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Abstract

Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet
transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated
xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-
induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney
capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days
(kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the
transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One
month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar
degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal
model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with
local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the
bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.
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Introduction

The incidence of type 1 diabetes is constantly rising in children

and adolescents since the mid-1950’s [1,2]. Allotransplantation of

pancreatic islets is currently an option for the treatment of diabetic

type-I patients suffering from repetitive and severe hypoglycemic

episodes. However, the possibility of receiving an islet transplant is

limited mainly due the shortage of organ and the need for life-long

immunosuppression. The utilization of islets from other species

(xenograft) and administration in encapsulated form represent

attractive strategies to overcome both problems.

Clinical trials of allogeneic human or xenogeneic pig encapsu-

lated islets have been reported in only a few cases [3,4]. After

intra-peritoneal transplantation all patients showed a modest

reduction in insulin requirement and a significant diminution of

hypoglycemic episodes without any detectable immune response

against the islets. Nevertheless, sustained insulin-independence was

not achieved after encapsulated allogeneic islet transplantation. In

addition, blood porcine C peptide levels remained low or

undetectable suggesting graft failure. Certain investigators are of

the opinion that this poor outcome is related to the high sensitivity

of pancreatic islets to hypoxia [5]. Indeed, islets are highly

vascularized structures depending on an arterial oxygen supply of

40 mmHg [6]. The peritoneum, although it allows the implanta-

tion of a large volume of islets, suffers from low oxygen pressure

and limited vascularization [7,8].

Recently the bone marrow (BM) has been proposed as an

alternative site for autologous and allogeneic islet transplantation

because it is considered to be well-vascularized and easily

accessible [9,10]. Syngeneic islets reverse diabetes without

compromising the hematopoietic activity [11]. Recently, The

group of Piemonti has reported the first unequivocal example of

successful engraftment of autologous islets in human BM for up to

944 days [9]. While direct differentiation of hematopoietic stem

cells into islet cells is highly unlikely, a wide array of experimental

evidences indicates that cells of BM origin are capable of

facilitating the survival, reorganization and revascularization of

the islets [12–15]. Finally, it has been suggested that BM is an

immune privileged site. Histological findings in the rat tibia

showed intact islet allografts three weeks after transplantation

without any immunosuppression [16]. Thus, the BM could

represent a potential alternative transplantation site for encapsu-

lated islet xenograft.

The aim of this study was to establish an animal model for

xenogeneic islet transplantation into BM. We assessed the survival
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of xenogeneic rat and human pancreatic islets transplanted into

the BM of mice and characterized the ensuing immune responses.

In addition we investigated the feasibility of transplanting

encapsulated Sprague Dawley rat islets to the femur of C57BL/

6 mice. It should be noted that in vivo functional assays with

encapsulated islets under the kidney capsule (KC) or into the BM

were not feasible due to space limitations.

Materials and Methods

Animals
Pancreatic islets were harvested from adult Sprague-Dawley rats

with a weight of 250–300 grams and transplanted into C57BL/6

mice between 6–10 weeks of age (Centre de Recherche et

d’Elevage, Janvier, France). Animals were maintained in conven-

tional housing facilities and all experiments were performed in

compliance with the bylaws of Geneva veterinary authorities and

were approved by the ethical committee of the Geneva University

Medical School (Protocol Nr. 1014/3767/2).

Human Pancreatic Islets
Human islets were isolated according to the Ricordi protocol

with local adaptation [17]. Human islets used in this study had a

minimum purity of 80% as assessed with Metamoph software

(MetaMorph, Universal Imaging, West Chester, PA) as previously

described [18]. The use of human islet preparations for

experimental research was approved by the Institutional Review

Board for clinical research of the Departments of Neurology,

Dermatology, Anesthesiology and Surgery of the University

Hospital of Geneva (CER Nr. 05–028). Our ethical institution

waived the need for consent from the donor. Islets were used for

experimental research only when not suitable for clinical purposes

and with the intention to be destroyed. In such cases, obtaining

informed consent is not mandatory in Switzerland. Tissues

samples were not procured from a tissue bank.

