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Abstract

Background: Presently, with the increasing number and complexity of available gene expression datasets, the
combination of data from multiple microarray studies addressing a similar biological question is gaining importance.
The analysis and integration of multiple datasets are expected to yield more reliable and robust results since they are
based on a larger number of samples and the effects of the individual study-specific biases are diminished. This is
supported by recent studies suggesting that important biological signals are often preserved or enhanced by multiple
experiments. An approach to combining data from different experiments is the aggregation of their clusterings into a
consensus or representative clustering solution which increases the confidence in the common features of all the
datasets and reveals the important differences among them.

Results: We propose a novel generic consensus clustering technique that applies Formal Concept Analysis (FCA)
approach for the consolidation and analysis of clustering solutions derived from several microarray datasets. These
datasets are initially divided into groups of related experiments with respect to a predefined criterion. Subsequently, a
consensus clustering algorithm is applied to each group resulting in a clustering solution per group.

These solutions are pooled together and further analysed by employing FCA which allows extracting valuable insights
from the data and generating a gene partition over all the experiments. In order to validate the FCA-enhanced
approach two consensus clustering algorithms are adapted to incorporate the FCA analysis. Their performance is
evaluated on gene expression data from multi-experiment study examining the global cell-cycle control of fission
yeast. The FCA results derived from both methods demonstrate that, although both algorithms optimize different
clustering characteristics, FCA is able to overcome and diminish these differences and preserve some relevant
biological signals.

Conclusions: The proposed FCA-enhanced consensus clustering technique is a general approach to the
combination of clustering algorithms with FCA for deriving clustering solutions from multiple gene expression
matrices. The experimental results presented herein demonstrate that it is a robust data integration technique able to
produce good quality clustering solution that is representative for the whole set of expression matrices.
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Background

DNA microarray technology offers the ability to screen
the expression levels of thousands of genes in parallel
under different experimental conditions or their evolution
in discrete time points. All these measurements contain
information on several aspects of gene regulation and
function, ranging from understanding the global cell-cycle
control of microorganisms [1], to cancer in humans [2,3].
Gene clustering is one of the most frequently used analysis
methods for gene expression data. Clustering algorithms
are used to divide genes into groups according to the
degree of their expression similarity. These groups sug-
gest the correlation and/or co-regulation of the respective
genes that possibly share common biological roles.

The combination of data from multiple microarray stud-
ies addressing a similar biological question is gaining high
importance in the recent years [4-7] due to the ever
increasing number and complexity of the available gene
expression datasets. The integration and evaluation of
multiple datasets yield more reliable and robust results
since they are based on a larger number of samples and the
effects of the individual study-specific biases are dimin-
ished. A method for integration analysis of the data from
multiple experiments is the aggregation of their clustering
results into a consensus clustering which emphasizes the
common organization in all the datasets and reveals the
significant differences among them.

In this work, we present and validate a novel generic
approach to consensus clustering based on Formal Con-
cept Analysis (FCA) where microarray data realized under
different experimental conditions is integrated into a
representative consensus clustering solution. It initially
divides the available microarray experiments into groups
of related datasets with respect to a predefined crite-
rion and then a consensus clustering algorithm is applied
to each group of experiments separately. The rationale
behind this is that if the experiments are closely related
to one another, then they produce more accurate and
robust clustering solution. Next, the clustering solutions
produced by the different groups are pooled together and
further analyzed by employing FCA which allows extract-
ing valuable insights from the data and generating a gene
partition over the whole experimental compendium. FCA
produces a concept lattice where each concept represents
a subset of genes that belongs to a number of clusters. The
concepts compose the final disjoint clustering partition.

The proposed general FCA-enhanced consensus clus-
tering approach is experimentally validated. For this pur-
pose, two consensus clustering methods are adapted to
incorporate an FCA analysis step. These methods are
quite different; the first (Integrative) integrates the parti-
tioning results derived from multiple microarray datasets
through a weighted aggregation process, while the second
employs a Particle Swarm Optimization (PSO) approach

Page 2 of 16

to cluster gene expression data across multiple experi-
ments. The FCA results derived from both methods are
analysed with respect to the cluster consistency and bio-
logical relevance. It is shown that although both algo-
rithms optimize different clustering characteristics, FCA
is able to construct similar consensus clustering solutions
that are representative for the whole set of experiments.

In summary, the main contribution of the introduced
FCA-enhanced consensus clustering technique is that it
proposes a general approach to the combination of clus-
tering algorithms with Formal Concept Analysis (FCA) for
deriving clustering solutions from multiple gene expres-
sion matrices. In addition, the approach is demonstrated
to be independent of the selected clustering algorithm.
In this way one can use a customized algorithm opti-
mized for the specific characteristics of each group of
experiments. The further employment of FCA allows per-
forming a subsequent data analysis, which provides useful
insights on the biological role of genes contained in the
same FCA concepts.

Related work

Presently, with the increasing number and complexity of
available gene expression datasets, the combination of
data from multiple microarray studies addressing a sim-
ilar biological question is gaining importance. However,
as emphasized in [7], the investigations of gene expres-
sion levels have also generated controversy because of the
probabilistic nature of the conclusions and the discrep-
ancies between the results of the studies addressing the
same biological question. Subsequently, the authors pro-
posed data analysis and visualization tools for estimating
the degree to which the findings of one study are repro-
duced by others and for integrating multiple studies in
a single analysis. These tools were described in the con-
text of studies of breast cancer and it was illustrated that
it is possible to identify a substantial biologically relevant
subset of the human genome within which the expression
levels are reliable. The latter suggests that important bio-
logical signals are often preserved or enhanced by multiple
experiments.

