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Metabolic rewiring and the consequent production of reactive oxygen species (ROS) 
are necessary to promote tumorigenesis. At the nexus of these cellular processes is 
the aberrant regulation of oncogenic signaling cascades such as the phosphoinositide 
3-kinase and AKT (PI3K/Akt) pathway, which is one of the most frequently dysregulated 
pathways in cancer. In this review, we examine the regulation of ROS metabolism in the 
context of PI3K-driven tumors with particular emphasis on four main areas of research. 
(1) Stimulation of ROS production through direct modulation of mitochondrial bioener-
getics, activation of NADPH oxidases (NOXs), and metabolic byproducts associated 
with hyperactive PI3K/Akt signaling. (2) The induction of pro-tumorigenic signaling 
cascades by ROS as a consequence of phosphatase and tensin homolog and recep-
tor tyrosine phosphatase redox-dependent inactivation. (3) The mechanisms through 
which PI3K/Akt activation confers a selective advantage to cancer cells by maintaining 
redox homeostasis. (4) Opportunities for therapeutically exploiting redox metabolism in 
PIK3CA mutant tumors and the potential for implementing novel combinatorial therapies 
to suppress tumor growth and overcome drug resistance. Further research focusing 
on the multi-faceted interactions between PI3K/Akt signaling and ROS metabolism 
will undoubtedly contribute to novel insights into the extensive pro-oncogenic effects 
of this pathway, and the identification of exploitable vulnerabilities for the treatment of 
hyperactive PI3K/Akt tumors.
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inTRODUCTiOn

Tumorigenesis is a multi-step process involving the complex interplay of several biological pro-
cesses that are highly dependent on the activation of pro-proliferative and pro-survival signaling 
cascades, accumulation of genetic aberrations, and adaptation to various microenvironmental stress 
conditions (1, 2). Underpinning these tumorigenic processes is the ability of cancer cells to alter 
their metabolism to promote nutrient synthesis or scavenging to support their high proliferation 
demands (3, 4). A major consequence of such extensive metabolic rewiring is the production 
of reactive oxygen species (ROS), which include both free radical molecules such as superoxide 
(O2

•− ) and hydroxyl radicals (⋅OH), as well as non-free radical species, of which hydrogen peroxide 
(H2O2) is among the most prominent (5). Although elevated ROS levels can have detrimental 
consequences on cell viability through extensive damage of proteins, DNA, and organelles, the 
concomitant increase in antioxidant and detoxification capacities in cancer cells allows for redox 
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homeostasis, thus generating a tightly regulated system whereby 
ROS can promote tumorigenesis and cancer progression (6, 7). 
Specifically, there is renewed interest in examining the implica-
tions of redox balance on cancer cell proliferation and survival 
through the regulation of key signaling cascades such as the 
phosphoinositide 3-kinase and AKT (PI3K/Akt) pathway, which 
is of particular relevance as it controls many hallmarks of cancer 
(1, 8, 9). In this review, we will examine the emerging relationship 
between redox homeostasis and PI3K/Akt signaling, and discuss 
how their cross-regulation may promote cancer pathogenesis. 
In addition, we present and look with optimism opportunities 
toward a future therapeutic exploitation of redox homeostasis in 
tumors with enhanced PI3K/Akt activation.