Rat Pancreatic Islets
Rat pancreases were perfused with collagenase type XI, 1 mg/

ml (Sigma, Buchs, Switzerland), removed surgically, and enzy-

matically digested in vitro at 37uC for 10 minutes as previously

described [19]. Islets were then purified by Ficoll density gradient

centrifugation and maintained on ice prior to transplantation.

Figure 1. Transplantation of syngeneic islets into the bone marrow. A 22-gauge needle was used for injection of the syngeneic islets into the
bone marrow of C57BL/6 through the distal part of the femur (A). Transplanted mice remained normoglycemic over 30 days (B). Intraperitoneal
glucose tolerance test was performed after 30 days in transplanted and naı̈ve mice. Error bars represent the standard deviation. (C). Bones were
harvested after 30 days and stained for haematoxylin and eosin (D), insulin (E) and glucagon/insulin (F). Glucagon positive cells appear in red whereas
insulin positive cells appear in green. Scale bar 500 mm (D,E), 100 mm (F).
doi:10.1371/journal.pone.0091268.g001

Islet Xenotransplantation in the Bone Marrow
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Islet Transplantation
Diabetes was induced in the recipient mice by a single

intraperitoneal (i.p.) injection of streptozotocin (Sigma, Buchs,

Switzerland), 220 mg/kg. Only diabetic mice with blood sugar

levels of .20 mmol/L were used for the transplantation of 1000

rat and 3000 human islets equivalent (IEQ), either into the BM or

under the kidney capsule (KC) of diabetic mice. Higher numbers

of human islets are required to reverse hyperglycemia due to

murine resistance to human insulin [20–21]. Islets were compact-

ed in a pellet and rapidly transplanted into the BM or under the

KC as prolonged compaction of the islets can affect their survival

[22].

In accordance with the 3R principles of animal experimentation

(reduce, refine, replace), only half of the rat islets were transplanted

in experiments using non-diabetic mice. Islets were inserted in a

22-gauge butterfly as previously described [19]. For transplanta-

tion into the BM a medial incision was made to the anterior

surface of the knee of the mice. A 29-gauge needle followed by a

22 gauge was inserted into the distal part of the femur to prepare

the pathway for the islets. The islets were slowly injected using a

22-gauge needle (Figure 1A). After careful retraction of the

injection needle the skin was closed with 5.0 sutures. Islet graft

function was assessed by regular blood sugar determination

(Precision Q.I.D). Blood sugar levels of ,13 mmol/l were

considered as successful islet transplantation, whereas levels of .

20 mmol defined graft failure.

Islet Encapsulation
Encapsulation in Ca-alginate was performed as previously

described [23]. Briefly, a stock solution of ultrapure sodium

alginate (Na-alg, Pronova UP LVM; batch No FP-506-01, FMC

BioPolymer, Norway) was prepared with a final concentration of

1.5% w/v in Dulbecco’s Modified Eagle Medium (DMEM, Cell

Culture Technologies LLC, Gravessano, Switzerland). The islets

were suspended in the 1.5% Na-alg stock solution (109000 IEQ/

ml), homogenized, and finally extruded into the gelation bath

(CaCl2, 110 mM) using a coaxial airflow droplet generator (Buchi,

Basel, Switzerland). Beads were gelled at 37uC for 15 min,

collected by filtration, washed twice with DMEM, and cultured at

37uC. Encapsulated islets were transplanted using an 18 gauge

needle. The average bead size was in the range of 450–500 mm.

Histological Analyses
Paraffin. For morphologic evaluation kidney samples were

preserved in formalin 10%, fixed in 4% paraformaldehyde,

decalcified, embedded in paraffin and sectioned. Paraffin sections

(5 um) were used for haematoxylin and eosin (H&E) staining.