Another approach to combining data from different
experiments is the aggregation of their clusterings into
a consensus or representative clustering which increases
the confidence in the common features in all the datasets
and reveals the important differences among them [8].
Methods for the combination of clustering results derived
for each dataset separately have been considered in
[9-11]. The algorithm proposed in [9] first generates local
cluster models and then combines them into a global
cluster model of the data. The study in [10] focuses on
clustering ensembles, i.e. seeking a combination of mul-
tiple partitions that provides improved overall clustering
of the given data. The combined partition is found as a
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solution to the corresponding maximum likelihood prob-
lem using the Expectation-Maximization (EM) algorithm
in [12]. The authors in [11] consider the problem of com-
bining multiple partitions of a set of objects into a single
consolidated clustering without accessing the features or
algorithms that determined these partitions. The cluster
ensemble problem is formalized as a combinatorial opti-
mization problem in terms of shared mutual information.

In contrast to the foregoing approaches, the generic
solution proposed in this paper applies FCA in order
to construct a consensus clustering that is representa-
tive for all the datasets and in addition, it is independent
of the applied clustering algorithm. In order to validate
the proposed FCA-enhanced approach two consensus
clustering algorithms have been developed, Integrative
[13] and PSO-based [14], and used in the validation
process. Note that, a preliminary FCA-enhanced ver-
sion of the PSO-based algorithm was initially considered
in [15].

In [13] we study two microarray data integration tech-
niques that can be applied to the problem of deriving
clustering results from a set of microarray experiments.
A cluster integration approach is considered, which com-
bines the information contained in multiple microarray
experiments at the level of expression or distance matrices
and then applies a clustering algorithm on the combined
matrix. Furthermore, a technique for the combination
of partitioning results derived from multiple microarray
datasets, referred to as Integrative comnsensus clustering,
is introduced. It uses a traditional aggregation schema in
order to integrate the different partitioning results into a
final partition matrix.

The PSO-based approach is used to cluster gene expres-
sion data across multiple experiments. In this algorithm,
referred to as PSO-based consensus clustering, each exper-
iment (dataset) defines a particle which is initialized
with a set of k cluster centroids obtained after per-
forming k-means clustering on the experiment. The final
(optimal) clustering solution is found by updating the
particles using the information on the best clustering solu-
tion obtained by each experiment and the entire set of
experiments.

In this article, the Integrative and PSO-based consensus
clustering approaches are extended incorporating a final
FCA-step. The experimental results from their validation
suggest that although both algorithms optimize different
clustering characteristics, FCA is able to construct similar
consensus clustering solutions.

Methods

Partitioning algorithms

Three partitioning algorithms are commonly used for the
purpose of dividing data objects into k disjoint clusters
[16]: k-means, k-medians and k-medoids clustering. All
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three methods start by initializing a set of k cluster cen-
tres, where k is preliminarily determined. Subsequently,
each object of the dataset is assigned to the cluster whose
centre is the nearest, and the cluster centres are recom-
puted. This process is repeated until the objects inside
every cluster become as close to the centre as possible
and no further object item reassignments take place. The
EM algorithm in [12] is commonly used for that pur-
pose, i.e. to find the optimal partitioning into k groups.
The three partitioning methods in question differ in how
the cluster centre is defined. In k-means, the cluster cen-
tre is defined as the mean data vector averaged over all
objects in the cluster. Instead of the mean, k-medians cal-
culates the median for each dimension in the data vector.
Finally, in k-medoids [17], which is a robust version of the
k-means, the cluster centre is defined as the object which
has the smallest sum of distances to the other objects in
the cluster, i.e., this is the most centrally located point in a
given cluster.

Particle swarm optimization

Particle swarm optimization (PSO) is an evolutionary
computation method introduced in [18]. In order to find
an optimal or near-optimal solution to the problem, PSO
updates the current generation of particles (each particle
is a candidate solution to the problem) using the informa-
tion on the best solution obtained by each particle and the
entire population.

The hybrid algorithm proposed in [14] combines k-
means and PSO for deriving a clustering result from a
group of n related microarray datasets M, My, ..., M,.
Each dataset contains the gene expression levels of m
genes in n; different experimental conditions or time
points. In this context, each matrix i is used to gener-
ate k cluster centers, which are considered to represent
a particle, i.e. the particle is treated as a set of points in
an #;-dimensional space. The final (optimal) clustering
solution is found by updating the particles using the infor-
mation on the best clustering solution obtained by each
data matrix and the entire set of matrices.

Assume that the i-th particle is initialized with a set
of k cluster centers® C; = {Ci, Cé, e ,C,i} and a set of
velocity vectors? V= {Vli, Vzi, R V,i} using gene expres-
sion matrix M;. Thus each cluster center is a vector C/’ =

i i . ; i
(le’ Cigs -+ Cjn,») and each velocity vector is a vector Vi =

(V;l:v v]’:2, R v]‘:ni), i.e. each particle i is a matrix (or a set of

points) in the k x n; dimensional space.