THe Pi3K/AKT PATHwAY AT A GLAnCe

The intricacies of PI3K/Akt signaling have been extensively 
reviewed previously (10–12), and will only be briefly intro-
duced here. Activation of receptor tyrosine kinases (RTKs) or 
G-protein-coupled receptors facilitate the recruitment of class I 
PI3Ks which phosphorylate phosphatidylinositol-(4,5) bisphos-
phate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3). 
Oncogenic mutations in PIK3CA—the gene encoding the class I 
PI3K catalytic subunit p110α—are found in approximately one-
third of human cancers and 40% of breast cancers (13, 14). The 
accumulation of PIP3 allows for the localization of AKT to the 
plasma membrane and its subsequent activation following phos-
phorylation on serine 473 and threonine 308 by mTORC2 and 
PDK1, respectively. Negative regulation of the PI3K/Akt pathway 
is largely mediated by the phosphatase and tensin homolog 
(PTEN) through dephosphorylation of PIP3 to PIP2. AKT is an 
important downstream effector of oncogenic PI3K signaling and 
regulates several pathways, including inhibition of apoptosis, 
stimulation of mTORC1-dependent cell growth, and modulation 
of cellular metabolism (11). Glucose and glutamine are consid-
ered as essential nutrients for cancer cell proliferation, and PI3K/
Akt signaling has been shown to regulate the cellular metabolism 
of both nutrients. Specifically, AKT may directly increase glucose 
uptake through activation of the glucose transport receptor 
GLUT1, and stimulate glycolysis by phosphorylating hexokinase 
2 (11, 15). Moreover, activating mutations in PIK3CA render 
colorectal cancer cells more dependent on glutamine anaplerosis 
to replenish TCA cycle intermediates through upregulation of 
glutamate pyruvate transaminase 2, and glutamine deprivation 
significantly reduces the proliferation of PIK3CA mutant, but not 
wild type, cancer cells (16). Later work has also demonstrated 
the importance of Akt-independent signaling cascades associ-
ated with PI3K activation, with a particular focus on serum and 
glucocorticoid-regulated kinases (SGKs) (17).

ReGULATiOn OF ROS PRODUCTiOn  
BY Pi3K/AKT SiGnALinG

Aberrant PI3K/Akt signaling drives many of the molecular 
mechanisms contributing to increased ROS levels through direct 
modulation of mitochondrial bioenergetics and activation of 

NADPH oxidases (NOXs), or indirectly through the produc-
tion of ROS as a metabolic by-product (Figure  1) (6, 18). 
Mitochondria are a major source of cellular ROS, and these are 
largely derived from electron leakage at complexes I and III of 
the electron transport chain (6, 19). Complex I in particular has 
been shown to generate ROS through two mechanisms: the first 
involves reduction of O2 by flavin mononucleotide following 
binding of NADH induced by high NADH/NAD+ ratios, and the 
second is through reverse electron transport whereby excessive 
NADH is produced following reduction of NAD+ from ubiqui-
nol (6, 20). Interestingly, AKT has been shown to translocate 
to the mitochondrial matrix and inner membrane in a PI3K-
dependent manner following IGF-1 stimulation (21). AKT may 
directly phosphorylate mitochondrial GSK-3β, reducing its 
activity and thus alleviating the negative regulation imposed 
on pyruvate dehydrogenase and α-ketoglutarate dehydrogenase 
complexes, which have been reported to generate superoxide 
and H2O2 (19, 22, 23).

