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Abstract

Estimating parameters accurately in groundwater models for aquifers is challenging

because the models are non-explicit solutions of complex partial differential equations. Mod-

ern research methods, such as Monte Carlo methods and metaheuristic algorithms, for

searching an efficient design to estimate model parameters require hundreds, if not thou-

sands of model calls, making the computational cost prohibitive. One method to circumvent

the problem and gain valuable insight on the behavior of groundwater is to first apply a

Galerkin method and convert the system of partial differential equations governing the flow

to a discrete problem and then use a Proper Orthogonal Decomposition to project the high-

dimensional model space of the original groundwater model to create a reduced groundwa-

ter model with much lower dimensions. The reduced model can be solved several orders of

magnitude faster than the full model and able to provide an accurate estimate of the full

model. The task is still challenging because the optimization problem is non-convex, non-dif-

ferentiable and there are continuous variables and integer-valued variables to optimize. Fol-

lowing convention, heuristic algorithms and a combination is used search to find efficient

designs for the reduced groundwater model using various optimality criteria. The main goals

are to introduce new design criteria and the concept of design efficiency for experimental

design research in hydrology. The two criteria have good utility but interestingly, do not

seem to have been implemented in hydrology. In addition, design efficiency is introduced.

Design efficiency is a method to assess how robust a design is under a change of criteria.

The latter is an important issue because the design criterion may be subjectively selected

and it is well known that an optimal design can perform poorly under another criterion. It is

thus desirable that the implemented design has relatively high efficiencies under a few crite-

ria. As applications, two heuristic algorithms are used to find optimal designs for a small syn-

thetic aquifer design problem and a design problem for a large-scale groundwater model

and assess their robustness properties to other optimality criteria. The results show the
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proof of concept is workable for finding a more informed and efficient model-based design

for a water resource study.

1. Introduction

With ever increasing demands being placed on groundwater aquifers, the needs to accurately

model and understand behavioral properties of the aquifers are becoming more important. A

common approach is to adopt a model-based approach and collect data to infer interesting fea-

tures of the aquifers by estimating the model parameters, or some functions thereof. Unfortu-

nately, accurate groundwater models are complex, high-dimensional and often have several

physical and geographical constraints placed on the optimization problem so that obtaining

the best possible estimates for the model parameters becomes challenging and computationally

expensive. Many modern tools, such as Monte Carlo methods and global search algorithms

used for optimization like genetic algorithms and particle swarm optimization, require hun-

dreds, if not thousands of model calls. The full model sheds invaluable light on the behavior of

groundwater but its complexity and the prohibitive computational expense required to analyze

them frequently limit their usefulness in many applications. There is thus much research to

find ways to solve the groundwater modeling and computation issues more efficiently. One

approach is to use an efficient and robust design to collect data judiciously so that the esti-

mated parameters are most accurate for a given cost.

As a concrete example of design issues that typically arise in such problems, consider the

Owens Valley, north-east of Los Angeles, where the Los Angeles Department of Water and

Power (LADWP) operates groundwater extraction wells to supply water for in-Valley use and

for export to Los Angeles. Various appropriate methods are applied to avoid negatively

impacting native plant species, meadow areas, and other habitats reliant on groundwater. In

some areas, it is preferred that a minimum groundwater elevation be maintained; and in oth-

ers, an optimal seepage flow is desired. To accomplish these goals, LADWP monitors the

groundwater elevation at various locations in the Owens Valley through the use of groundwa-

ter monitoring wells. Deciding where to install these monitoring wells is carried out in a

sequential manner and depends heavily on expert knowledge.

When a new groundwater extraction project is started and there is no good estimate of

groundwater levels or an area of vegetation or habitat has been identified as being of concern,

the general approach to choose a new observation well location is to rely on expert geologic

knowledge to choose a good location between areas of concern and the nearest extraction

wells. While effective, this sequential, local-optimization style approach does not guarantee an

optimal distribution of observation wells. Artificial Intelligence coupled with a model-based

approach to designing the study can offer multiple advantages. For example, given a set of

observation wells, it is possible to obtain a bound on the uncertainty of the groundwater eleva-

tion. Another advantage is that multiple observation wells may be optimally located to maxi-

mize information and minimize redundant information at the same time. A third advantage is

that the viability of alternate observation locations can be investigated.

