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Oscillating spatiotemporal patterns 
of COVID‑19 in the United States
Hawre Jalal 1*, Kyueun Lee 2 & Donald S. Burke 3

COVID‑19 case rates in the US wax and wane in wave‑like patterns over time, but the spatial patterns 
of these temporal epidemic waves have not been well characterized. By analyzing state‑ and county‑
level COVID‑19 case rate data for spatiotemporal decomposition modes and oscillatory patterns, 
we demonstrate that the transmission dynamics of COVID‑19 feature recurrent spatiotemporal 
patterns. In addition to the well‑recognized national‑level annual mid‑winter surges, we demonstrate 
a prominent but previously unrecognized six‑month north–south oscillation in the eastern US (Eastern 
US COVID‑19 Oscillator—EUCO) that gives rise to regional sub‑epidemics and travelling epidemic 
waves. We also demonstrate a second less prominent pattern that oscillates east–west in the northern 
US (Northern US COVID‑19 Oscillator—NUCO). The drivers of these newly recognized oscillatory 
epidemic patterns remain to be elucidated.

Since the first documented case of SARS-CoV-2 in the USA in January of 2020, the virus has caused nearly 100 
million reported infections and more than 1 million  deaths1.  COVID-19 incidence rates have waxed and waned, 
with the dominant nation-wide pattern showing increases in the winter months. In mapping case incidence rates, 
we noticed month-to-month variations in intensity across different regions of the country. Furthermore, maps 
of case incidences in the second year of the epidemic appeared to show similar spatiotemporal patterns to those 
in the first  year2. Intrigued by these preliminary visual observations, we set out to use computational methods 
to analyze the data for patterns.

The spatiotemporal granularity of available COVID-19 data in the USA provides an unprecedented 
opportunity to investigate detailed epidemiological dynamics of an infectious disease. In this study, we examined 
this spatiotemporal disease incidence data to reveal heretofore unrecognized sub-national oscillatory disease 
patterns. At this point in time, we do not have a sound mechanistic explanation for these newly discovered 
oscillations. Characterization of these repeating patterns may aid in understanding of infectious disease 
dynamics, enable forecasting of future surges, and facilitate improved targeting of public health resources.

Results
To better understand the transmission dynamics of COVID-19 in the USA, we carried out several distinct 
but complementary analyses, including hierarchical clustering, cross-date rank correlations, and singular value 
decomposition into component modes using COVID-19 case and death data from the New York Times. For our 
analysis we used data from 937 days of the pandemic until the end of our analysis period on August 15, 2022. 
Although the New York Times provides data beyond this date through early 2023, the accuracy and frequency 
of reporting declined during the latter part of this period. For more details on the approaches, please refer to 
the Methods section below.

North–south oscillations of COVID‑19 using state‑level data
Figure 1 provides evidence for a prominent north–south oscillating pattern of COVID-19 case rates in the 
USA. Figure 1A displays a hierarchical clustering dendrogram of state-by-state similarities of case rate time-
series patterns for the 48 contiguous continental states. Geo-contiguous and nearby states show very similar 
patterns. The dendrogram also characterizes states as belonging to the main northern (purple) or the main 
southern (green) regional clusters, as mapped in Fig. 1B. A boundary between the north and south case rate 
pattern clusters lies roughly along 37°–38° north latitude. To extend this analysis of spatial patterns, we analyzed 
temporal patterns by computing a matrix that compares the rank order of the 48 continental states’ COVID-19 
case rates on any given date on the x-axis to the rank order of state COVID-19 case rates on any other date on the 
y-axis (Fig. 1C). We refer to this matrix as cross-date state rank correlation matrix. This cross-date correlation 
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Fig. 1.  North-south oscillatory pattern from state-level incidence data. (A) Hierarchical clustering of states using log case rate time 
series over the 937 day observation period shows a northern and a southern cluster. (B) North-south separation of states within each 
of the two major clusters displayed on a map. (C) Matrix of “cross-date” state rank correlations showing similar ranking of states 
within roughly 3-month periods that predictably recur. Each pixel  in the 937 days x 937 days matrix represents the rank correlation 
coefficient of case rates across states between a date on the x-axis another date on the y-axis. Ten time-blocks of high rank correlations 
appear on the diagonal. These blocks represent waves 1, 2, 3a, 3b, 4, 5, 6a, 6b, 7 and 8. In addition, to high-correlation blocks on the 
diagonal representing close dates, two bands parallel to the diagonal at t+1 and t+2 years are marked to display the similarity in the 
block-patterns at the next 1 and 2 years respectively. For example, “2–5” indicates similarly in state-ranking between waves 2 and 5. (D) 
Shows the aggregated pattern of the average case rate across all 48 states. (E) Displays the ratios of case rates in the northern (purple) 
and southern (green) clusters relative to the overall average in (D). The vertical lines traversing (C– E) indicate the approximate dates 
on which case rates between the northern and southern clusters cross. These lines also correspond to the boundaries of the diagonal 
blocks with homogeneous high cross-date correlations in (C). The arrow represents the start of Omicron wave in the USA.
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matrix generates a structured “checkerboard” pattern. As expected, high correlations appear along the main 
matrix diagonal, indicating that any two or more consecutive days typically share very similar rank orderings 
of state case rates. However, there are unexpected results: First, this matrix displays a steady repeating pattern 
of block-like periods of internally high cross-date state rank correlations, all along the diagonal, with each 
homogeneous block pattern lasting about three months. We introduce a terminology of numbering each of these 
highly spatiotemporal internally correlated blocks from earliest (1) to most recent (8). National temporal wave 
3 can be seen in the cross-date state rank correlation matrix as being composed of two distinct blocks, which we 
label 3a and 3b to retain reference to the national level temporal waves. Similarly, national temporal waves 6 can 
be seen to be composed of two blocks, 6a and 6b.