Next, assume that P, = {Pgl,sz, . ..,ng} is a set of
cluster centers in an #g-dimensional space representing
the best clustering solution found so far within the set of
matrices and P; = {Pi,Pé, ... ,P]i} is the set of centroids
of the best solution discovered so far by the corresponding
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matrix. The update equation for the d-th dimension of
the j-the velocity vector of the i-th particle is defined as
follows

1)
wherei=1,...,m;j=1,...,.kd=1,...,n;and
o) = Pgd — C]{d(‘t)»if Hg > N )
0, otherwise

The variables ¢; and ¢y are uniformly generated ran-
dom numbers in the range [0,1], ¢; and cy are called
acceleration constants whereas w is called inertia weight
as defined in [19]. The first part of Equation (1) represents
the inertia of the previous velocity, the second part is the
cognition part that identifies the personal experience of
the particle and the third part represents the cooperation
among particles and is therefore named the social com-
ponent. Acceleration numbers c1, ¢y and inertia weight w
are predefined by the user. Note that the cognition part in
the above equation has a modified interpretation. Namely,
it represents the private ‘thinking’ (opinion) of the parti-
cle based on its own source of information (dataset). Due
to this we adapted the social part (see equation (2)) since
each particle matrix has a different number of columns
(n;) due to different number of experiment points in each
dataset. It was demonstrated in [19] that when w is in the
range [0.9,1.2] PSO will have the best chance to find the
global optimum within a reasonable number of iterations.
Furthermore, w = 0.72 and ¢; = ¢y = 1.49 were found
in [20] to ensure good convergence.

The clustering algorithm combining PSO and k-means
can be summarized as follows:

1. Initialize each particle with k cluster centers
obtained as a result of applying the k-means
algorithm to the corresponding data matrix.

2. Initialize the personal best clustering solution of each
matrix with the corresponding clustering solution
found in Step 1.

3. for iteration = 1 to max-iteration do

(a) fori=1to n do (i.e. for all datasets)
i.forj =1 to m do (i.e. for all genes in
the current dataset)
A. Calculate the distance of gene g;
with all cluster centers.
B. Assign gj to the cluster that has the
nearest center to gj.
ii. end for
iii. Calculate the fitness function for the
clustering solution C;.
iv. Update the personal best clustering
solution P;.
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(b) end for

(c) Find the global best solution P,.

(d) Update the cluster centers according to the
velocity updating formula proposed in
equation (1).

4. end for

The PSO-based clustering algorithm was first intro-
duced in [21] showing that it outperforms k-means and
a few other state-of-the-art clustering algorithms. In this
method, each particle represents a possible set of k clus-
ter centroids. The authors in [22] hybridized the approach
in [21] with the k-means algorithm for clustering general
datasets. A single particle of the swarm is initialized with
the result of the k-means algorithm while the rest of the
swarm is initialized randomly. In [23] a new approach is
proposed based on the combination of PSO and Self Orga-
nizing Maps and applied it for clustering gene expression
data obtaining promising results. Further the study in [24]
considers a dynamic clustering approach based on PSO
and genetic algorithm. The main advantage of this algo-
rithm is that it can automatically determine the optimal
number of clusters and simultaneously cluster the data set
with minimal user interference. The downside of all the
foregoing approaches is that they are not suitable for con-
solidating multiple partitions as the conducted clustering
analysis is based on a single expression matrix.

Formal concept analysis

Formal Concept Analysis (FCA) [25] is a mathematical for-
malism allowing to derive a concept lattice from a formal
context constituted of a set of objects O, a set of attributes
A, and a binary relation defined as the Cartesian prod-
uct O x A. The context is described as a table which
rows correspond to objects and the columns to attributes
or properties and a cross in a table cell means that “an
object possesses a property”. FCA is used for a number
of purposes among which knowledge formalization and
acquisition, ontology design, and data mining.

The concept lattice is composed of formal concepts,
or simply concepts, organized into a hierarchy by a par-
tial ordering (a subsumption relation allowing to compare
concepts). Intuitively, a concept is a pair (X,Y) where
X C O, Y C A, and X is the maximum set of objects shar-
ing the whole set of attributes in Y and vice-versa. The
set X is called the extent and the set Y the intent of the
concept (X, Y). The subsumption (or sub concept - super
concept) relation between concepts is defined as follows:

X1, Y1) < (X2, Y2) & X1 S Xa(or Y2 C 17). (3)

Relying on this subsumption relation <, the set of all
concepts extracted from a context is organized within a
complete lattice. That means that for any set of concepts
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there is a smallest super concept and a largest sub concept,
called the concept lattice.

The FCA or concept lattice approach has been applied
for extracting local patterns from microarray data [26,27]
or for performing microarray data comparison [28,29].
For example, the FCA method proposed in [28] builds a
concept lattice from the experimental data together with
additional biological information. Each vertex of the lat-
tice corresponds to a subset of genes that are grouped
together according to their expression values and some
biological information related to the gene function. It
is assumed that the lattice structure of the gene sets
might reflect biological relationships in the dataset. In
[30], a FCA-based method is proposed for extracting
groups or classes of co-expressed genes. A concept lat-
tice is constructed where each concept represents a set
of co-expressed genes in a number of situations. A seri-
ous drawback of the method is the fact that the expression
matrix is transformed into a binary table (the input for
the FCA step) which leads to possible introduction of
biases or information loss. Thus the authors further pro-
pose and compare two FCA-based methods for mining
gene expression data and show that they are equivalent
[31]. The first one relies on interordinal scaling, encoding
all possible intervals of attribute values in a formal con-
text that is processed with classical FCA algorithms. The
second one relies on pattern structures without a prior
transformation, and is shown to be more computation-
ally efficient and to provide more readable results. Notice
that all the mentioned FCA-based methods focus solely
on optimizing the clustering of a single expression matrix
and consequently, they are not suited for the consolidation
of multiple partitions.

FCA-enhanced consensus clustering algorithm

The problem of deriving clustering results from a set of
gene expression matrices can be approached in two dif-
ferent ways: 1) information contained in different datasets
may be combined at the level of expression (or similar-
ity) matrices and afterwards clustered; 2) given multiple
clustering solutions, one per each dataset, find a con-
sensus (combined) clustering. In this section, a general
FCA-enhanced consensus clustering algorithm for deriv-
ing a clustering result from multiple microarray datasets
is proposed which adopts the second approach.