The activation of NOXs by PI3K/Akt signaling also contri-
butes to higher ROS levels in cancer cells (Figure 1) (18). There are 
seven members of the NOX enzyme family (NOX1-5, DUOX1, 
and DUOX2) that are expressed across several tissue types 
including the liver, lung, and gastrointestinal tract (24). NOXs are 
composed of different subunits including p67phox, p47phox, p40phox, 
p22phox, RAC1, RAC2, and NOXO1/NOXA1 which facilitate the 
localization of the enzyme complex to the cytoplasm or plasma 
membrane (24). The main function of NOX enzymes was first 
ascertained in phagocytes as contributing to the respiratory burst 
through production of superoxide following electron transfer 
from NADPH to oxygen (25). The activity of these enzymes is also 
becoming increasingly associated with various hallmarks of can-
cer including angiogenesis and metastasis (26). The importance 
of PI3K/Akt signaling in activating NOXs has been demonstrated 
by specifically ablating NOX activity following treatment with 
the PI3K inhibitor wortmannin or knockout of Akt1 (18, 27).  
In terms of cancer progression, PI3K-mediated activation of 
NOX is necessary to promote cell migration and chemotaxis in 
response to stimulants such as hepatocyte growth factor (HGF) 
and platelet-derived growth factor (PDGF) (28, 29). Migration 
of lung endothelial cells requires HGF-mediated activation 
of c-MET, which signals through the PI3K/Akt pathway and 
results in the accumulation of p47phox/Rac1 in lamellipodia and 
localized production of H2O2 to the leading edge of the cell (29). 
Consequently, inhibition of the PI3K/Akt pathway also inhibits 
the translocation of NOX subunits and reduces ROS, hindering 
the metastatic potential of lung cancer cells, at least in part, by 
reducing expression of the metalloprotease MMP9 and the pro-
metastatic miRNA miR-21 (29–31). Angiogenesis is necessary for 
tumor growth especially following metastasis, and NOX isoforms 
have been implicated in re-vascularization particularly in PI3K/
Akt-hyperactive tumors (32). Vascular endothelial growth factor 
is the most potent stimulant of angiogenesis and can activate 
NOX isoforms either directly or indirectly through PI3K/Akt 
induction (32–34). The subsequent production of superoxide 
and H2O2 are necessary for the regulation of transcription factors, 
which promote angiogenesis, including NF-κB, MMPs, COX-2, 
and HIF-1α (32).
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FiGURe 1 | Schematic representation of the interplay between PI3K/Akt signaling and redox stress. Activation of PI3K/Akt signaling occurs following stimulation of 
receptor tyrosine kinases (RTKs) or G-protein-coupled receptors. AKT is an important oncogenic effector of PI3K signaling and positively regulates reactive oxygen/
nitrogen species (ROS/RNS) production through direct modulation of mitochondrial bioenergetics and activation of NADPH oxidases. Cellular ROS levels can also 
potentiate the PI3K cascade by directly activating AKT, stimulating RTKs through SNO, or through inhibition of various tumor suppressor proteins such as PTEN and 
PTPs. Moreover, elevated ROS levels promote the nuclear translocation of NF-κβ and HIF1-α which transcriptionally regulate several genes involved in cancer cell 
growth, proliferation, and survival. Abbreviations: PTP, protein tyrosine phosphatase; SNO, S-nitrosylation; O2

•−, superoxide; H2O2, hydrogen peroxide; NO, nitric 
oxide; eNOS, endothelial nitric oxide synthase; Ub, ubiquitin; PDHC, pyruvate dehydrogenase complex; KGDH, alpha-ketoglutarate dehydrogenase; PTEN, 
phosphatase and tensin homolog; PI3K, phosphoinositide 3-kinase.
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It is well established that hyperactive PI3K/Akt signaling 
contributes to increased glycolytic rate, and recent studies have 
identified dependencies on specific metabolic enzymes that, 
when perturbed, impact glycolytic flux and consequently cancer 
cell viability (35). Notably, PIK3CA mutant cancer cell lines have 
elevated 2-oxoglutarate dehydrogenase (OGDH) activity, and 
inhibition of this enzyme leads to reduced tumor growth in vivo 
(35). The sensitivity to OGDH inhibition can be explained by the 
observed decrease in the NAD+/NADH ratio following accumu-
lation of 2-oxoglutarate, thus limiting the available NAD+ needed 
for glycolysis (35). Interestingly, OGDH is a potent source of ROS 
and this, together with the need to maintain a stable NAD+/NADH 
ratio, suggests that maintaining redox homeostasis is essential 
for the proliferation of PIK3CA mutant tumors (35, 36). Another 
important ROS-generating metabolic pathway that is regulated 
by PI3K/Akt signaling is the production of prostaglandins (PGE2) 
from arachidonic acid by the cyclooxegenases COX-1 and COX-2 
(37). The peroxidase activity of the COX enzymes results in the 
generation of superoxide as a by-product (38). Recent clinical 
studies have also highlighted the importance of PGE2 metabolism 
in PI3K-driven tumors, with PIK3CA mutation status being used 

as a biomarker for aspirin treatment in colorectal cancer (39). 
Thus, in addition to the direct effects of PI3K/Akt pathway in 
augmenting ROS levels, several indirect mechanisms associated 
with the intrinsic metabolic dependencies of PIK3CA mutant 
tumors exist, which could also contribute to the cellular pool of 
ROS levels.