Second, there are at least two more diagonal bands of high correlations parallel to the main diagonal, the 
first at one year later (t + 1), and a second now forming at two years later (t + 2). These parallel diagonal bands 
result from similar state case rate rankings at almost exactly one year and two years earlier, respectively. Third, 
there are additional correlated sub-patterns at t + 0.5 and t + 1.5 years. For example, states have similar rankings 
at the intersection of waves 2 and 3b; both of which had high case incidences in the south. We observed that 
overall orderly repeating “checkerboard” pattern was transiently disrupted by the introduction of the Omicron 
variant of SARS-CoV-2, when all regions of the country were affected simultaneously and severely (see below). 
After Omicron, the regular checkerboard epidemic pattern then spontaneously restored itself, with waves 7 and 
8 showing the expected state rank cross-date correlation time blocks (wave 7 correlating with waves 1 and 4, 
and wave 8 correlating with waves 2 and 5, respectively). Finally, we found that the relative intensity of COVID-
19 cases in the northern US versus the southern US (compared to the national average) oscillates every three 
months, aligning well with the durations of cross-state correlation blocks in the checkerboard (Fig. 1E). This 
indicates that the regular block patterns in the cross-date state rank correlation matrix represent the oscillating 
north/south changes in case rates by latitude. Accordingly, we used the dates of these normalized incidence 
crossing points to define wave boundaries.

We confirmed this clear recurring pattern of case rates by creating a similar matrix of cross-date rank 
correlations using death rates instead of case rates (Fig. 2). The COVID-19 state death rate cross-date rank 
order correlation matrix generates a checkerboard pattern that is almost identical to the state case rate pattern, 
though not as sharp due to the lower rates of mortality compared to incidence, and with a lag of about one month 
compared to the timing of the case rate oscillations.

Oscillations detected by decomposition of county time series data
Given the evidence for north–south oscillations in US COVID-19 case rates using state-level data, we next 
sought to refine the spatiotemporal patterns of these oscillations by analyzing more granular county-level case 
rate time-series data. We used singular value decomposition (SVD)—a method which has extensive use in signal 
processing and machine learning—to decompose county-level daily case rates into lower rank fundamental 
components (i.e. modes).

Results of the SVD are shown in Fig. 3. The first four SVD decomposition modes accounted for more than 
85% of the total US log-transformed case rate variances by county and over time (Fig. 3A). We chose to analyze 
just these four modes in greater detail because after Mode IV the proportion of explained variance declined 
abruptly to 1%.

Figure 3B shows the four modes’ temporal patterns (eigen-trends). These patterns represent the trends of 
COVID-19 case rates across all counties for each day. The contribution of these trends in each county vary by a 
set of weights. Figure 3C shows the modes’ spatial patterns (eigen-maps) that reflect the correlation of each of the 
temporal patterns with each county’s observed case rate over time. Red and blue areas represent counties where 
the mode is strongest and white areas represent counties where the correlation is weak. For example, Mode II is 
strongest in the northeast (high negative correlation) and the southeast (high positive correlation) compared to 
the counties along the central latitude.

Modes I through IV each defines a distinct spatiotemporal pattern. Mode I is the strongest (explaining 75% 
of the total variance) as expected because this mode captures the variance of the time-trend in case rates across 
all counties. The temporal trend of this mode (Fig. 3B) follows a generally cyclical annual repeating pattern with 
a fall-winter spike with other variable rises and falls. Modes II, III and IV capture additional local variations in 
the time-trend.

Figure 3D is a panel of time series heatmaps that show all  county-level COVID-19 case rate time series 
trajectories according to day (x axis), county latitude (y axis), county longitude (five columns), and mode (five 
rows). The first row shows the observed data, and the following rows represent the predicted case rates for each 
county produced by multiplying the temporal-trends (Fig. 3B) by the county specific weights underlying the 
spatial weights shown in Fig. 3C.

Mode I in Fig. 3D shows a vertical band-like pattern that reflects the same overall temporal wave-pattern 
observed in Mode I in Fig. 3B. However, the intensity of these waves vary by county because each county has its 
own unique weight-adjusted magnitude for this mode’s temporal trend. As expected, cases across all counties 
follow the average temporal trend.