Paraffin sections were incubated using guinea pig anti-insulin

antibody (1:100 dilution, Invitrogen, Basel, Switzerland) and

rabbit anti-glucagon (dilution 1:200, Dako, Denmark), and

subsequently with goat anti-guinea pig IgG Alexa 488-conjugated

(1:1000 dilution, Invitrogen) and anti-rabbit IgG Alexa 566

(Dilution 1:1000, Life Technologies, Carlsbad, CA). Alternatively,

paraffin sections were stained with guinea-pig anti- insulin

antibody, subsequently anti-guinea-pig IgG Alexa 488, and

thereafter with 0.09% Evans blue at the termination of the

procedure.

Cryostat. Kidney and BM samples were harvested three days

following islet transplantation, stored at –80uC and used for

immunofluorescence staining. Briefly, frozen sections were incu-

Figure 2. Free xenogeneic islet survival. Streptozotocin-induced diabetic mice were transplanted with rat (A-B-C) or human (D-E-F) pancreatic
islets either in the bone marrow (BM) or under the kidney capsule (KC). The glycemic profile was followed over time in all groups. The median survival
of rat islets was 9 days when transplanted into the BM (n = 7) and 14 days when transplanted under the KC (n = 8) (A-B-C). The median survival of
discordant human islets was shorter in both sites with 7 and 10 days respectively in the BM (n = 11) and under the KC (n = 11) (D-E-F).
doi:10.1371/journal.pone.0091268.g002
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bated for two hours with rat anti-mouse CD4 (550278, 1:50

dilution, Becton Dickinson), rat anti-mouse CD8 (MCA 609G,

1:100 dilution, Serotec), or F4/80 antibodies (MCA 497, 1:50

dilution, Serotec) to detect macrophages. Secondary staining was

performed with anti-rat IgG Alexa 555-conjugated (1:1000

dilution, Invitrogen). Thereafter, the slides were stained for insulin

as described for the paraffin section (1:1000 dilution, Invitrogen).

The sections were then mounted and viewed under a fluorescent

microscope (Zeiss).

Flow Cytometry
Seven days post-transplantation, femurs bearing islet grafts,

contralateral femurs, and spleens were processed for flow

cytometry analysis. Naive mice were used as negative controls.

Figure 3. Characterization of the rejection in the bone marrow after rat islets transplantation. (A–C) Seven days post-transplantation,
animals were sacrificed for the characterization of rejection. The graft-bearing femur (n = 5), the opposite control femur (n = 4) and the femur of non-
transplanted animals (n = 4) were harvested, flushed and the cells analyzed by flow cytometry. The percentage of CD8+ (A) cells in transplanted
femurs was significantly increased whereas percentages of CD4+ (B) and F4/80+ (C) cells remained unchanged compared to the non-transplanted
contralateral control femurs. Box-and-whisker diagram are shown. (D–F) Alternatively, the femurs of graft bearing-femurs (D–F) and the contralateral
femurs (G–I) were frozen in liquid nitrogen and double stained for insulin (green) and CD8 (D/G), CD4 (E/H) or F4/80 (F/I) (red) three days post
transplantation. Scale bar 50 mm. (J) CD4+, CD8+ and F4/80+ cells were quantified using the MetaMorph software. The levels of CD4+ and F4/80+ cells
were similar between both groups; CD8+ cells were significantly more abundant in femurs containing the islet graft. Abbreviation. Tx Cont:
contralateral femur. TX D7: graft bearing femur.
doi:10.1371/journal.pone.0091268.g003
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Bones were flushed with PBS and spleens were smashed with the

back of the piston of a 1 ml syringe. Red blood cells were lysed

before counting (Pharm Lyse BD Bioscience San Jose CA). Due to

the techniques used for cutting and flushing the bones, the

absolute number of cells harvested was variable between samples

(Figure S1). Samples of 200’000 BM cells or splenocytes were

stained with anti-CD4 (APC Cy7, RM4–5 eBioscience San Diego,

CA), anti-CD8 (PerCP 53-6.7, eBioscience), and F4/80 antibodies

(APC, CI:A3-1, Serotec). Irrelevant isotype control antibodies

included rat IgG2b APC-Cy7, rat IgG2a PerCP, and rat IgG2b

APC. Data were collected on a FACScanto (Becton Dickinson,

Franlin Lakes, NJ). All data were analyzed using Flowjo software

(Tree Star v. 8.7.3, Ashland, OR).