ACTivATiOn OF Pi3K/AKT AnD PRO-
TUMORiGeniC SiGnALinG BY ROS

Elevated pro-proliferative signaling cascades and inhibition of 
growth suppressors are necessary for tumorigenesis, and high 
ROS levels affect both, by potentiating activation of PI3K/Akt 
signaling mainly through inhibition of phosphatases such as 
PTEN or direct activation of oncogenes including AKT (40, 41). 
In breast cancer, exposure to hormones including 17-β estradiol 
and its derivative 4-OH-E2 lead to a dose-dependent increase 
in ROS levels and consequent malignant transformation of 
MCF10A cells in vitro and in vivo (42). Mechanistically, this is 
dependent on ROS-mediated hyper-phosphorylation of PI3K 
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and subsequent downstream PDK1-mediated activation of AKT, 
culminating in the upregulation of cell cycle promoting genes 
such as CDK1 and PCNA (42). Interestingly, treatment with ROS 
scavengers such N-acetylcysteine (NAC) or knockdown of AKT1 
rescues the malignant transformation induced by 4-OH-E2 expo-
sure, indicating an important regulatory role of ROS on PI3K and 
AKT (42). This regulation has also been demonstrated in T-cell 
acute lymphoblastic leukemia (T-ALL) where interleukin-7 (IL-7)  
enhances NOX and mitochondrial complex I activity, thus con-
tributing to elevated ROS in T-ALL cells (43). AKT phosphoryla-
tion and activation is induced by the IL-7-dependent increase in 
ROS levels and promotes glucose uptake through upregulation of 
the GLUT1 receptor (43).

Excessive oxidative stress also activates PI3K/Akt signaling 
by inhibiting the activity of its negative regulator PTEN, one of 
the most frequently altered tumor suppressor genes in cancer 
(44). High ROS levels modulate PTEN through direct oxidation 
leading to reduced phosphatase activity, or indirectly through 
phosphorylation, which increases its stability and prevents its 
recruitment to the membrane (45, 46). For example, H2O2 medi-
ated oxidation of cysteine residues 124 and 71 on PTEN leads 
to the reversible formation of disulfide bridges and reduction of 
its catalytic activity (47, 48). PTEN oxidation and subsequent 
inactivation can also occur in the absence of H2O2 treatment. This 
has been demonstrated in the COX-2- and LOX-5-dependent 
synthesis of prostaglandins from arachidonic acid in pancreatic 
cancer cells (49). Oxidized PTEN as a result of arachidonic acid 
metabolism does not migrate at a lower molecular weight under 
non-reducing conditions, whereas a migratory shift is seen fol-
lowing the formation of a disulfide bond between Cys-124 and 
Cys-71 upon H2O2 treatment (49). As COX-2 expression and 
activity is regulated by AKT, a model could exist in pancreatic 
tumors whereby arachidonic acid metabolism perpetuates PI3K/
Akt activity through PTEN inactivation, consequently resulting 
in persistent prostaglandin production and associated inflamma-
tion (50, 51).

Oxidative stress can also induce posttranslational modifica-
tions, which facilitate PTEN ubiquitylation and subsequent 
degradation. One such redox-dependent modification, which 
contributes to PTEN inactivation and enhanced ubiquitin-
proteasome degradation is S-nitrosylation (SNO) (52, 53). 
Mitochondrial dysfunction, which is triggered by loss of the 
tumor suppressor PARK2 leads to a reduction in ATP levels and 
concomitant activation of AMPK (52, 54). AMPK-mediated 
activation of nitric oxide synthase 3 (NOS3/eNOS) leads to 
enhanced nitric oxide (NO) levels and NO-derived reactive nitro-
gen species, contributing to PTEN SNO on Cys-83 (52, 53, 55).  
This modification is important for the proliferation of PTEN 
proficient cells under energy-deprived conditions (52). Of 
note, the AKT kinase can also signal directly to activate eNOS, 
contributing to high NO levels (56). Nitrosative stress-induced 
posttranslational modifications, unlike in the case of PTEN, 
are not always limited to inhibitory effects, and can result in 
enhanced stabilization and activation of oncogenes including 
EGFR and Src that also contribute to the activation of the PI3K/
Akt pathway (57). Taken together, these findings suggest a model 
whereby multiple oncogenic signaling cascades, in particular 