Unlike Mode I, Mode II reveals a clear north–south oscillation of COVID-19 case rates in the eastern US 
(East of 100 degree W). We refer to this Mode as the Eastern US COVID-19 Oscillation; EUCO. This mode 
accounts for 5.2% of the total variance (Fig. 3A). In the spatial weight, this mode correlates most positively 
with the southeast region and negatively with the northeast region (Fig. 3C). As a result, Mode II captures a 
strong north/south oscillatory behavior, most prominent in the three longitudinal bands east of latitude 100W 
(Figs. 3D and 4A). This oscillatory behavior alternates between a high case rate in waves 1, 3a, 4, 6a and 7 in the 
northeast and waves 2, 3b, 5, 6b and 8 in southeast. This north–south oscillating pattern effectively locally tilts 
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Fig. 2.  State-level analysis of COVID-19 mortality confirms the north–south oscillation observed using case 
data. Panel A is a matrix of cross-date state rank correlations showing similar ranking of state mortality rates 
within each 3-month periods. Panel B shows the average mortality rate aggregated across states, and Panel C 
shows the average mortality rate within the northern and southern state clusters defined in Fig. 1A. The patterns 
in (A–C) are overall similar to those for case rates shown in Fig. 1, panels (C–E) respectively, but the mortality 
patterns are lagged by about one month and are less well defined especially toward the later time periods due to 
declining case fatality ratio (notice the relatively low ratio of Omicron mortality to cases).
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Fig. 3.  Singular value decomposition (SVD) of county-level data confirms the state-level north–south 
oscillatory patterns and defines its regional extent. (A) Shows the proportion of the variance explained by the 
top 20 modes. The first four modes are labelled with Roman Numerals I, II, III and IV. (B) Shows the temporal 
patterns of the modes by plotting the eigen-trends of the SVD modes weighted by their singular values. The 
start of Omicron (arrow) was associated with a sudden increase in cases in Mode I. (C) Shows the spatial 
patterns of the modes by showing the correlation of the eigen-maps of the SVD modes with each county’s log 
case rate. (D) Compares the observed log case rates (top row) against the predicted case rate from each mode 
by latitude within five longitudinal bands as indicated in the legend on the right. The Eastern US COVID-19 
Oscillation (EUCO) can be seen across the USA but is most prominent in the eastern longitudinal bands. The 
north–south alternations of the EUCO are shown with dashed lines in the Mode II 80-90W panel. In addition, 
the Northern US COVID-19 Oscillation (NUCO) is illustrated for Mode III alternating between the northeast 
(longitudes < 80) and north-central (longitudes 90–100) labelled with a horizontal arrow.
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the time-invariant patterns of Mode I up and down along the axis of 37 degrees north latitude so that the waves 
behave as back-and-forth travelling waves across latitude.

The EUCO is further documented in Fig. 4B by plotting the daily average latitude among the counties with 
the highest versus the lowest case rates, among all counties east of longitude 100 W. This figure reveals large semi-
annual reciprocally alternating north–south latitudinal swings of the locations of the counties with the lowest 
and the highest case rates. Although these large oscillations were partially disrupted by the Omicron wave in 
winter 2022, they appear to have bounced back to their original pattern since April 2022.

Similarly, Mode III reveals a northern US COVID-19 oscillation (NUCO). This mode explains 3.2% of the 
variance of the overall case rates and correlates positively with the fall waves in the northcentral US counties, 
and negatively correlates with winter, spring and summer waves (Fig. 3B, C). This mode captures high case rates 
in the fall (waves 3a and 6a) in longitudinal bands 90–100 W and 100–110 W, and to a lesser degree, high cases 
in the winter, spring and summer in the northeast—waves 1, 2, 3b, 4, 5, 6b, 7 and 8 in longitudinal band < 80 W 
(Fig. 3D).

Lastly, Mode IV explains 2.2% of the variance. This mode is correlated the most with the spring wave in the 
northeast, and to a lesser extent with case rates in the upper Midwest and southeast (Fig. 3C, D). Overall, this 
mode reflects the change in case rate severity in the first annual cycle relative to the second and third cycles 
(Fig. 3D).

Although Modes II–IV explain 11% of the variance compared to 75% for Mode I, most of Mode I’s captured 
variance occurs during the large epidemic winter peaks compared to Modes II–IV that have distinct contributions 
to waves in the other times of the year.

Consistent with Fig. 2, Mode II shows an alternating pattern of regional high intensity in the north and the 
south. When these high intensity Mode II regional patterns occur during the nadirs of Mode I, the Mode II 
localized epidemic is the dominant contributor to regional county case rates. This has occurred in waves 2, 4, 
5, and 7. Mode III suggests that there may be an annual northeast-northcentral oscillation where case rates are 
highest in the northcentral region in the fall waves (3a and 6a) and highest in the northeast in the spring waves 
(4 and 7). Mode III was especially prominent in wave 3a. It is difficult to discern any repeating patterns of Mode 
IV, but this mode did have the highest intensities in waves 1 and 5.

We focused our analyses presented here on spatiotemporal patterns by latitude to generate four SVD modes. 
These four modes added together closely reproduce the observed case rate patterns in all five of the US regions 
analyzed (Fig. 5).