Assume that a particular biological phenomenon is
monitored in several high-throughput experiments under
n different conditions. Each experimenti (i = 1,2,...,n)
is supposed to measure the gene expression levels of
m; genes in n; different experimental conditions or
time points. Thus, a set of n different data matrices
M1, My, ..., M, will be produced, one per experiment.

The FCA-enhanced consensus clustering consists of
three distinctive steps in Figure 1: 1) the expression
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datasets are divided into several smaller groups using
some predefined criterion; 2) a consensus clustering algo-
rithm (e.g. Integrative, PSO-based or other) is applied to
each group of datasets separately, which produces a list
of different clustering solutions, one per group; 3) these
clustering solutions are further transformed into a single
clustering result by employing FCA.

In contrast to the consensus clustering algorithms dis-
cussed in the foregoing sections, where some parti-
tioning (e.g. Integrative and PSO-clustering) algorithm
is applied to the entire set of experiments in order to
produce the final clustering solution, the algorithm pro-
posed herein initially divides the available microarray
datasets into groups of related (similar) experiments with
respect to a predefined criterion. The rationale behind
this is that if the experiments are closely related to one
another, then these experiments produce more accurate
and robust clustering solution. Thus, the selected con-
sensus clustering algorithm is applied to each group of
experiments separately. This produces a list of different
clustering solutions, one per each group. Subsequently,
these solutions are pooled together and further ana-
lyzed by employing FCA which allows extracting valuable
insights from the data and generating a gene partition
over the whole experimental compendium. FCA produces
a concept lattice where each concept represents a sub-
set of genes that belong to a number of clusters. The
different concepts compose the final disjoint clustering
partition.

The proposed FCA-enhanced consensus clustering
approach has the following characteristics:

1. the clustering uses all data by allowing potentially
each group of related experiments to have a different
set of genes, i.e. the total set of studied genes is not
restricted to those contained into all datasets;

2. it is better tuned to each experimental condition by
identifying the initial number of clusters for each
group of related experiments separately depending
on the number, composition and quality of the gene
profiles;

3. the problem with ties is avoided (i.e. a case when a
gene is randomly assigned to a cluster because it
belongs to more than one cluster) by employing FCA
in order to analyze together all the partitioning results
and find the final clustering solution representative
of the whole experimental compendium.

The distinctive steps of the FCA-enhanced clustering
algorithm, visualized in Figure 1, are explained in detail
below.

Initialization step
Let us consider the aforementioned expression matrices
My, My, ..., M, monitoring N different genes in total.
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Figure 1 Schematic representation of the FCA-enhanced consensus clustering approach.
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The initialization step is the most variable part of the algo-
rithm since it closely depends on the concrete clustering
algorithm employed.

The available gene expression matrices are divided into
r groups of related (similar) datasets with respect to some
predefined criterion, e.g. the used synchronized method
or the expression similarity between the matrices. For
each group the set of studied genes needs to be restricted
to those contained in all datasets of the group, i.e. the
number of overlapping genes found across all datasets of
the group. Then the number of cluster centres is identified
for each group of experiments i (i = 1,2,...,r) separately.
As discussed in [32,33], this can be performed by run-
ning the k-means or other clustering algorithm on each
data matrix for a range of different numbers of clusters.
Subsequently, the quality of the obtained clustering solu-
tions needs to be assessed in some way in order to iden-
tify the clustering scheme which best fits the datasets in
question. Some commonly used validation measures are
the Silhouette Index and Connectivity, presented in the
Cluster validation measures section, which are able to
identify the best clustering scheme. Finally, the prevailing
number of clusters within the concrete group of experi-
ments is selected as representative for the whole group.

Clustering step

The selected consensus clustering (e.g. Integrative, PSO-
based or other) algorithm is applied to each group of
related experimentsi (i = 1,2,...,r) separately. The latter
will generate a list of r different clustering solutions, one
per each group. The result is that K (K =k; + ...+ k;)
different clusters are produced by the different groups.
This clustering solution is disjoint in terms of the gene
expression profiles produced in the different experiments.
However, it is not disjoint in terms of the different partic-
ipating genes, i.e. there will be genes which will belong to
more than one cluster.

FCA-based analysis step

As discussed above, the N studied genes are grouped
during the Clustering step into K clusters that are not
guaranteed to be disjoint. This overlapping partition is
further analysed and refined into a disjoint one by apply-
ing FCA. As mentioned above FCA is a principled way
of automatically deriving a hierarchical conceptual struc-
ture from a collection of objects and their properties. The
approach takes as input a matrix (referred to as the for-
mal context) specifying a set of objects and the properties
thereof, called attributes. In our case, a formal context
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consists of the set G of the N studied genes (objects), the
set of clusters C = C1, Cy, ..., Ck produced by the clus-
tering step (attributes), and an indication of which genes
belong to which clusters. Thus, the context is described
as a matrix, with the genes corresponding to the rows and
the clusters corresponding to the columns of the matrix,
and a value of 1 in cell (i, j) whenever gene i belongs to
cluster C;. Subsequently, a formal concept for this context
is defined to be a pair (X, Y) such that

¢ X CG&Y C C&every gene in X belongs to every
clusterin Y

e for every gene in G that is not in X, there is a cluster
in Y that does not contain that gene

e for every cluster in C that is not in Y, there is a gene
in X that does not belong to that cluster.