Mixed Lymphocyte Reaction
One-way mixed lymphocyte reactions were performed seven

days post-transplantation between donor Sprague Dawley rat T-

cell-depleted splenocytes and recipient C57BL/6 splenocytes.

Briefly, rat donor splenocytes were harvested on the same day as

the islets. After red blood cell lysis, the cells were stained with

mouse anti-rat CD3-PE antibody (OX-38, BD bioscience)

followed by negative selection using LD columns (Miltenyi Biotec,

Bergisch Gladbach, Germany). This procedure resulted in an over

95% pure CD3–depleted cell population which was frozen until

seven days post islet transplantation. A total of 2.56105

splenocytes obtained from transplanted or naive control mice

were co-cultured with 46105 irradiated (3500 rad) T cell-depleted

rat donor splenocytes for 5 days. Cells were then pulsed with

1 mCi3[H] of thymidine for 18 hours and harvested.

MetaMorph Quantification
The total surface of positive collagen staining on bone and

kidney sections was determined using the morphometric quanti-

fication software (Universal Imaging). Thus, the blue area

(collagen I to VI) was normalized to the red area (cells) on

Masson’s trichrome staining and the number of capsules. Bone

surfaces, which constitutively stain blue, were excluded. Alterna-

tively, the number of CD4, CD8 and F4/80-positive cells was

counted at 2006magnification on images of bone sections (8–11

fields per group out of three animals) using offline MetaMorph

imaging software for microscopy. The number of positive cells was

normalized with the total number of cells per 2006magnification

fields (Hoechst positive cells counted using MetaMorph software)

and expressed as a percentage.

Insulin Secretion test
This test was performed using encapsulated rat islets after 30

days of culture. Insulin release in response to acute glucose

stimulation was determined by incubating the islets for 1 hour in

RPMI 10% FCS medium containing low glucose (2.8 mM) for

basal secretion, followed by an additional hour of incubation in

high glucose (16.8 mM) medium or 16.8 mM glucose medium

supplemented with 5 mM of theophylline. Supernatants were

collected, frozen and insulin concentrations were determined using

rat insulin ELISA Kit according to the manufacturer’s instructions

(Mercodia, Uppsala, Sweden). Results were normalized to the total

insulin content of the islets as measured by the same ELISA kit

and following ice-cold acid-ethanol extraction. Due to inter-

experimental variability, and depending upon the time of culture

and the encapsulation, insulin secretion was expressed relative to

the basal levels (stimulation index).

Intraperitoneal Glucose Tolerance Test (IPGTT)
Animals were maintained on a standard diet overnight, and

then injected intraperitoneally with a 2 g/kg glucose solution re-

suspended in PBS. Blood samples were collected after 0, 5, 15, 30,

60, 90, 120 and 180 minutes.

Figure 4. Characterization of the splenocytes after rat islet transplantation into the bone marrow. The splenocytes of transplanted and
naive animals were harvested seven days after transplantation. The absolute number of splenocytes was not significantly different compared to naive
mice; data are shown for individual animals with the horizontal line representing the mean value (A). The percentages of CD4+, CD8+ and F4/80+ cells
were not significantly different either. Box-and-whisker diagram are shown (B). However, splenocytes of transplanted mice showed a significantly
increased level of proliferation compared to naive mice when stimulated by donor (T cell-depleted) rat irradiated splenocytes. Results are expressed
in counts per minute and show the mean value of 4 naive and 6 transplanted animals (C). Abbreviation. Tx: transplanted. CPM: Count per minutes.
doi:10.1371/journal.pone.0091268.g004
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Statistical Analysis
Prism software was used for statistical analysis (GraphPad

Software, San Diego California, USA). Survival curves were

calculated by the Kaplan and Meier method and analyzed using

the Cox-Mantel test. Flow cytometry results were analyzed using

the Krukal-Wallis and Dunn’s multiple comparison tests. The

Mann-Whitney U test was used for mixed lymphocyte reaction

and MetaMorph quantification. A p-value inferior to 0.05 was

considered statistically significant.