Note that these oscillatory patterns in COVID peak rates generate travelling epidemic waves. In Fig. 5, as 
shown for example for the observed cases in the longitudinal band B (80—90 W), the sequential waves 3a and 3b 
move gradually from north to south over time, while wave 5 travels from the south to the north. Wave 6a begins 

Fig. 4.  The eastern US COVID-19 oscillation (EUCO). (A) Zooms in on the SVD Mode II for the eastern US 
(east of 100 W longitude) from Fig. 3. The EUCO shows as an alternating pattern of north–south intensity back 
and forth across 37 degrees north latitude. In the upper center panel red dashed lines are used to show this 
alternation in case rates for counties in the 80–90 W longitude band. The same pattern can be seen for counties 
in the < 80 W and the 90–100 W longitudinal bands. (B) Reveals the EUCO in the raw data by showing the 
oscillation of the average latitude among counties with the highest and lowest daily case rates in the eastern US.
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in the north and moves southward, but the near-simultaneous nationwide emergence of Omicron obscures the 
expected 6b component of the travelling wave.

Fig. 5.  The first four singular value decomposition (SVD) modes together closely reconstruct observed case 
rates by latitude within longitudinal bands. The panels in the left column represent heatmaps of real observed 
log case rates [log(r)]. The x-axis represents time, and the y-axis represents all US counties ranked by their 
latitude from northernmost to the southernmost within each of the five longitudinal bands. Temporal waves 1–8 
are labelled on the panel of observed log case rates for longitudinal band 80–90 W. A slanted left/right or right/
left pattern of a wave shows it to be a travelling wave. The right column of panels shows the reconstruction of log 
case rates from the first four modes (Modes I, II, III and IV) of the singular value decomposition (SVD) analysis 
for all five longitudinal bands. Notice the Omicron wave in early 2022 (arrow) partially overlapping wave 6a.
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In addition to these patterns across latitudes, we also found limited but less-striking evidence of additional 
spatial structure by longitude within latitudinal bands.

Discussion
Case reporting during COVID-19 epidemic has generated the most massive and detailed spatiotemporal 
data set in the history of epidemiology. In the USA, approximately 3 million case rate data points have been 
recorded in detailed time and space (937 daily case counts from 3108 counties), tallying the date and location of 
a cumulative 95 million  cases1. Although reporting can be incomplete and imperfect, we were able to mine this 
rich spatiotemporal data similar to other studies that have employed advanced computational  methods3–6. By 
detecting and describing heretofore unrecognized recurring patterns we provide new evidence that the COVID-
19 epidemic in the USA has recurring spatiotemporal components.

Our most striking finding was the alternating north–south intensity of COVID-19 case rates in the Eastern 
US [Eastern US COVID-19 Oscillation (EUCO)]. The SVD Mode II captures the variance generated by this 
heretofore unrecognized north–south oscillation, with case rates oscillating around a mid-point of approximately 
37-degree north latitude. Although mode II accounts for only 5.2% of the total national epidemic-long variance, 
this percentage can be considered to be minimized because in the SVD the case rates are log-transformed rather 
than the natural scale of case rates. Nonetheless, mode II accounted for the majority of the regional variance in 
the northeast and southeast regions during waves 2, 4, 5, 6a, and 7, that is during regional waves that were not 
dominated by the larger nation-wide mode I-associated winter waves (Fig. 3).

While the timing of COVID-19 winter waves is consistent with that of other respiratory viruses, the timing 
and location of the summer/southern waves 2, 5 and 7 is unexpected. These waves start near the southern US 
border, the hottest time of the year when relative humidity is high. Factors associated with southern/summer 
increased transmission might include increased indoor gatherings during hot seasons, exposure to cool dry air 
from air-conditioners, or other unknown  factors7,8. Further analyses are warranted.

Similarly, mode III appears to follow an oscillatory pattern [Northern US COVID-19 Oscillation (NUCO)], 
with waves in the northeast (< 80° W) displaying high rates for most of the year, which are transiently interrupted 
by a sharp drop in rates during the fall wave 3a and another sharp nadir one year later in wave 6a. This temporal 
pattern of case rates is exactly the opposite that of the north central region (90°–110° W) which experienced 
transient sharp surges of higher rates in waves 3a and 6a.

These recurring patterns show that COVID-19 waves can have sub-national travelling wave patterns, 
similar to the patterns seen for some other infectious  diseases9–12. These pattern analyses also suggest that the 
oscillating north/south wave patterns we report here may not be confined to the USA, but may be part of a larger 
North American continental pattern. This US-based analysis should be extended to the entire North American 
continent.

In this study, we focused exclusively on defining the patterns of COVID-19 itself and did not attempt to 
identify the specific mechanistic drivers of these patterns. Many factors are known or thought to be associated 
with waxing and waning in COVID-19 case rates, including the introduction of new virus variants 13; the level 
of population immunity, either through infection or vaccines 14; human mobility and public health interventions 
such as social distancing and masks 15,16; and environmental factors such as ambient or indoor temperature and 
humidity 17–22; and other factors 23,24. Thus, epidemic forecasting is challenging because all of these factors are 
continuously at play in epidemic dynamics, and only occasionally does one factor rise in importance to dominate 
the  picture25,26.