The family of these concepts obeys the mathematical
axioms defining a concept lattice. The constructed lattice
consists of concepts where each one represents a subset
of genes belonging to a number of clusters. The set of all
concepts partitions the genes into a set of disjoint clusters.

Validation setup

Microarray datasets

The aforementioned consensus clustering algorithms are
validated and compared on benchmark datasets where the
true clustering is known. These datasets are composed by
gene expression time series data obtained from a study
examining the global cell-cycle control of gene expression
in fission yeast Schizosaccharomyces pombe [1]. The study
includes eight independent time-course experiments syn-
chronized respectively by:

1. elutriation: three independent biological repeats
(elul, elu2, elu3);

2. cdc25 block-release: two independent biological
repeats, of which one in two dye-swapped technical
replicates (cdc25-1, cdc25-2.1, cdc25-2.2) and in
addition, one experiment in a sepl mutant
background (cdc25-sepl);

3. a combination of both methods: elutriation and
cdc25 block-release (elu-cdcl10) as well as elutriation
and cdc10 block-release (elu-cdc25).

Thus, nine different expression test sets are available.
In the pre-processing phase the rows with more than
25% missing entries are filtered out from each expres-
sion matrix and any other missing expression entries are
imputed by the DT Wimpute algorithm presented in [34].
In this way nine complete matrices are obtained.

The authors in [1] identified 407 genes as cell-cycle
regulated subjected to clustering which resulted in the
formation of 4 separate clusters. Subsequently, the time
expression profiles of these genes are extracted from
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the complete data matrices and thus nine new matri-
ces are constructed. Note that some of these 407 genes
are removed from the original matrices during the pre-
processing phase, i.e. each dataset may have a different set
of genes. Thus a set of 376 different genes are present in
the nine pre-processed datasets in total.

Two different benchmark datasets are constructed from
the original nine pre-processed matrices and used in the
validation process:

1. The genes that are not present in the intersection of
the nine pre-processed datasets are removed. The
latter produces a subset of 267 genes. Subsequently,
the time expression profiles of these genes are
extracted from the complete data matrices and thus
nine new matrices which form our test corpus 1 are
constructed.

2. The initial complete datasets are divided into three
groups with respect to the used synchronization
method. The overlapping genes within each group
are as follows: a subset of 286 common genes in the
elutriation datasets, a subset of 350 common genes in
the cdc25 block-release datasets and a subset of 374
common genes in the datasets synchronized by the
combination of both methods. For each of the three
groups only these common genes are retained. As a
result of this nine new matrices which form our test
corpus 2 are built. Notice that the nine different
dataset contain 374 different genes in total.

The benchmark datasets are normalized by applying a
data transformation method as proposed in [35].

Consensus clustering algorithms

In order to validate the proposed general FCA-enhanced
approach, we applied two different consensus clustering
methods: 1) an algorithm integrating multiple partitioning
results and 2) a PSO-based clustering method.

These two consensus clustering methods approach in
a different way the initialization of the cluster centres
and the production of the final clustering partition. Both
methods initially restrict the studied genes for each group
to those contained in all datasets of the group.

The first algorithm, referred to as Integrative, initial-
izes the cluster centres for each group of experiments
using the information contained in the datasets of the
group in an integrated manner. This step is performed
using a matrix constructed by concatenating the expres-
sion matrices in each group. The k-means algorithm is
then applied to each expression matrix in the group to
generate a set of partition matrices for each group. Utiliz-
ing information on the quality of the microarrays, weights
are assigned to the experiments and are further used in
the integration process in order to obtain more realistic
overall partition for each group. The data transformation
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method proposed in [35] is used to evaluate the qual-
ity of the considered microarrays. It is applied to each
expression matrix and the number of standardized genes
is considered as a quality measure for this matrix. This
step results in the assignment of a weight to each expres-
sion matrix in the group, i.e. the different experiments in
the group will contribute to the final partitioning result to
a different extent. A detailed explanation of the Integrative
consensus clustering algorithm can be found in [13].

The second consensus clustering method, referred to
as PSO-based, employs a PSO approach to cluster gene
expression data across multiple experiments. Each experi-
ment (dataset) defines a particle which is initialized with a
set of k cluster centroids obtained after performing the k-
means clustering algorithm applied over the experiment.
The final (optimal) clustering solution for each group of
experiments is found by updating the particles using the
information on the best clustering solution obtained by
each experiment and the entire set of experiments in the
group. A detailed explanation of the PSO-based consensus
clustering algorithm can be found in [14].

Cluster validation measures

One of the most important issues in cluster analysis is
the validation of the clustering results. Essentially, cluster
validation techniques are designed to find the partition-
ing that best fits the underlying data, and should therefore
be regarded as a key tool in the interpretation of the
clustering results. Since none of the clustering algorithms
performs uniformly well under all scenarios, it is not reli-
able to use a single cluster validation measure, but instead
to use at least two that reflect different aspects of a
partitioning. In this sense, we have implemented two dif-
ferent validation measures for estimating the quality of the
clusters:

1. Connectivity: for assessing connectedness;
2. Silhouette Index (SI): for assessing compactness and
separation properties of a partitioning.

Connectivity

The Connectivity captures the degree to which genes are
connected within a cluster by keeping track of whether
the neighbouring genes are put into the same cluster [36].
Let us define m1;( ;) as the j-th nearest neighbour of gene i,
and let Ximyj) be zero if i and j are in the same cluster and
1/j otherwise. Then for a particular clustering solution
C1,Cy, ..., Cy of matrix M, which contains the expres-
sion values of m genes (rows) in #n different experimental
conditions or time points (columns), the connectivity is
defined as

m n
Conn(c) = Z Z Ximyj)-

i=1 j=1
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The Connectivity has a value between zero and infinity
and should be minimized.