Results

Injection of Islets into the Bone Marrow
Syngeneic islets were injected into the femur of diabetic mice

through the knee (Figure 1A). The transplanted mice remained

normoglycemic indefinitely (Figure 1B). Sham transplantation into

the bone marrow did not alter the weight gain of the mice as

compared to naive mice (Figure S2). Intraperitoneal glucose

tolerance testing was performed on day-30 post-transplantation

and showed a similar glucose tolerance profile between trans-

planted and naive control mice (Figure 1C). Thirty days after

transplantation bone was harvested and stained for H&E (1D),

insulin (1E) and insulin/glucagon (1F). Of note, islets must be

slowly injected into the BM since rapid injection may provoke

pulmonary embolism and consequently the death of the animal

(Figure S3). Removal of the graft-bearing femur resulted in animal

death rapidly after the procedure, before reversion to hypergly-

cemia (n = 4, data not shown).

Survival of Concordant Rat and Discordant Human islets
Xenograft

We next investigated the survival of concordant rat and

discordant human islets transplanted into the BM and KC of

streptozotocin-induced C57BL/6 diabetic mice. One thousand rat

islets equivalent (IEQ) and 3000 human IEQ were used for

prompt reversal of diabetes after transplantation into the BM

(Figure 2A–F). The median survival of free rat islets was 9 days

when transplanted into the BM (n = 7) and 14 days when

transplanted under the KC (n = 8) (2A–C). The median survival

of discordant human islets was shorter at both sites, 7 and 10 days

respectively in the BM (n = 11) and under the KC (n = 11) (2D–F).

Thus, there was no evidence for an immune-privileged environ-

ment in the BM for neither concordant nor discordant islet

xenograft.

Figure 5. Survival and function of encapsulated rat islets in vitro. Viability was assessed over 30 days in vitro by fluorescein diacetate (green)
and propidium iodide (red). Encapsulated islets remained viable over 30 days of culture. Scale bar 200 mm (A). The function of the encapsulated islets
was tested in vitro 30 days post encapsulation by glucose stimulated insulin secretion test. Islets were incubated in medium with 2.8 mM glucose,
16.8 mM glucose and 16.8 mM glucose supplemented with theophylline. The stimulation index was respectively 2 (glucose-stimulated) and 5
(theophylline-stimulated). The mean and SEM are shown of one representative experiment out of three (B).
doi:10.1371/journal.pone.0091268.g005
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Characterization of Islet Graft Rejection in the Bone
Marrow

Due to the immunosuppressive effects of the streptozotocin [24]

we further characterized the rejection of free rat islets in non-

diabetic mice. By flow cytometry we first assessed the percentages

of CD4+, CD8+, and F4/80+ cells in the BM. The graft-bearing

femurs and the contralateral femur of transplanted mice were

harvested seven days post-transplantation and flushed. Femurs of

non-transplanted naive mice were also used as controls. Absolute

numbers of cells in the femurs of the three groups were similar

(Figure S1). Within the total cell population we found a significant

increase of the percentage of CD8+ cells in transplanted femurs,

whereas percentages of CD4+ and F4/80+ cells remained

unchanged (Figure 3A–C). Three days post-transplantation the

graft bearing-femurs (3D–3F) and the contralateral femur (3G–I)

were frozen in liquid nitrogen and double stained for insulin and

CD8 (3D/G), CD4 (3E/H) or F4/80+ (3F/I). Densities of CD4+,

CD8+ and F4/80+ cells were markedly increased around islets

(Figure 3D–F). Quantitative data of the immunochemistry staining

revealed that the amount of CD4+ and F4/80+ cells were similar

between both groups and that CD8+ cells were more abundant in

femurs containing the islet graft compared to controls (Figure 3J).