Annual cycling of respiratory virus transmission, including common cold coronaviruses, is well 
 documented27,28, so the rough annual frequency traced by the two national COVID case rate curves (SVD 
mode I) was not surprising. However, our finding of the additional EUCO and NUCO regional oscillators 
of COVID-19 case rates was unexpected. Additionally, our observation that COVID-19 case rates repeatedly 
increased each summer in the southern US was unexpected, as this observation runs counter to the expected 
associations of SARS-CoV-2 transmission and colder weather. If the south had a single peak each year, it might 
indeed be possible to explain the oscillation by the annual temperature cycle, but the south had not just one but 
two annual peaks, one in the hottest months of July and August, and the other in January and February. The 
surge of cases in the south in the summer is contrary to the expected seasonal surges of common respiratory 
viruses, and inconsistent with the hypothesis that they are related to colder temperatures in the conventional 
way. Isolation of mode II data as we have done here, and essentially discarding other mode data as noise, should 
facilitate studies to find the mechanistic drivers of this strong north–south epidemic oscillator.

Our finding that there are regional oscillatory rhythms in the COVID-19 epidemic may have implications 
for evaluation of control policies. Any given rise or fall in case rates in a jurisdiction may be associated with the 
endogenous oscillations we describe here, rather than with a newly implemented policies in that jurisdiction. 
COVID-19 policy analyses should be appropriately controlled to take into consideration the expected EUCO 
and NUCO rises and falls. At this point, we do not have a mechanistic explanation for either oscillation. The 
oscillations can be driven by an increase in the rate of new infections, or by an increase in severity of the 
cases leading to an apparent increase in case counts. Once these mechanistic explanations are available, these 
oscillations may contribute to real-world outbreak control.

Our study has several limitations. First, the overall epidemic observation period we studied was only 2.5 years, 
however, the spatiotemporal granularity of the case rate data—by county and by day—is unprecedented, which 
allowed detailed decomposition with SVD. In addition, the patterns we observed are consistent across multiple 
subsets of counties in separate states and separate longitudinal bands. Second, case rates are a function of testing 
rates and test positive rates which could fluctuate depending on the properties of the dominant strains, public 
awareness and concern, and local testing policies. To confirm the robustness of the patterns derived using case 
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rates, we showed that these patterns could be closely replicated by analyses of mortality data. Third, we have 
no way to prove or even expect that the spatiotemporal wave structure we document here in the pandemic will 
persist into the future. Indeed, the patterns appear to have been disrupted, albeit temporarily, by emergence of 
the Omicron variant. Nonetheless, further studies of forces that have driven these early-epidemic oscillations 
may prove important in understanding the fundamental transmission dynamics of COVID-19, as well as other 
emerging infectious disease epidemics. Fourth, we used the New York Times as the only source of data for this 
analysis. Confirmation of these patterns using other sources could be done, such as Johns Hopkins University’s 
data, USAFacts, and the COVID Tracking Project. Fifth, because the SVD analysis isolates orthogonal modes 
from the primary signal, it cannot detect interactions between the EUCO and NUCO oscillators if any exist. 
Future analyses may reveal interactions between these two modes.

A full understanding of COVID-19 epidemic waves may be especially important given the fact that immunity 
to COVID-19  wanes29,30. Rapid waning of human immunity to SARS-Cov-2, both after infection or vaccination, 
has led to a public health strategy of frequent  boosters31. For influenza, annual vaccinations are recommended to 
be given not earlier than October, to avoid too great a decline in immunity before the expected winter influenza 
 surge32. Similarly, SARS-CoV-2 vaccinations mightideally be timed to just precede the expected epidemic surge 
for any given US region.

Methods
Data sources
Daily case rates were obtained from The New York Times. For all analyses, we only included the 48 continental 
US states from the beginning of the epidemic in the USA through August 15, 2022. The total observation period 
is 937 days because the first reported case in the data is January 21, 2020. For county analyses we included 
only those counties within the 48 continental US states (total N = 3108). The total county data set included 
937 × 3108 = 2.9 million data points, which aggregated 150 million continental USA reported cases by day and 
county. In all the analyses, we used log case rates per 100,000 people since the case rates follow a log-normal 
distribution. To smooth the trends, we used 14 day moving average of case rates before taking the log. We chose 
14 days instead of 7, because during the latter part of the observation period, some counties reported cases on 
a bi-weekly basis. In addition, before taking the log of case rates, we added one to the case rate per 100,000 to 
avoid numerical issues with undefined log of zero.

Analyses
State level analyses
We conducted geo-clustering analysis of states based on their COVID-19 epidemic pattern similarities, by 
comparing state vs state daily case rates time series over 937 days. First, we used a simple approach of hierarchical 
clustering analyses of state-level log case rates. For the distance metric, we used 1− r , where r is the Pearson 
correlation coefficient in log case rates over the entire period between each pair of states. The Pearson correlation 
coefficient r is calculated as:

where xi and yi are the log case rates for states x and y on day i , and x and x are the mean log case rates for states 
x and y , respectively, over the 937 days.