Silhouette index

The Silhouette Index (SI) reflects the compactness and
separation of clusters [37]. Suppose Ci,Cy,...,C is a
clustering solution (partition) of matrix M, which contains
the expression profiles of m genes. Then, the SI is defined
as

stk = % ; (bi — ai) / max {as, bi},

where a; represents the average distance of gene i to the
other genes of the cluster to which the gene is assigned,
and b; represents the minimum of the average distances of
gene i to genes of the other clusters.

The values of the Silhouette Index vary from -1 to I and
a higher value indicates better clustering results.

Results and discussion

The validation process presented below has two main
goals: 1) to illustrate that different clustering methods
usually generate gene partitions on expression data, which
may exhibit considerable inconsistencies and discrepan-
cies in terms of clustering quality and gene composition
2) to demonstrate the added value of an FCA-enhanced
clustering approach for overcoming and diminishing such
differences and preserving relevant biological signals. For
this purpose, the following partitions have been generated
and compared:

1. two consensus partitions over test corpus 1 using
respectively the original versions of the Integrative
and the PSO-based consensus clustering algorithms;

2. two times three consensus partitions, one for each
group of experiments from test corpus 2, using
respectively the grouped versions of the Integrative
and the PSO-based consensus clustering algorithms
as specified in the foregoing section;

3. two concept lattices derived by applying FCA on the
two sets of group partitions (see above) produced
respectively from the grouped versions of the
Integrative and the PSO-based methods.

Clustering performance

In this section, we evaluate and compare the clustering
performance of the two consensus clustering algorithms
discussed in the foregoing section on the benchmark
datasets described above by using two cluster validation
measures: Silhouette Index and Connectivity.

The partitioning algorithms such as k-means contain
the number of clusters (k) as a parameter and their major
drawback is the lack of prior knowledge for that num-
ber. Therefore, we initially identified the number of cluster
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centres by running the k-means clustering algorithm on
each dataset for values of k between 2 and 10 [32], [33].
Subsequently, the quality of the obtained clustering solu-
tions is assessed using the Connectivity validation index.
We focused on the values of k at which a significant local
change in value of the index occurs [32]. The optimal
number of clusters for the different experiments range
between 3 and 5 as can be seen in Figure 2. However, k = 4
prevails (encountered in five matrices) and therefore it is
used for our experiments.

Figure 3 compares for test corpus 1, the SI and Con-
nectivity values corresponding to the partitions generated
by the standard k-means on each individual matrix ver-
sus the values calculated on the individual matrices using
the overall consensus partitions produced respectively by
the Integrative and the PSO-based consensus clustering
algorithm. One can observe that the SI scores obtained by
the PSO-based clustering technique are better than those
generated by the Integrative clustering and k-means for all
the individual matrices. However, under the Connectivity
measure, the Integrative solution exhibits better perfor-
mance than the other algorithms (in 7 of the 9 experi-
ments for the PSO-based clustering algorithm and in 8
of the 9 for k-means). The obtained results are explained
by the fact that the PSO-based clustering algorithm
favours the production of compact and well separated
clusters instead of well connected, since it finds the final
clustering solution by updating the cluster centres using
the information on the best clustering solution generated
by each experiment and the entire set of experiments. The
Integrative clustering algorithm on the other hand has a
bias towards well connected clusters as it produces the
lowest SI scores in comparison to k-means and the PSO-
based algorithms. Clearly, each clustering algorithm may
introduce biases due to its specific characteristics. There-
fore a generic solution, such as supported by the FCA
approach, that diminishes the differences and preserves
relevant biological signals is required to be applied for
further data analysis.
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Figure 2 Optimal number of clusters as determined using the
Connectivity validation index for the 9 different experiments. For
5 of the 9 datasets k = 4 is identified as the optimal cluster number.
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Next, the performance of the grouped versions of the
Integrative and PSO-based consensus clustering algo-
rithms on test corpus 2 is considered. Initially, the nine
datasets are divided into three groups with respect to the
used synchronized method:

1. elutriation datasets: elul, elu2, elu3;

2. cdc25 block-release datasets: cdc25-1, cdc25-2.1,
cdc25-2.2, cdc25-sepl;

3. datasets synchronized by the combination of both
methods: elu-cdc10, elu-cdc25.

Afterwards, the number of cluster centres is identi-
fied for each group using the Connectivity measure. The
selected optimal number of clusters for the three groups
of experiments is as follows: elutriation datasets: k = 4;
cdc25 block-release datasets: k = 6, and the combined
ones: k = 5. As a result 15 different clusters (elutriation:
clusters 0-3, cdc25 block-release: clusters 4-9 and combi-
nation of both: clusters 10-14) in total are produced by
each of the two consensus clustering methods.

Figure 4 compares the SI and Connectivity values calcu-
lated on the individual matrices using the partitions pro-
duced by the known clustering solution published in [1],
and those generated by the grouped Integrative and PSO-
based clustering solutions. According to the SI indices in
Figure 4(a), the PSO-based solution clearly outperforms
the Integrative one. It also exhibits better performance
than the Integrative clustering solution in 7 of the 9 exper-
iments under the Connectivity validation measure. In
addition, the PSO-based clustering solution is better than
the known one in 6 of the 9 experiments under the SI val-
idation index and respectively, in 3 of the 9 experiments
under the Connectivity index. These results are further
analyzed in the next section.