Altogether, these results suggest that islet transplantation induced

the proliferation of CD8+ cells in the BM, and rejection was

mediated at least partly through the recruitment of CD4+, CD8+

and macrophages.

Antigen Recognition in the Spleen after Xenogeneic Islet
Transplantation

Because BM itself is a lymphoid tissue the immune response

induced by the presence of xenogeneic islets could remain

localized in the femur. To assess a potential systemic immune

response we harvested the spleen of non-diabetic mice for

phenotypic and functional assays seven days after rat islet

transplantation. The absolute number of harvested cells was not

significantly different compared to naive mice (Figure 4A). The

percentages of CD4+, CD8+ and F4/80+ cells were also not

significantly different (Figure 4B). However, splenocytes of

transplanted mice compared to naive mice showed a significantly

increased proliferation when stimulated by donor (T cells-

Figure 6. Encapsulated rat islets one month after transplantation. Encapsulated rat islets were transplanted under the kidney capsule (KC)
(A–C) or into the bone marrow (BM) (D–F) One month after transplantation the femur and kidney were harvested. Haematoxylin and eosin staining
showed intact capsules in the KC (A) and BM (D). Insulin staining confirmed the survival of the rat islets (B, E). The pericapsular fibrotic reaction was
assessed by Masson’s coloration (C, F). The collagen/capsule surface ratio was quantified using MetaMorph software (G). Data presented are mean
values 6SEM out of three (bone marrow) and four (kidney capsule) animals. Scale bar 100 mm (A,B,D,E), 1000 mm (C,F).
doi:10.1371/journal.pone.0091268.g006
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depleted) rat splenocytes (Figure 4C), suggesting that antigenic

recognition of the xenogeneic islets occurred in the spleen.

Encapsulated Rat Islets Survived More than One Month
in vitro and in Bone Marrow

As a next step we assessed the feasibility of transplanting

encapsulated rat islets into the BM. The viability of the islets was

confirmed in vitro by fluorescein diacetate and propidium iodide up

to 30 days after encapsulation (Figure 5A). At day 30 encapsulated

islets still responded to glucose and theophylline stimuli (Figure 5B).

We next transplanted encapsulated rat islets into the BM and

under the KC of non-diabetic mice. After 30 days the femur and

kidney were harvested, and H&E staining showed intact capsules

at both sites (Figure 6A, 6D). Additionally, the islets in the capsules

stained positive for insulin and DAPI suggesting that they survived

in vivo (Figure 6B, 6E). In vivo functional assays could not be

performed in the femur or under the KC because transplantation

of sufficient numbers of encapsulated islets was not possible due to

space limitations (data not shown). Finally, we quantified the

fibrotic reaction against the capsules (Figure 6C, 6F) Similar levels

of fibrosis were present under the KC and in the BM, after

exclusion of the bone structures which constitutively contain

collagen (Figure 6G). Of note, fibrosis does not develop after

transplantation of syngeneic islets under the kidney capsule or into

the BM (data not shown).

Discussion

The overall goal of this study was to establish a small animal

model to evaluate the BM as a potential transplantation site for

free and encapsulated islet xenografts. The rational of transplant-

ing islets into the BM is based on the accessibility of the site with

the possibility for repeated infusions, and on the extravascular but

well vascularized bone microenvironment [11]. The liver, the

currently used site for islet transplantation, has several disadvan-

tages including: (i) immediate blood-mediated inflammatory

reaction (IBMIR) characterized by the activation of complement,

platelets and coagulation as well as neutrophil recruitment,

induces the loss of as many as 50–75% of islets during engraftment

[25]; (ii) risk for hemorrhages associated with the infusion through

the liver parenchyma into the portal vein; and (iii) increase of

portal pressure during the procedure which limits both the

number and mass of administered islets, and precludes the

transplantation of encapsulated islets with a diameter up to

500 mm [26]. The emerging perspective of transplanting encap-

sulated xenogeneic, i.e. porcine islets, into humans prompted us

therefore to analyze the BM as an alternative transplantation site.