The distance 1− r essentially quantifies the dissimilarity between the states’ epidemic patterns: a value of 0 
indicates perfect correlation (i.e., identical patterns), while a value of 2 indicates perfect anti-correlation.

For the agglomeration algorithm, we chose Ward’s method because it minimizes the total within-cluster 
 variances33. Specifically, Ward’s method seeks to minimize the increase in the total within-cluster variance, or 
error sum of squares (ESS), at each step of clustering. The increase in ESS when merging two clusters A and B into 
a new cluster C is given by:

where xi are the data points, and xA , xB , and  xC are the centroids of clusters A, B, and C, respectively. We selected 
the top two clusters from the Ward method to compute the ratio of each cluster’s average case rate to the average 
of case rates across all states (see below).

Cross‑date state ranking correlation matrix
This analysis reveals a matrix of state rankings between each pair of dates.

To further investigate the change in state ranking over time, we show this matrix as a heatmap. Each pixel in 
this heatmap represents the state rank correlations (Spearman’s correlation coefficient) of case rates across states 
between each pair of dates indicated on the x and y axes. When the state rankings are similar between two dates, 
the correlation will be red and when the state rankings are reversed, the correlation will be indicated in blue. This 
heatmap captures secondary fluctuations/oscillations in the states’ relative rankings revealing a “checkerboard” 
pattern because it reveals periods of times where state rankings were similar vs where rankings were reversed 
regardless of the time trend or case rate in these two dates.

Definition of COVID epidemic waves. We defined the following epidemic waves based on the intersection 
of the average case trend ratios from the clustering analyses.
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Epidemic wave Start date End date Number of days

1 Mar 20, 2020 Jun 1, 2020 73

2 Jun 1, 2020 Oct 1, 2020 122

3a Oct 1, 2020 Dec 10, 2020 70

3b Dec 10, 2020 Mar 5, 2021 85

4 Mar 5, 2021 Jun 1, 2021 88

5 Jun 1, 2021 Sep 20, 2021 111

6a Sep 20, 2021 Jan 1, 2022 103

6b Jan 1, 2022 Feb 20, 2022 50

7 Feb 20, 2022 Jun 10, 2022 110

8 Jun 10, 2022 Aug 15, 2022 66

 Average number of days across waves = 87.8 days.

County‑level analyses
Singular value decomposition (SVD) is a widely used technique in linear algebra to obtain low-rank orthogonal 
modes from  data34. We used SVD to decompose county-level log case rates data. Mathematically, SVD 
decomposes a matrix X into three matrices:

where: X is an m× n matrix of county-level log case rates, with xjt representing the log case rate for county  j at 
time t  . U  is an m×m orthogonal matrix representing the spatial weights, also known as eigenmaps. Each 
column k of U corresponds to the left singular vector for the k th mode. � is an m× n diagonal matrix of singular 
values, where σk represents the singular value for the k th mode. The singular values quantify the influence of 
each mode. VT is an n× n orthogonal matrix representing the temporal trends, also known as eigen-trends. 
Each row k of VT corresponds to the right singular vector for the k th mode.

The SVD decomposes the spatiotemporal patterns of case rates into a set of modes that, when summed 
together, reproduce the log case trends. The influence of each mode is computed as the proportion of the total 
variance explained by each mode k:

where σ 2
k  is the square of the k-th singular value, and 

∑

iσ
2
i  is the sum of the squares of all singular values. This 

proportion indicates how much of the total variance in the data is captured by each mode, allowing us to identify 
the most significant patterns in the county-level COVID-19 case rates.

Data availability
COVID-19 cases and death data are publicly available from the New York Times and is available on GitHub at 
https:// github. com/ nytim es/ covid- 19- data.

Received: 1 May 2024; Accepted: 9 September 2024

References
 1. Coronavirus (Covid‑19) Data in the United States. (The New York Times, 2021).
 2. CDC. COVID Data Tracker Weekly Preview, https:// www. cdc. gov/ coron avirus/ 2019- ncov/ covid- data/ covid view/ index. html (2021).
 3. Castro, M. C. et al. Spatiotemporal pattern of COVID-19 spread in Brazil. Science 372, 821–826. https:// doi. org/ 10. 1126/ scien ce. 

abh15 58 (2021).
 4. Kim, S., Kim, M., Lee, S. & Lee, Y. J. Discovering spatiotemporal patterns of COVID-19 pandemic in South Korea. Sci. Rep. 11, 

24470. https:// doi. org/ 10. 1038/ s41598- 021- 03487-2 (2021).
 5. Nazia, N., Law, J. & Butt, Z. A. Identifying spatiotemporal patterns of COVID-19 transmissions and the drivers of the patterns in 

Toronto: A Bayesian hierarchical spatiotemporal modelling. Sci. Rep. 12, 9369. https:// doi. org/ 10. 1038/ s41598- 022- 13403-x (2022).
 6. Zhu, D., Ye, X. & Manson, S. Revealing the spatial shifting pattern of COVID-19 pandemic in the United States. Sci. Rep. 11, 8396. 