PI3K/Akt signaling, can be potentiated through elevated nitrosa-
tive stress to promote pro-survival adaptations during nutrient 
deprivation.

Reactive oxygen species can also modulate PI3K/Akt signal-
ing by regulating protein tyrosine phosphatases (PTPs), which 
inhibit RTKs such as EGFR and PDGFR through dephospho-
rylation. PTPs can be broadly classified into four main groups 
based on their specific substrates and all contain an essential 
cysteine residue in the catalytic domain (58). ROS—and H2O2 in 
particular—have been shown to reversibly oxidize this cysteine 
residue, leading to reduced phosphatase activity of PTPs and 
sustained RTK activation (59). Notably, detoxification of H2O2 
by overexpressing catalase or inhibition of NOXs contributes 
to a marked reduction in tyrosine phosphorylation of PDGFR, 
EGFR, and the insulin receptor (60, 61). Perhaps the most potent 
activator of PI3K/Akt signaling is insulin, and stimulation of 
IRS-1 following insulin binding, increases H2O2 generation and 
NOX4 activity (62). PTP1B and SHP-2 are the main PTPs that 
dephosphorylate IRS-1; therefore, their inhibition in response 
to insulin-induced ROS levels facilitates persistent activation 
of many downstream signaling cascades including the PI3K/
Akt pathway (62). The implications of this regulation in the 
cancer context are not only limited to increased proliferation 
and metastatic potential, but also play a major role in promoting 
drug resistance (63, 64). The development of drug resistance is 
particularly relevant in breast cancer, where dysregulated IRS-1/
IGF-1R signaling decreases the sensitivity to tamoxifen and tras-
tuzumab in estrogen receptor (ER)- and HER2-positive tumors, 
respectively, by potentiating ERK and PI3K/Akt signaling  
(63, 65, 66). Thus, by inhibiting several key negative regulators, 
redox stress has a significant role in the activation of PI3K/Akt 
signaling and associated pro-tumorigenic phenotypes.