However, a model-based approach requires specification of a plausible model, which in this

case is a system of partial differential equations, along with adequately specified constraints

and right initial conditions. Constraints can be geographical considerations like those above

and they have to be properly formulated. The choice of an optimality criterion depends on the

goal of the study and since different criterion leads to different designs, it is desirable to have a
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design robust to the design criterion. In addition, the design depends on the model and

whether there are multiple goals in the study, and if so, are all the goals equally important. The

upshot is that the implemented design should also be relatively robust to slight misspecifica-

tions in the model and be relatively efficient under the various competing goals. Thus there are

multiple difficult design issues that need to be carefully considered upfront before the design is

implemented. These design issues are certainly not unique in the design for monitoring wells

but they have the distinguishing feature that the models are implicitly determined and the con-

strained optimization problem is much more complex and high-dimensional than those com-

monly encountered in a class on design of experiments. In particular, there are hundreds or

thousands of integer-valued and continuous variables to be optimized.

This paper has a few aims: (a) provide a review of the statistical background in groundwater

modeling problems and a brief literature review on groundwater modeling, (b) demonstrate the

practical utility of a Galerkin method and a Proper Orthogonal Decomposition (POD) to sim-

plify the design problems in groundwater modeling, (c) use metaheuristic algorithms to find var-

ious types of efficient designs for the reduced model, (d) propose two new design criteria, G- and

I-optimality, for hydrology research, and (e) implement an efficient design robust to other opti-

mality criteria. The latter two aims are the primary motivations as the two proposed criteria

appear at least as relevant or more than currently used criteria in design research for water

resources allocation problems and, the practically useful concept of design efficiency across crite-

ria or models seem yet to be used in hydrology. Section 2 provides background on research in

groundwater research with a focus on design issues for groundwater studies that includes current

design methodologies, the use of POD, statistical terminology and optimality criteria. Section 3

discusses next steps after using POD to project the high-dimensional model space of the original

groundwater model (referred to as the full model) into a lower-dimensional model space to cre-

ate a reduced groundwater model. In particular, it has been shown that the reduced model can

be solved several orders of magnitude faster than the full model and is able to accurately estimate

the result from the full model [1]. Much research has been performed on applying POD model

reduction in general, for example cavity flow [2], models of electromagnetism [3], and general

linear systems [4] as well as specifically to applying POD to groundwater modeling. Vermeulen

et al. [5] laid down the basic framework for applying POD to groundwater modeling on which

Siade et al. [1] improved by developing a generalized reduction methodology and extension to

nonlinear groundwater models [6]. Section 3 applies the methodology coupled with metaheuris-

tic algorithms to two test cases and Section 4 concludes with a discussion.

2. Background

In general, the design of an observation network is formulated as an optimization problem

whose optimality criterion is some measure of the useful information contained in a design’s

information matrix. The formulation usually lends itself to a combinatorial optimization prob-

lem that is non-linear and non-convex. In the context of groundwater modeling, much

research has attempted to overcome the challenges posed by these non-linear, non-convex,

combinatorial optimization problems. Heuristic searches such as Genetic Algorithms (GAs) or

Particle Swarm Optimization (PSO) searches have demonstrated their ability to search-out the

solution to large-scale optimization problems that are difficult or impossible to solve with tra-

ditional mathematical programming techniques. GAs have been applied effectively to experi-

mental design in groundwater modeling, for example in the areas of real-time optimization

[7], groundwater management [8], groundwater contaminant monitoring [9]; however

because these heuristic searches require computationally expensive model calls, many realistic

experimental design applications are intractable.
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2a. Reduced confined aquifer groundwater model

Recent research in the literature demonstrates methods to combat this computation complex-

ity with model reduction techniques, such as a Galerkin method, along with a POD, which can

be used to build a so-called reduced model which reduces the dimension of highly discretized

groundwater models. These reduced models may be constructed to be independent of varia-

tions in forcing [10] or model parameter [11]. The reduced model is derived by expressing the

governing equation for three-dimensional groundwater flow in a confined, anisotropic aquifer

with the following partial differential equation (PDE) [12]:

@
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with initial and boundary conditions

hðx; y; zÞ ¼ f1ðx; y; zÞ

hðx; y; z; tÞ ¼ f2ðx; y; z; tÞ; ðx; y; z; tÞ 2 ðG1Þ

qnðx; y; z; tÞ ¼ f3ðx; y; z; tÞ; ðx; y; z; tÞ 2 ðG2Þ

where h is the hydraulic head [L] (the height of the sub-surface water table above a references

elevation); Kx, Ky, and Kz are the hydraulic conductivities in the x, y, and z directions [L/T]