https:// doi. org/ 10. 1038/ s41598- 021- 87902-8 (2021).
 7. Oswin, H. P. et al. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc Natl Acad Sci U S A 

119, e2200109119. https:// doi. org/ 10. 1073/ pnas. 22001 09119 (2022).
 8. Kilgour, E., Rankin, N., Ryan, S. & Pack, R. Mucociliary function deteriorates in the clinical range of inspired air temperature and 

humidity. Intensive Care Med 30, 1491–1494. https:// doi. org/ 10. 1007/ s00134- 004- 2235-3 (2004).
 9. Pitzer, V. E. et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science 325, 

290–294. https:// doi. org/ 10. 1126/ scien ce. 11723 30 (2009).
 10. Cummings, D. A. et al. Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427, 344–347. https:// 

doi. org/ 10. 1038/ natur e02225 (2004).
 11. Garcia-Calavaro, C. et al. North to south gradient and local waves of influenza in Chile. Sci Rep 12, 2409. https:// doi. org/ 10. 1038/ 

s41598- 022- 06318-0 (2022).
 12. Bjørnstad, O. N. & Grenfell, B. T. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638–643. 

https:// doi. org/ 10. 1126/ scien ce. 10622 26 (2001).
 13. Dutta, A. COVID-19 waves: variant dynamics and control. Sci Rep 12 (2022). https:// doi. org/ 10. 1038/ s41598- 022- 13371-2

X = U�V
T ,

Proportion of Variance Explained =
σ 2
k

∑

iσ
2
i

https://github.com/nytimes/covid-19-data
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
https://doi.org/10.1126/science.abh1558
https://doi.org/10.1126/science.abh1558
https://doi.org/10.1038/s41598-021-03487-2
https://doi.org/10.1038/s41598-022-13403-x
https://doi.org/10.1038/s41598-021-87902-8
https://doi.org/10.1073/pnas.2200109119
https://doi.org/10.1007/s00134-004-2235-3
https://doi.org/10.1126/science.1172330
https://doi.org/10.1038/nature02225
https://doi.org/10.1038/nature02225
https://doi.org/10.1038/s41598-022-06318-0
https://doi.org/10.1038/s41598-022-06318-0
https://doi.org/10.1126/science.1062226
https://doi.org/10.1038/s41598-022-13371-2


11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:21562  | https://doi.org/10.1038/s41598-024-72517-6

www.nature.com/scientificreports/

 14. Dolgin, E. vaccine immunity is waning-how much does that matter?. Nature 597, 606–607. https:// doi. org/ 10. 1038/ d41586- 021- 
02532-4 (2021).

 15. Catching, A., Capponi, S., Yeh, M. T., Bianco, S. & Andino, R. Examining the interplay between face mask usage, asymptomatic 
transmission, and social distancing on the spread of COVID-19. Sci Rep 11, 15998. https:// doi. org/ 10. 1038/ s41598- 021- 94960-5 
(2021).

 16. Coccia, M. Meta-analysis to explain unknown causes of the origins of SARS-COV-2. Environ Res 211, 113062. https:// doi. org/ 10. 
1016/j. envres. 2022. 113062 (2022).

 17. Merow, C. & Urban, M. C. Seasonality and uncertainty in global COVID-19 growth rates. Proc. Natl. Acad. Sci. USA 117, 27456–
27464. https:// doi. org/ 10. 1073/ pnas. 20085 90117 (2020).

 18. D’Amico, F. et al. COVID-19 seasonality in temperate countries. Environ. Res. 206, 112614. https:// doi. org/ 10. 1016/j. envres. 2021. 
112614 (2022).

 19. Smit, A. J. et al. Winter is coming: A southern hemisphere perspective of the environmental drivers of SARS-CoV-2 and the 
potential seasonality of COVID-19. Int. J. Environ. Res. Public Health 17 (2020). https:// doi. org/ 10. 3390/ ijerp h1716 5634

 20. Yin, C., Zhao, W. & Pereira, P. Meteorological factors’ effects on COVID-19 show seasonality and spatiality in Brazil. Environ. Res. 
208, 112690. https:// doi. org/ 10. 1016/j. envres. 2022. 112690 (2022).

 21. Zoran, M. A. et al. Assessing the impact of air pollution and climate seasonality on COVID-19 multiwaves in Madrid, Spain. 
Environ. Res. 203, 111849. https:// doi. org/ 10. 1016/j. envres. 2021. 111849 (2022).

 22. Hoogeveen, M. J., Kroes, A. C. M. & Hoogeveen, E. K. Environmental factors and mobility predict COVID-19 seasonality in the 
Netherlands. Environ. Res. 211, 113030. https:// doi. org/ 10. 1016/j. envres. 2022. 113030 (2022).

 23. Rendana, M. Impact of the wind conditions on COVID-19 pandemic: A new insight for direction of the spread of the virus. Urban 
Clim. 34, 100680. https:// doi. org/ 10. 1016/j. uclim. 2020. 100680 (2020).