Pi3K/AKT SiGnALinG MAinTAinS ReDOX 
BALAnCe in CAnCeR CeLLS

In order for ROS to confer a selective advantage to cancer cells, 
there must be a concomitant increase in antioxidant responses 
to prevent adverse effects on cell viability. These responses 
include upregulation of the Keap1–Nrf2 pathway and modula-
tion of glutathione metabolism, both of which are regulated by 
PI3K/Akt signaling (Figure  2). The transcription factor Nrf2 
is recognized as a central mediator of ROS detoxification by 
inducing the expression of several enzymes that are involved in 
the antioxidant response, including glutathione S-transferase, 
superoxide dismutases, and NAD(P)H:quinone oxidoreductase 1  
(Nqo1) (67). Under low concentrations of cellular ROS, Nrf2 
is bound to the E3 ubiquitin ligase Keap1 in the cytosol and 
degraded by the proteasome (68). This interaction is inhibited 
under high concentrations of ROS, which oxidize cysteine resi-
dues on Keap1, thus allowing Nrf2 to translocate to the nucleus 
and induce the expression of genes containing antioxidant 
response elements (69). PI3K/Akt activation has been shown to 
be essential for the nuclear translocation of Nrf2, and accordingly 
treatment of neuroblastoma SH-SY5Y cells with PI3K inhibitors 
LY294002 and wortmannin, but not MAPK inhibitors, reduces 
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FiGURe 2 | PI3K/Akt signaling facilitates ROS detoxification and redox homeostasis. The concomitant increase in the cellular antioxidant response is necessary  
for redox homeostasis, and this is largely mediated through NRF2 signaling, glutathione metabolism, and production of NADPH. AKT facilitates the activation of 
NRF2 by inhibiting the interaction with KEAP1 and alleviating the negative regulation imposed by GSK3-β. Functional NRF2 translocates to the nucleus and 
transcriptionally activates genes involved in the antioxidant response such as glutathione S-transferase and superoxide dismutase, as well as the pentose  
phosphate pathway (PPP), which produces NADPH. Glutathione biosynthesis is an important antioxidant, which is regulated in a PI3K/Akt/Nrf2-dependent 
mechanism, and the conversion of glutathione between reduced (GSH) and oxidized (GSSG) forms is dependent on PPP-derived NADPH. Finally, Akt-independent 
signaling axes through SGK-1 may also promote ROS detoxification. Abbreviations: HK, hexokinase; G6P, glucose-6-phosphate; G6PD, glucose-6-phosphate 
dehydrogenase; 6-PGDL, 6-phosphogluconolactone; GL, gluconolactonase; 6-PG, 6-phosphogluconate; 6-PGD, 6-phosphogluconate dehydrogenase; R-5-P, 
ribulose-5-phosphate; GR, glutathione reductase; GPx, glutathione peroxidase; SGK, serum and glucocorticoid-regulated kinase; PI3K, phosphoinositide 3-kinase.
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Nrf2 transcriptional activation of antioxidant genes (70). One of 
the most important implications of PI3K-mediated upregulation 
of Nrf2 signaling is promoting cancer cell survival by conferring 
protection against excessive oxidative stress (71, 72). This is par-
ticularly relevant in BRCA1-deficient breast cancers, which lack 
effective DNA repair mechanisms through homologous recom-
bination and are therefore susceptible to genetic modification 
induced by ROS (73). Interestingly, although up to 80% of BRCA1 
mutant breast cancers are ER negative, estrogen positively regu-
lates Nrf2 transcriptional activity through activation of PI3K/Akt 
signaling allowing BRCA1-null cells to detoxify high ROS levels 
and accumulate additional genetic aberrations that may contri-
bute to tumorigenesis (73, 74). Inhibition of PI3K/Akt signaling 
either by PTEN overexpression or BKM120 treatment hinders 
estrogen-mediated Nrf2 activation, suggesting that targeting this 

pathway might be beneficial in treating BRCA1-deficient tumors 
by re-sensitizing them to elevated ROS levels (73).

Phosphoinositide 3-kinase/Akt activation has both Nrf2-
dependent and -independent effects on cellular metabolism that 
contribute to ROS detoxification. Several antioxidant pathways 
rely on the reducing power of NADPH, which is predominantly 
generated by 6-phosphogluconate dehydrogenase (6PGD) and 
glucose-6-phosphate dehydrogenase (G6PD) from the pentose 
phosphate pathway (PPP) (75, 76). Active Nrf2 induces the 
expression of the aforementioned PPP enzymes through an AKT-
dependent mechanism, as well as enzymes directly involved in 
NADPH synthesis such as malic enzyme 1 (ME1) and isocitrate 
dehydrogenase IDH (77). As AKT is a potent activator of glucose 
uptake and glycolysis, tumors depen dent on PI3K/Akt signaling 
could shunt the glucose-6-phosphate (G6P) generated during 
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glycolysis to the PPP activated by Nrf2, thus maintaining a stable 
pool of NADPH, which could be used for anabolic processes to 
sustain tumor growth and proliferation, or ROS detoxification 
(77, 78) (Figure 2).

