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Abstract: The synthesis of two well-defined rhodium(I)
complexes of nitrous oxide (N2O) is reported. These normally
elusive adducts are stable in the solid state and persist in
solution at ambient temperature, enabling comprehensive
structural interrogation by 15N NMR and IR spectroscopy,
and single-crystal X-ray diffraction. These methods evidence
coordination of N2O through the terminal nitrogen atom in
a linear fashion and are supplemented by a computational
energy decomposition analysis, which provides further insights
into the nature of the Rh–N2O interaction.

The synthetic exploitation of nitrous oxide (N2O) is an
enduring challenge that draws topical interest as a means to
remediate the detrimental impact emission of this kinetically
stable gas on the environment.[1] Whilst the application of
homogenous transition-metal complexes is an attractive
prospect, the underpinning inorganic chemistry is conspicu-
ously under-developed.[2] Indeed, the number of discrete
transition-metal complexes of N2O is currently limited to
a handful of examples (A–D), of which only two have been
structurally characterised in the solid state using X-ray
diffraction (Figure 1).[3–7] This paucity is attributed to the
extremely poor ligand properties of N2O, conferred by a low
dipole moment, weak s-donor and p-acceptor characteristics,
and the propensity of these adducts for subsequent N@N or
N@O bond cleavage.[2]

Inspired by work by Brookhart and Caulton,[8,9] and
building upon that conducted in our laboratories,[10] we chose
cationic phosphine-based pincer complexes of rhodium(I) as
a platform for studying the coordination chemistry of N2O.
Our approach utilises dimeric [{Rh(pincer)}2(m-h2 :h2-COD)]-
[BArF

4]2 (1a, pincer = 2,6-(tBu2PO)2C5H3N; 1b, pincer = 2,6-
(tBu2PCH2)2C5H3N; COD = cyclooctadiene, ArF = 3,5-
(CF3)2C6H3) as synthons for reactive {Rh(pincer)}+ fragments
in the weakly coordinating solvent 1,2-F2C6H4 (DFB).[11]

Satisfactorily, reactions of 1 with N2O (1.5 bar) at room
temperature afforded well-defined adducts [Rh(pincer)-
(N2O)][BArF

4] 2 in quantitative yield by 31P NMR spectros-

copy, as evidenced by resonances at d 210.4 (2a, 1JRhP =

134 Hz, t< 3 h)/ d 70.9 (2b, 1JRhP = 127 Hz, t< 5 min) that
display diagnostic 103Rh coupling (Figure 1). These Rh–N2O
complexes were subsequently isolated as analytically pure
materials in good yield on precipitation with hexane at low
temperature and extensively characterised (2a, 65%; 2b
78%). Both can be stored under argon in the solid state, but
decompose slowly in DFB solution at room temperature (2a,
t50%dec& 4.0 h; 2b, t50%dec& 2.5 h), with generation of the
known dinitrogen complexes [Rh(pincer)(N2)][BArF

4] (3a,
d 211.3, 1JRhP = 133 Hz; 3b, d 71.2, 1JRhP = 126 Hz).[10, 12] By
drawing parallels with the reaction of a neutral rhodium PNP
analogue with N2O, where formation of a discrete adduct is
inferred but not experimentally corroborated, we suggest 2
decomposes by a bimetallic oxygen atom transfer mechanism
that is initiated by dissociation of N2O and proceeds via
{(pincer)RhII–N=N–O–RhII(pincer)}2+.[9, 13] Consistent with
this assertion, enhanced solution stability was observed
under a N2O atmosphere (2%/30% decomposition of 2 a/b
after 24 h).

The structures of 2 were definitively established in DFB
solution using 15N NMR spectroscopy, aided by samples
prepared using isotopically labelled 15N2O (98 % 15N, Figure 2
and the Supporting Information). Intact coordination of N2O
through the terminal nitrogen atom is evident by an upfield
shift of Dd 43.3/37.0 for the corresponding 15N resonances,
comparable to that of B,[4] which exhibit 1JRhN coupling of

Figure 1. Well-defined transition-metal complexes of nitrous oxide.
Weakly coordinating [BArF

4]
@ anions have been omitted from the

reaction scheme for clarity.
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28/27 Hz[14] and 2JPN coupling of 4/5 Hz for 2a/b, respectively.
The internal 15N resonances are conversely shifted downfield
by Dd 15.3/14.3, but retain coupling to both 103Rh (2JRhN =

8 Hz) and 31P (3JPN = 1 Hz), albeit with commensurate reduc-
tions in magnitude. The 1JNN coupling constant of free N2O
(9 Hz) is small and appreciably reduced on complexation to
rhodium; to the extent that it is only just resolved (1 Hz).
Analysis of natural abundance and isotopically labelled
(powdered) solid samples of 2 using ATR IR spectroscopy
enabled unambiguous assignment of the principal n(N-N) and
n(N-O) bands of 2a (2279, 1252 cm@1, respectively) and 2b
(2267, 1228 cm@1, respectively). The former are significantly
blue shifted, relative to the free ligand, whilst the latter are
red shifted (2224, 1285 cm@1, respectively).[15] Spectra of 2 can
also be acquired in DFB and give similar values (full details
are provided in the Supporting Information). Higher energy
n(N-N) bands are also observed for C and D,[5,6] with this
phenomenon running contrary to normal expectations for
(meaningful) metal-to-ligand p-back bonding.