 24. Mercola, J., Grant, W. B. & Wagner, C. L. Evidence regarding vitamin D and risk of COVID-19 and its severity. Nutrients https:// 
doi. org/ 10. 3390/ nu121 13361 (2020).

 25. Reich, N. G. et al. Collaborative hubs: Making the most of predictive epidemic modeling. Am. J. Public Health 112, 839–842. https:// 
doi. org/ 10. 2105/ AJPH. 2022. 306831 (2022).

 26. Rosenfeld, R. & Tibshirani, R. J. Epidemic tracking and forecasting: Lessons learned from a tumultuous year. Proc. Natl. Acad. Sci. 
USA 118 (2021). https:// doi. org/ 10. 1073/ pnas. 21114 56118

 27. Moriyama, M., Hugentobler, W. J. & Iwasaki, A. Seasonality of respiratory viral infections. Annu. Rev. Virol. 7, 83–101. https:// doi. 
org/ 10. 1146/ annur ev- virol ogy- 012420- 022445 (2020).

 28. Borchers, A. T., Chang, C., Gershwin, M. E. & Gershwin, L. J. Respiratory syncytial virus–a comprehensive review. Clin. Rev. Allergy 
Immunol. 45, 331–379. https:// doi. org/ 10. 1007/ s12016- 013- 8368-9 (2013).

 29. Tregoning, J. S., Flight, K. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: Viruses, vaccines 
and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636. https:// doi. org/ 10. 1038/ s41577- 021- 00592-1 
(2021).

 30. Cevik, M., Grubaugh, N. D., Iwasaki, A. & Openshaw, P. COVID-19 vaccines: Keeping pace with SARS-CoV-2 variants. Cell 184, 
5077–5081. https:// doi. org/ 10. 1016/j. cell. 2021. 09. 010 (2021).

 31. Burki, T. Booster shots for COVID-19-the debate continues. Lancet Infect. Dis. 21, 1359–1360. https:// doi. org/ 10. 1016/ s1473- 
3099(21) 00574-0 (2021).

 32. Krammer, F. et al. Influenza. Nat. Rev. Dis. Primers 4, 3. https:// doi. org/ 10. 1038/ s41572- 018- 0002-y (2018).
 33. Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
 34. Peters, T. Data‑driven science and engineering: Machine learning, dynamical systems, and control: by SL Brunton and JN Kutz, 2019, 

Cambridge, Cambridge University Press, 472 pp.,£ 49.99 (hardback), ISBN 9781108422093. Level: Postgraduate. Scope: Textbook. 
Vol. 60 (Taylor & Francis, 2019).

Acknowledgements
We thank Ben Kirtman, Professor of Atmospheric Sciences and Director of the Cooperative Institute for Marine 
& Atmospheric Studies, University of Miami, for suggesting use of the SVD method of analysis.

Author contributions
Conceptualization: HJ, DSB Methodology: HJ Investigation: HJ, KL Visualization: HJ Funding acquisition: HJ, 
DSB Project administration: HJ Supervision: HJ, DSB Writing-original draft: HJ, DSB Writing-review & editing: 
HJ, DSB, KL.

Funding
HJ was supported by Canada Research Chairs (Award No. CRC-2021-00354).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/d41586-021-02532-4
https://doi.org/10.1038/d41586-021-02532-4
https://doi.org/10.1038/s41598-021-94960-5
https://doi.org/10.1016/j.envres.2022.113062
https://doi.org/10.1016/j.envres.2022.113062
https://doi.org/10.1073/pnas.2008590117
https://doi.org/10.1016/j.envres.2021.112614
https://doi.org/10.1016/j.envres.2021.112614
https://doi.org/10.3390/ijerph17165634
https://doi.org/10.1016/j.envres.2022.112690
https://doi.org/10.1016/j.envres.2021.111849
https://doi.org/10.1016/j.envres.2022.113030
https://doi.org/10.1016/j.uclim.2020.100680
https://doi.org/10.3390/nu12113361
https://doi.org/10.3390/nu12113361
https://doi.org/10.2105/AJPH.2022.306831
https://doi.org/10.2105/AJPH.2022.306831
https://doi.org/10.1073/pnas.2111456118
https://doi.org/10.1146/annurev-virology-012420-022445
https://doi.org/10.1146/annurev-virology-012420-022445
https://doi.org/10.1007/s12016-013-8368-9
https://doi.org/10.1038/s41577-021-00592-1
https://doi.org/10.1016/j.cell.2021.09.010
https://doi.org/10.1016/s1473-3099(21)00574-0
https://doi.org/10.1016/s1473-3099(21)00574-0
https://doi.org/10.1038/s41572-018-0002-y
www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:21562  | https://doi.org/10.1038/s41598-024-72517-6

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ 
licen ses/ by- nc- nd/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Oscillating spatiotemporal patterns of COVID-19 in the United States
	Results
	North–south oscillations of COVID-19 using state-level data
	Oscillations detected by decomposition of county time series data

	Discussion
	Methods
	Data sources
	Analyses
	State level analyses
	Cross-date state ranking correlation matrix

	County-level analyses

	References
	Acknowledgements