Phosphoinositide 3-kinase/Akt and Nrf2 signaling, as well 
as the associated increase in NADPH are key regulators of the 
synthesis of glutathione, which exists in either reduced (GSH) 
or oxidized (GSSG) form (79). Under conditions of oxidative 
stress, enzymes such as GSH transferase (GSH-Tr) and GSH 
peroxidase (GPx) facilitate the reduction of ROS, including 
H2O2, by oxidizing GSH to GSSG (79). In order to completely 
detoxify ROS, oxidized GSSG must then be reduced back to 
GSH by NADPH-dependent glutathione reductase (GSSG-Rx) 
(79). The induction of glutathione synthesis through upregula-
tion of glutamate-l-cysteine ligase, as well as transcriptional 
activation of GSH-Tr and GPx is dependent on a PI3K/Akt/Nrf2 
signaling axis (80, 81). AKT can also increase the stability of 
Nrf2 by activating p21Cip1/WAF1 which disrupts the interaction 
between Keap1 and Nrf2, and by inhibiting GSK-3β that leads 
to the reduction of Nrf2 phosphorylation, preventing its nuclear 
export and ubiquitination (82, 83). Importantly, glutathione 
biosynthesis has been shown to be a metabolic vulnerability in 
PIK3CA mutant breast cancer cells, as treatment of PIK3CA or 
AKT mutant MCF10A cells with buthionine sulfoximine (BSO) 
significantly reduces anchorage-independent growth and inhibits 
cell proliferation in 3D, but not 2D culture (83). Furthermore, 
cisplatin treatment when given in combination with BSO leads 
to tumor regression of PIK3CA mutant, but not wild type, cell 
line-derived xenograft models indicating that disrupting redox 
homeostasis through GSH metabolism could repurpose existing 
therapies for the treatment of PIK3CA mutant breast cancers (83).

Although AKT is perhaps the most extensively characterized 
downstream effector of PI3K signaling, recent studies have high-
lighted the importance of an Akt-independent axis which relies 
on other members of the AGC serine/threonine kinase family 
such as PDK1, RSK, and SGK1 (84, 85). In particular, SGK1 has 
been shown to promote antioxidant responses during pregnancy 
that are essential for fetal development, and exert protective 
effects in Parkinson’s disease (86). SGK1 can negatively regulate 
JNK signaling, an important inducer of superoxide species by 
modulating complex I activity of the electron transport chain 
(87, 88). In addition, SGK1-mediated inactivation of GSK3-β 
facilitates MCL1 localization to the mitochondria to significantly 
reduce mitochondrial ROS production through inhibition of 
NOX4 expression, adversely affecting the response to chemo-
therapy (88, 89). It is important to note, however, that in models  
of lung cancer, MCL1 may also promote ROS production from the 
mitochondria by binding to voltage-dependent anion channels 
and increasing the mitochondrial flux of calcium (90).

THeRAPeUTiCALLY eXPLOiTinG ReDOX 
HOMeOSTASiS in Pi3K-DePenDenT 
TUMORS

In terms of redox homeostasis, it is clear that PI3K/Akt signaling 
is unique in that it activates both ROS generating and detoxifying 

processes, thus creating a stable presence of ROS, which can 
exert pro-tumorigenic effects. This raises the attractive thera-
peutic prospect of perturbing redox homeostasis in tumors with 
hyperactive PI3K/Akt signaling either alone or in combination 
with existing treatments. Chemotherapy and radiotherapy are 
among the most common therapeutic interventions for cancer 
patients, and one mechanism through which they induce apop-
tosis in cancer cells is by upregulating ROS (91). Anthracyclins, 
such as doxorubicin, and platinum-based therapies including 
cisplatin, can directly induce ROS production through modula-
tion of the electron transport chain, and elevated ROS levels 
subsequently activate caspases, cytochrome c release, and DNA 
damage leading to apoptosis (92, 93). Previous clinical studies 
have demonstrated that PIK3CA mutant breast cancers display 
decreased sensitivity to anthracyclines and cisplatin, however, 
as these drugs exert anti-cancer effects through ROS upregula-
tion, it is conceivable that the antioxidant pathways, which 
are elevated by PI3K/Akt signaling, could counteract these 
therapies (91, 94). Indeed, active Nrf2 protects cancer cells from 
ROS induced cell death, and inhibition of this transcription 
factor by brusatol treatment enhances the response to cisplatin  
(95, 96). In addition, targeting glutathione biosynthesis with 
BSO selectively sensitizes PIK3CA mutant breast tumors to cis-
platin as compared to wild-type ones, indicating that impairing 
the antioxidant response could be an exploitable vulnerability in 
PI3K-driven tumors (83).