Cluster consistency

In this section, we analyse the impact of the different clus-
tering methods on the final gene partition. The degree of
pairwise overlap between the different gene clusters gen-
erated by the Integrative and the PSO-based consensus
clustering algorithms is calculated and compared. Assume
that we have a gene cluster ¢; produced by the Integrative
algorithm and a gene cluster ¢; coming from the PSO-
based clustering. Then the degree of overlap is calculated
as follows:

#(ciN¢)

dij - max (#ci,#c,')

100.

In this way, d;; will be equal to 100 in case of full overlap
between the clusters i and j, 0 in case of no overlap and
between 0 and 100 otherwise.
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Figure 3 Comparison of the Sl (a) and Connectivity (b) values generated by the standard k-means algorithm, and the Integrative and the
PSO-based consensus clustering algorithms on test corpus 1.

The consensus gene partitions generated respectively
by the original Integrative and the PSO-based consensus
clustering algorithms on test corpus 1 are compared in
Figure 5(a). The best overlap is recorded for the pairs:
(PSO 1, Integrative 3), (PSO 2, Integrative 3), (PSO 2, Inte-
grative 2) and (PSO 3, Integrative 2). Evidently, the genes
of PSO cluster 0 are almost uniformly distributed between
Integrative 1, Integrative 2 and Integrative 3, those of PSO
1 are allocated to Integrative 3, the genes of PSO 2 are
mainly distributed between Integrative 2 and Integrative 3
and PSO 3 has a high overlap with Integrative 2.

Figures 5(b), (c), (d) depict the overlap between the
consensus clustering assignment of PSO-based versus the
Integrative clustering algorithms on test corpus 2 for each
group of experiments separately (respectively elutriation,
cdc25 block-release and the combined). The best overlap
is recorded for the following pairs:

e elutriation: (PSO 0, Integrative 1), (PSO 2, Integrative
0), (PSO 3, Integrative 3),

e cdc25 block-release: (PSO 4, Integrative 5), (PSO 4,
Integrative 4), (PSO 5, Integrative 6), (PSO 6,

Integrative 9), (PSO 8, Integrative 9), (PSO 9,
Integrative 7),

e combined: (PSO 10, Integrative 14), (PSO 12,
Integrative 14), (PSO 13, Integrative 10) and (PSO 14,
Integrative 13).

The high degree of pairwise overlap between the dif-
ferent gene clusters generated by the Integrative and the
PSO-based consensus clustering algorithms suggests that
there is a certain consistency in the resulting cluster-
ing solutions. The next section elaborates on this effect
by applying FCA on both consensus clustering solutions
consolidating the different groups of experiments.

Results from the FCA-enhanced Step
The gene partitions produced by the grouped versions of
the Integrative and PSO-based consensus clustering algo-
rithms on test corpus 2 are further analysed by applying
FCA.

First, we create a context that consists of the set of 374
studied genes and the set of 15 clusters produced by the
grouped version of the Integrative consensus clustering
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Figure 4 Comparison of the Sl (a) and Connectivity (b) values generated by the known clustering solution published in [1], and those
obtained by applying the grouped-versions of the Integrative and PSO-based consensus clustering algorithms on test corpus 2.

algorithm. It produces a lattice of 133 concepts for this
context (see Figure 6(a)). However, 74 concepts have sup-
port O, ie. the benchmark genes are grouped into 59
disjoint clusters (concepts). Further a context that consists
of the set of 374 studied genes and the set of 15 clus-
ters produced by the grouped version of the PSO-based
clustering algorithm is built. Subsequently, a lattice of 109
concepts for this context is generated (see Figure 6(b)).
The FCA step partitions the benchmark gene set in 85
disjoint clusters (concepts) in total since the rest of the
concepts have support 0. It is interesting to notice that all
the concepts consisting of three clusters in both disjoint
partitions (21 such concepts exist in the Integrative parti-
tion and 29 in the PSO-based) contain clusters produced
by each of the three groups of experiments (elutriation,
cdc25 block-release, combined).

Let us consider the concepts, each consisting of three
clusters, with support above 0.03 for both FCA-enhanced
clustering partitions in Table 1. The SI and Connectivity
values for the expression matrices formed by the genes
contained in these concepts are compared to the known
clustering solution published in [1]. This was executed by

extracting the known clustering solutions for the PSO and
Integrative concepts in Table 1. The results from Figure 7
show that in contrast to the results obtained for the clus-
tering results before the FCA step (see Figures 3 and 4),
the SI and Connectivity performances of the two cluster-
ing algorithms follow a similar trend. Thus, it appears that
ECA step is able to overcome cluster assignment differ-
ences and performance discrepancies mostly attributed to
the specificities of the different clustering methods. Addi-
tionally, for the elutriation experiments FCA has better
SI and Connectivity than the known clustering solution
for both PSO and Integrative. However, for c¢dc25 block-
release the FCA performs for both measures a bit worse
than the known solutions.

Let us investigate whether some correspondence exists
between the PSO-based and the Integrative concepts in
Table 1. For this purpose we consider the overlapping
pairs of clusters of the grouped FCA partitions identified
in the foregoing section (Figures 5(b), (c), (d)). Table 2
presents the correspondence between the PSO-based and
the Integrative concepts in Table 1 in terms of the per-
centage minimum cluster assignment overlap as extracted
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Figure 5 Consensus clustering assignment overlap: Integrative vs. PSO-based. Figure (a) compares the consensus gene partitions generated by
the consensus clustering algorithms on test corpus 1 while Figures (b), (c), (d) depict the overlap between the consensus clustering assignment of
the clustering algorithms on test corpus 2 for each group of experiments separately.

from the results in Figures 5(b), (c), (d). Note that Table 2 e Integrative-{0, 9, 14} contains 41 genes annotated to

does not include concepts, which exhibit significantly 26 GO categories (25 have total frequency > 0.0%),

low overlap (lower than 20%) with any other concept in most of which refer to the regulation of protein