The solid-state structures of 2 a and 2b have been
determined using single-crystal X-ray diffraction (150 K)
and verify that they are both discrete N2O complexes, with
the ligand binding through the terminal nitrogen atom in
a linear fashion (Rh–N–N> 17388 and N–N–O> 17888 ;
Figure 2). The former is well-ordered, but the latter features
an extensively disordered pincer ligand symptomatic of
dynamic isomerism in the lattice (C2Ð Cs conformations).[16]

Whilst this disorder was modelled satisfactorily, the metal–

ligand metrics in 2b are inevitably determined with reduced
precision in comparison to 2a. Nevertheless, the pertinent
data associated with coordination of N2O in 2 point to very
similar bonding characteristics. When normalising by the sum
of the covalent radii,[17] the extent of the M–N interactions in
2a (1.981(2) c) and 2b (1.962(7) c) are in close agreement
with those previously determined in C (2.1389(10) c) and D
(1.890(8) c): r(M-N)/[r(M) + r(N)] = 0.93, 2a ; 0.92, 2b ; 0.95,
C ; 0.93, D.[5,6] There is a trend for the N@N bonds (1.108(3)/
1.111(11) compared to 1.128 c) to be shortened and the N@O
bonds (1.194(3)/1.192(11) compared to 1.184 c) to be elon-
gated in 2a/b relative to free N2O,[15] but these changes are
marginal.

Supplementing the experimental work, the geometries
and thermodynamics of 2 were interrogated in silico at the
DLPNO-CCSD(T)/def2-TZVPP//wB97X-D3/def2-TZVP(-f)
level of theory.[18] Whilst the trend for a longer Rh–N contact
in 2a (2.006 c) relative to 2b (1.989 c) established by X-ray
diffraction is reproduced, it is for the former that binding of
N2O is predicted to be most exergonic (DG298K =

@68.5 kJmol@1, 2a ; @67.6 kJ mol@1 2 b). The magnitude of
these values is consistent with slow exchange on the 15N NMR
timeframe (61 MHz, 298 K; Figure 2), with the difference
congruent with the relative rate of decomposition observed in
solution. Only very small perturbations to the N–N and N@O
bond lengths are computed on coordination (less than
0.005 c), but the associated vibrations corroborate the
experimental pattern and are discernibly blue and red shifted,

Figure 2. Solid-state structures (150 K) and 15N NMR spectra (15N2O atmosphere, DFB, 61 MHz, 298 K) of 2. Thermal ellipsoids drawn at 50 %
(2a) and 30 % (2b) probability; minor disordered components (pincer ligand in 2b) and anions omitted for clarity. Selected bond lengths and
angles: 2a Rh1–P2 2.2677(5) b, Rh1–P3 2.2688(5) b, Rh1–N4 1.981(2) b, N4–N5 1.108(3) b, N5–O6 1.194(3) b, Rh1–N20 2.007(2); N20–Rh1–N4
178.05(8)88, Rh1–N4–N5 173.4(2)88, N4–N5–O6 178.5(3)88 ; 2b Rh1–P2 2.282(2) b, Rh1–P3 2.288(2) b, Rh1–N4 1.962(7) b, N4–N5 1.111(11) b, N5–
O6 1.192(11) b, Rh1–N20/N20A 2.071(7)/2.052(8) b; N20/N20A–Rh1–N4 178.1(5)/175.4(5)88, Rh1–N4–N5 176.8(11)88, N4–N5–O6 178.7(14)88.[22]
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respectively (see the Supporting Information). To gain deeper
insight into the nature of the Rh–N2O interaction, a local
energy decomposition (LED) analysis was carried out using
ORCA 4.1.2. (Table 1; Supporting Information).[18–20] The
results reiterate marginally stronger N2O binding in 2a (De =

+ 122.3 kJ mol@1) compared to 2b (De =+ 120.1 kJmol@1) and
highlight the important role of dispersion, which accounts for
approximately 12% of the total stabilising interactions.[21] The
interfragment orbital energies are small and reflect the
presence of weak s-donation and p-back bonding; with the
former predominating (ca. 56 % vs. 40%). When the two
complexes are compared, the combined stabilising interac-
tions are most pronounced for 2b, but counteracted by even
more extensive Pauli repulsion (i.e. sterics) than in 2a. The
latter difference is reconciled by the more obtuse bite angle of
the PNP (P–Rh–P = 169.24(8)88, expt) vs. PONOP (P–Rh–P =

162.77(2)88, expt) pincer ligand, which causes greater buttress-
ing between the tBu substituents and the coordinated N2O
ligand.

In summary, the synthesis and comprehensive character-
isation of two rhodium(I) pincer complexes of N2O are
reported. Through an unprecedented combination of 15N
NMR and IR spectroscopy, and single crystal X-ray diffrac-
tion the discrete nature of these complexes and the coordi-
nation of N2O to the metal through the terminal nitrogen
atom in a linear fashion is unequivocally established. Subtle
differences in the characteristics of the Rh–N2O interaction
associated with the ancillary pincer ligand employed have
been reconciled using a computational energy-decomposition
analysis, which highlights the weakly interacting nature of
N2O, the important stabilising role of dispersion interactions,
and the effect of steric buttressing with the pincer substitu-
ents.
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