Chen et al., 2018). The researchers believe that the overexpression
of CCNA2 is related to the carcinogenesis of the liver. There
are many exons in CCNA2, and HBV integration occurs in

introns. Because cyclin is important in controlling cell division,
disrupting the cyclin A gene through viral insertion may help in
tumorigenesis (Wang et al., 1990; Bayard et al., 2018). PTTG1
may work by blocking key proteins. Its gene product has in vitro
transformation activity and in vivo tumorigenic activity and is
highly expressed in various tumors (Zou et al., 1999). PTTG1
may play a role by blocking the key protein, and its gene product
has in vitro transformation activity and in vivo tumorigenicity
and is highly expressed in various tumors. Many studies have
also proved that PTTG1 may be an important gene for HBV-
related hepatitis to progress into hepatocellular carcinoma (Lin
et al., 2019; Shen et al., 2019). The results of Li et al. (2013)
suggested that the loss of miR-122 expression will lead to the
up-regulation of its target PBF, thereby initiating the nuclear
translocation of PTTG1 and promoting the transcriptional
activity of PTTG1, thereby enhancing cell growth and invasion.
With the development of chronic hepatitis B to cirrhosis and
HCC, PTTG1 expression increased. In vitro experiments showed
that HBx induced significant accumulation of PTTG1 protein
without affecting the level of its mRNA. This may provide
new insights for the pathogenesis of HBV-related inflammatory
cancer transformation (Molina-Jiménez et al., 2010). NEK2 is
involved in the control of centrosome separation and bipolar
spindle formation in mitotic cells and chromatin condensation
in meiotic cells (Hames and Fry, 2002). Researchers such as
Xie identified important genes and pathways related to HBV-
related HCC through bioinformatics analysis and found that
NEK2 is a key gene in the protein interaction network. This is
very similar to our results (Xie et al., 2019). Cheng et al. (2018)
found in a cohort study that a high expression of NEK2 was
an independent risk factor for decreased OS. The results of the
study suggest that a high expression of NEK2 is a risk factor
for poor survival of liver cancer patients (Cheng et al., 2018;
Ren et al., 2018).

The current study identified nine key genes for prognosis of
HBV-related liver disease changes and constructed a prognostic
gene marker composed of these genes. It is worth noting that
these nine genes are all identified as dangerous prognostic genes.
Among them, PTTG1, MAD2L1, CDK1, and NEK2 are also the
key genes obtained from the protein interaction network. They
may be the key risk prognostic genes for hepatitis B inflammation
and cancer transformation and play a key role in the progression
of hepatitis B to hepatitis B-related HCC. In addition, DEPDC1,
ZWINT, PCLAF, RRM2, and TPX2 have also been identified as
dangerous prognostic genes. DEPDC1 overexpression promotes
HCC cell proliferation, colony formation, and invasion (Guo
et al., 2019). Studies have shown that high DEPDC1 expression is
an independent predictor of cancer-related death and recurrence.
The high expression of DEPDC1 in non-tumor liver is an
independent risk factor for late relapse (Amisaki et al., 2019).
ZWINT is part of the MIS12 complex, which is necessary
for mitochondrial formation and spindle checkpoint activity
(Musio et al., 2004). The dysregulation of ZWINT enhanced
the chromosomal instability in tumorigenesis and contributed
to poor prognosis in malignancies (Pérez de Castro et al.,
2007). PCLAF acts as a PCNA-binding protein for DNA
repair regulators during DNA replication (Kais et al., 2011).
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Studies have confirmed that overexpression of PCLAF in adrenal
cortical tumors, nasopharyngeal carcinoma, and hepatocellular
carcinoma may promote the growth and invasion of cancer
cells (Jain et al., 2011; Abdelgawad et al., 2016; Ma et al.,
2020). RRM2 is a key protein for DNA synthesis and repair,
which can promote cell proliferation and inhibit apoptosis. In
previous studies, it has been demonstrated that inhibition of
RRM2 significantly inhibits the proliferation of liver cancer cells
(Wang et al., 2018). TPX2 is a microtubule-associated protein
that involves targeting the kinesin Xklp2 to microtubules. The
expression of TPX2 in tumor tissues is higher than that in non-
tumor tissues. Overexpression of TPX2 is positively correlated
with poor prognosis (Liang et al., 2015).

KEGG pathway enrichment shows that key genes are mainly
enriched in oocyte meiosis pathway and cell cycle pathway.
Interestingly, in GSE83148, the result of pathway enrichment of
differential gene KEGG also included oocyte meiosis pathway and
cell cycle pathway; in GSE121248, the result of KEGG included
the cell cycle pathway. The pathway enrichment results of 22
overlapping differential genes are also very similar to the pathway
enrichment results of the two chips. An epidemiological and
virological study of occult hepatitis B infection and hepatocellular
carcinoma found that HBV DNA integration affects the liver cell
cycle and tumor development, and the promotion of cancer-
promoting proteins (such as HBx proteins and mutated surface
proteins) produces and continues low-grade hepatic necrotizing
inflammation. Inflammation can lead to liver fibrosis and
cirrhosis, which is the pathogenic mechanism of occult hepatitis
B infection-related hepatocellular carcinoma (Li Y. et al., 2019;
Chen S. et al., 2020; Mak et al., 2020). In addition, studies have
shown that the HBx gene can be expressed at the one-cell and
two-cell stages of embryonic development. The data shows that
sperm may be used as a carrier for the vertical transmission of
HBV DNA to the next generation (Ali et al., 2005).

CONCLUSION

In general, through biological information research methods, we
have identified five key genes and nine dangerous prognostic
genes. Among them, PTTG1, MAD2L1, CDK1, and NEK2 may
be the key prognostic genes of the hepatitis B inflammation and
cancer transformation. However, since our research is based on
data analysis, further experiments are needed to confirm. At
the same time, we hope that our research results have a certain
guiding significance for the prognosis and treatment of liver
disease in hepatitis B progression.
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