Table 1. kinase activity or regulation of cell-cycle process
Next, each of the 9 different concepts in Table 2 are or regulation of metabolic process;

subjected to analysis with the BINGO tool [38], in order e Integrative-{0, 8, 14} contains 22 genes annotated to

to determine which Gene Ontology categories are statis- 25 GO categories (22 have total frequency > 0.0%

tically overrepresented in each concept. The results are and cluster frequency > 10.0%), dominated by sister

generated for a cut-off p-value of 0.05 and Benjamini and chromatid segregation and beta-glucan process

Hochberg (False Discovery Rate) multiple testing correc- regulation categories;

tion. For each gene concept a table is generated consisting e Integrative-{1, 6, 14} contains 21 genes annotated to

of five columns: (1) the GO category identification (GO- 21 GO categories (15 have total frequency > 0.0%),

id); (2) the multiple testing corrected p-value (p-value); most of which refer to regulation of mRNA

(3) the total number of genes annotated to that GO term stability;

divided by total number of genes in the test set (clus- e DPSO-{1, 6, 10} contains 29 genes connected with 19

ter frequency); (4) the number of selected genes versus GO categories (10 have total frequency > 0.0%), most

the total GO number (total frequency); and (5) a detailed of which refer to cell-cycle control or regulation of

description of the selected GO categories (description). DNA replication or sister chromatid segregation;
Only 6 of the 9 FCA concepts are assigned GO cate- e DPSO-{1, 6, 12} contains 18 genes connected with 5

gories by the BINGO tool: GO categories (only 3 have total frequency > 0.0%),
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Figure 6 The concept lattices generated by the FCA-enhanced consensus clustering produced by the Integrative (a) and the PSO-based (b)

all referring to the regulation of sister chromatid
cohesion and segregation;

e PSO-{1, 8, 12} contains 12 genes annotated to 22 GO
categories (16 have total frequency > 0.0%)
dominated by RNA metabolic processing related
categories.

It can be observed that the correspondences between
the PSO-based and Integrative concepts presented in
Table 2 are also supported by the above GO categories

Table 1 All concepts consisting of three
clusters with support above 0.03

PSO-based Integrative
{1,6,10} {0,9, 14}
{0,513} {1,6,14}
{1,6,12} {0,8, 14}
{2,4,10} {2,9,14}
{0,5,10} {1,914}
{1,8,12}
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e.g. sister chromatid segregation, DNA and cell-cycle reg-
ulation, metabolic processing, etc. These correspondences
suggest that although both algorithms optimize different
clustering characteristics (SI and Connectivity indices in
Figure 4), FCA is able to construct similar consensus clus-
tering lattices that are representative for all the datasets.
Evidently, the proposed FCA-enhanced approach is a
generic consensus clustering technique that is not depen-
dent on the applied clustering algorithm. This means that
one can use a customized algorithm suited for the specific
characteristic of each dataset group and consolidate the

Table 2 Percentage minimum overlap between the
concepts from Table 1

PSO-based integrative {1,6,10} {1,6,12} {0,5,10} {1,8,12}

{0,914 35% 35% - 25%
{1,6,14} 20% 20% 40% -
{0,8,14} 20% 20% - -
{2,9,14} 20% 20% - 20%
{1,914} 25% 25% - 25%

resulting clustering solutions of the involved groups by
using FCA.

Conclusions

In this paper we introduced a novel consensus cluster-
ing technique which proposes a general approach to the
combination of clustering algorithms with Formal Con-
cept Analysis (FCA) for deriving representative clustering
solutions from multiple gene expression matrices. This
approach involves three distinctive steps: (i) the studied
microarray experiments are partitioned into groups of
related datasets with respect to a predefined criterion, (ii)
a consensus clustering algorithm is applied to each group
of experiments separately, (iii) the clustering solutions
produced by the different groups are pooled together and
further analyzed by employing FCA. The performance
of the proposed consensus clustering algorithm is evalu-
ated on a test set of nine time series expression datasets
obtained from a study examining the global cell-cycle
control of gene expression in fission yeast Schizosaccha-
romyces pombe. In addition, in step (ii) of the proposed
approach two different consensus clustering algorithms



Hristoskova et al. BMC Bioinformatics 2014, 15:151
http://www.biomedcentral.com/1471-2105/15/151

(Integrative and PSO-based) are applied for the validation
process. The presented experimental results demonstrate
that the proposed FCA-enhanced clustering algorithm is
a robust data integration technique able to produce good
quality clustering solution that is representative for the
whole set of experiments. In addition, the employment of
FCA allows performing a subsequent data analysis, which
provides useful insights on the biological role of genes
contained in the same FCA concepts. Our future work will
focus on further exhaustive analysis of the composition
and relationships between the different FCA concepts.
Moreover, our longterm aim is to further evaluate the gen-
eralisability of FCA-enhanced consensus clustering tech-
nique by conducting experiments with other clustering
algorithms and microarray datasets.

Implementation and availability

The used cluster validation measures and the Integrative
consensus clustering algorithm have been implemented
in C++. In addition, the PSO-based clustering algorithm
has been implemented in Java. The publicly available open
source machine learning software WEKA [39] is used by
this implementation for the particle initialization and for
the gene assignment to the different clusters. Finally, FCA
is performed by using publicly available tools [40].

Endnotes

2The number of clusters k, is initially identified by
analyzing the quality of the obtained clustering solutions
generated on the involved datasets for a range of different
numbers of clusters.

>The velocity vectors are initialized by zeros.
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