Transplantation into the BM of 1000 rat IEQ and 3000 human

IEQ per mice was required in order to reverse diabetes, which is

2–3 times higher than what is required for a xenogeneic islets

transplant under the KC [19]. There are several reasons for this

finding. First, the injection procedure through the spongy

framework of the femur may be associated with loss due to

substantial mechanical stress. Secondly, direct blood contact with

the islets in the BM may provoke an IBMIR as occurs in the liver.

Furthermore, IBMIR is even enhanced due to the xenogeneic

tissue [27]. Finally, the release of insulin may be less efficient in the

BM than under the KC. Nevertheless, as shown in a syngeneic

mouse model, islets transplanted into the BM progressively

normalized glycaemia with maximal function 3 to 4 weeks after

transplantation, with a 2.4-fold higher probability to reach

euglycaemia when compared to intraportal islet transplantation

[11]. Of note, we cannot exclude that ischemia time and donor

characteristics affected the function and viability of the human

islets used in this study, and thus may have influenced the survival

rates after transplantation. Altogether, our results confirmed that

xenogeneic islets transplanted into the BM could normalize blood

glycaemia in a xenogeneic model. However, further studies are still

warranted in larger animal models to better define the advantages

and limitations of the BM as a potential site for xenogeneic islets.

Our second aim was to analyze the rejection process of non-

encapsulated xenogeneic islets transplanted into the BM. The

median survival of free rat and human islets was shorter in the BM

than under the KC, excluding any immune privileged environ-

ment in the BM [11]. In contrast to vascularized organs that are

highly sensitive to antibody-mediated rejection through comple-

ment activation, xenogeneic islets are mainly rejected by cellular-

dependent mechanisms [28]. In particular CD4+ T cells play a

critical role in the initiation of a Th2-like immune response by the

recruitment of macrophages [29–31]. CD8+ T cells are also

capable of rejecting pancreas islet xenograft in the absence of

CD4+ T cells [32] although it is not considered to be the primum

movens for rejection of cellular grafts in xenotransplantation. Our

study confirmed the presence of macrophages and CD4+ and

CD8+ T cells infiltrating the islet xenograft, which suggests that the

mechanisms responsible for rejection in the BM are similar to

those that have been previously described. In vivo depletion studies

would be required to differentiate the respective role of each cell

subset knowing that the mechanisms of cell-mediated islet

xenograft rejection are characterized by redundancy [28]. In

addition, further analysis of the cellular surface markers and

cytokines secretion profile would give more information of the role

of each cell subsets during islet rejection into the BM.

Seven days after islet transplantation the spleens were harvested.

There were no changes found in the frequencies of CD4+, CD8+

and macrophages, although splenocytes proliferated in response to

donor antigen when compared to naive animals. This suggests that

the islet xenograft elicited an immune response through CD4

priming in the spleen. Antigen recognition triggers xenograft

immunity via direct pathways involving interspecies TCR/MHC

interaction and indirect pathways through the presentation of

xenogeneic peptides by recipient dendritic cells [33,34]. In the

absence of recipient antigen presenting cells (APC), the strength of

the cell-mediated xenograft rejection becomes weaker suggesting

that indirect antigen presentation is crucial for xenogeneic islet

immunity [28]. Thus, our study confirmed that the immune

response against xenogeneic islets was induced not only in the BM

itself but also in secondary lymphoid organs such as the spleen.

This could be mediated by passenger leukocytes migrating into the

spleen or via free xenoantigens entering the peripheral circulation

[35].

The last aim of this study was to assess the feasibility of

transplanting encapsulated xenogeneic islets into the BM.