The apparent anti-cancer effects of excessive ROS accumula-
tion are also important in targeting tumors, which have become 
resistant to PI3K/Akt inhibitors. A common strategy to overcome 
resis tance is to place patients on “drug holidays” and subsequ-
ently re-challenge them with the inhibitor (97). In PI3K inhibitor 
resistant breast cancer cells, substantial metabolic rewiring occurs 
following removal of the class IA PI3K inhibitor GDC-0941 
that is characterized by increased glycolysis and mitochondrial 
respiration (98). During drug holidays, the metabolic phenotype 
of resistant cancer cells is altered by an Akt-independent PI3K/
mTORC1 signaling axis, which drives excessive production of 
ROS and inhibits the proliferation of these cells (98). Notably, 
this proliferative defect is rescued following treatment of resist-
ant cells with ROS scavengers such as NAC, thus demonstrating 
the importance of regulating ROS homeostasis in prohibiting 
the expansion of a resistant cell population emerging through 
therapies (98). These findings present an opportunity to improve 
responses by specifically exploiting the unique metabolic profile 
of PI3K inhibitor resistant cells, either through glucose depriva-
tion or by further increasing oxidative stress (98). Developing 
resistance to AKT-specific inhibitors such as MK2206 is also a 
significant clinical problem, and studies into the identification 
of synthetic lethal interactions between AKT and antioxidant 
inhibitors have shown promising results in overcoming drug 
resistance (99). In non-small cell lung carcinoma (NSCLC) mod-
els, dual treatment with the thioredoxin reductase-1 (TXNRD1) 
antioxidant inhibitor auranofin and MK2206 induced cancer 
cell-specific apoptosis through ROS-stimulated JNK signal-
ing (99). Importantly, this synthetic lethality was observed 
in lung tumors with functional NRF2–KEAP1 signaling and 
overexpression of TXNRD1, indicating that the activity of the  
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anti-oxidative response in NSCLC could be used as a biomarker 
for determining which patients may benefit from dual AKT/
TXNRD1 inhibition (99).

Although it seems that enhancing ROS production may have 
inhibitory effects on cancer cells, it is important to note that 
finding the balance between antioxidant and ROS-generating 
mechanisms is complex and so is their therapeutic exploitation 
(100). Notably, there is still significant debate regarding the 
administration of antioxidants during cancer therapy as a means 
of limiting drug toxicity and whether their use adversely affects the 
patient’s response, and/or the potential systemic consequences of 
deliberately elevating ROS levels (101). It is, therefore, necessary 
to consider all of these implications and to ensure that tumors are 
well characterized at the genetic and metabolic levels to determine 
if targeting redox homeostasis is a suitable treatment option.

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Several pro-tumorigenic processes converge on hyperactive PI3K/
Akt signaling, and it is becoming increasingly evident that ROS 
metabolism is no exception to this. The capacity for the PI3K/
Akt cascade to directly activate both ROS generating and various 
antioxidant pathways suggests a tight regulation on cellular redox 

homeostasis, the intricacies of which merit further investigation. 
Understanding the complex interplay between ROS and PI3K/
Akt signaling is particularly relevant for developing therapeutic 
strategies to target tumors dependent on this pathway, especially 
since recent clinical trials have demonstrated only modest 
responses to PI3K/Akt pathway inhibitors and development of 
resistance (102). While ROS metabolism certainly adds another 
layer of complexity to PI3K/Akt signaling, this area of research 
holds great promise, not only for the potential identification 
of novel biomarkers and metabolic dependencies but also the 
prospect of implementing more potent therapeutic combina-
tions, which perturb redox homeostasis and effectively target 
PI3K-driven tumors.
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