Although the available space in the BM of mice was not sufficient

to perform functional assays, insulin-positive islets could be

retrieved one month after transplantation. The encapsulated islets

were intact and did not induce a higher level of fibrosis as

compared to the KC, despite the presence of an abundant cellular

environment in the BM. Peri-capsular fibrotic overgrowth has

been recognized as an important factor leading to failure of the

encapsulated islets transplanted into the peritoneum [5,36].

Fibrosis is induced by physical irregularities of the capsule [37],

or by macrophages recruited via the chemokines secreted by the

islets [36,38]. To diminish the fibrotic reaction against the

xenogeneic islets, the alginate beads could be chemically

manipulated with polyethylene glycol reducing the pro-inflamma-

tory properties associated with polycation-coated alginate micro-

spheres [39,40]. Altogether, the transplantation of encapsulated
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islets into the BM was feasible without inducing an extensive peri-

capsular fibrosis. Nevertheless, further studies are necessary in a

larger animal model with larger bones, such as the pig, in order to

perform functional assays.

Except for the survival experiments that included rat and

human islets, the analysis in the present study was based on the

rejection of rat islets. Because only a few studies have compared

the rejection of concordant (rat) and discordant (human) islets in

the mouse model, it remains difficult to predict whether the

present results for rat islets will be similar for human islets. First,

the innate response composed by neutrophils, macrophages and

natural killer cells plays an active role in discordant transplantation

[41]. Second, the rejection depends on the ability of donor antigen

presenting cells (APC) to efficiently present antigen to the helper

and effector T cells. In discordant islet transplantation indirect

presentation of antigens (by recipient APC) is a major pathway for

islet rejection, whereas in concordant and allogeneic islets

transplantation both recipient and donor APC participate in the

rejection process [42–43]. In particular, the depletion of recipient

macrophages (which include APC) prolongs the survival of human

but not rat islets, suggesting a critical role for indirect antigen

presentation in discordant transplantation [43]. Further studies are

still warranted to compare rejection of concordant and discordant

islets transplanted in the BM.

In conclusion, the present study demonstrated that the BM

represents a potential alternative site for xenogeneic encapsulated

islets. Caution has to be taken during islet injection due to the risk

of pulmonary embolism. The mechanisms of xenograft rejection in

the BM seemed to depend at least partially on macrophages and

CD4+ and CD8+ T cells, with the caution that other cell types such

as neutrophils or natural killer cells have not been analyzed and

the antibody mediated rejection has not been evaluated. The

physiological disproportion between the size of the murine femurs

and the required volume of injected encapsulated islets did not

allow us to study graft function in greater detail. Nonetheless, if

these encouraging results can be reproduced in a large animal

model they may open new perspectives for the transplantation of

encapsulated xenogeneic islets into the BM in humans.

Supporting Information

Figure S1 Absolut numbers of cells harvested from the
bone marrow. The graft-bearing femurs and the contralateral

femur of transplanted mice were harvested seven days post-

transplantation and flushed. Femurs of non-transplanted naive

mice were also used as controls. Due to technical issues, the

absolute numbers of cells in the femurs were variable between

samples. No significant differences were found between the groups.

(TIFF)

Figure S2 Weight gain of mice after sham islet trans-
plantation into bone marrow compared to naı̈ve mice.
The weight of C57BL/6 mice following sham islet transplantation

(white triangles) was monitored and compared to those of naı̈ve

mice (white squares). The transplantation procedure did not alter

the weight of the mice.

(TIFF)

Figure S3 Injection of islets into the bone marrow can
provoke fatal pulmonary embolism. Rapid injection of free

islets into the bone marrow may be associated with fatal

pulmonary embolisms. Air bubbles can be visualized through

the inferior vena cava if injected rapidly into the femur (black

arrow) (A). The lungs of the animals were harvested and stained

with haematoxylin and eosin and showed solid aggregates in the

pulmonary vessels (B). Haematoxylin and eosin staining, scale bar

100 mm.

(TIFF)
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