(the speed with which water moves through the medium); Ss is the specific storage [L-1] (the

volume of water that will be released due to a decrease in h); F is the specific volumetric pump-

ing rate [T-1] (the volume of water being extracted); qn is the specific discharge normal to the

flux boundary (Γ2) [T-1] (the volume of water flowing out of the model space); Γ1 is the fixed

head boundary (a Dirichlet boundary such as a lake which maintains h along it at a fixed level);

f1,f2 and f3 are known functions; L denotes the length unit (meters, feet, etc.) and T denotes the

time unit (days, hours, etc.). The governing PDE in Eq (1) is then discretized through finite

difference or finite element approximations in space and finite difference in time to produce a

set of linear equations for each time step:

AðkÞh ¼ b

where AðkÞ2RNn x Nn contains the model parameters and the initial boundary conditions,

b2RNncontains the forcing (groundwater pumping, recharge, etc.), Nn is the total number of

nodes used to discretize the aquifer, and k is a vector of hydraulic conductivities. In order to

accurately model most real-world groundwater aquifers which may cover hundreds of square

kilometers, many nodes are needed, thus Nn will be very large. This is important because Nn

defines the dimension of the groundwater model and when Nn is large, solving (1) is computa-

tionally expensive. POD may be used to reduce this model by constructing some matrix

P 2 RNnxnpsuch that the projection

PTAðkÞPr ¼ PTb

produces a reduced model with dimension np and state vector r 2 Rnp where h� Pr and is

much less computationally expensive than the full model to solve because np<< Nn. The

reduced model may then be coupled with a heuristic search to perform a combinatorial search

in a reduced space. This enables us to investigate how to best apply experimental design tech-

niques to groundwater problems that were previously intractable.

PLOS ONE Constructing robust and efficient experimental designs in groundwater modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0254620 August 5, 2021 4 / 27

https://doi.org/10.1371/journal.pone.0254620


2b. Experimental design and model

An experimental design is a sampling scheme that dictates how observations are collected for

the study. Designs may be model based or not and the study objective may be single or multi-

ple objectives. Typically objectives for a study are parameter estimation and prediction or

more specialized objective, such as extrapolation at low doses in toxicology studies. An optimal

design is a plan to attain the objective most efficiently. For example, if the objective is to esti-

mate model parameters, an optimal design provides the most accurate estimates at minimal

cost given a fixed amount of resources. Objectives are sometimes called design criterion, goal

or goodness of measure and they can vary considerably. For example, it can include goals like

minimizing some measure of error in the specification of the proposed model or minimizing

the maximal predictive variance across a pre-specified region of the design space.

Selecting an appropriate design criterion can be subjective but is an important decision.

Each optimal design has its pros and cons and some can suffer a noticeably drop in efficiency

under another criterion or are more robust to model misspecifications. In the context of

groundwater models, the choice of the sampling scheme is frequently in the choice of an opti-

mal observation network. This is tantamount to making best choices for the spatial and tempo-

ral distribution of measurements of groundwater head. It is possible to employ multi-objective

optimization, e.g. coupling a classic optimality criterion with a metric of the distance between

observations [13] and employ statistical methods such as those in Cook and Wong [14] and,

Clyde and Chaloner [15]. The former considered dual objective optimal design problems for

linear models and the latter extended the work to finding multiple-objective optimal designs

for nonlinear models. However, many times a single objective optimization is used, with A- or

D- optimality being the most common criterion with uses including parameter estimation for

groundwater modeling [16], column outflow [17], dispersion equations [18], and transport

equations [19]. It has also been used for model discrimination [20] and designing pump tests

[21] and tracer tests [22]. Both of these two criteria offer different benefits and drawbacks.

This reality highlights the fact that the “best” answer might be a compromise among the opti-

mality criteria rather than a single result notwithstanding that this would result in prohibitively

expensive to computation fora multi-objective design. The challenge, then, is to find the best-

feasible solution, i.e. one that is not prohibitively expensive to find. This suggests that it is help-

ful to have more design options. In the next section, common design criteria are reviewed and

two new and useful design criteria are proposed for research work in hydrology. The experi-

mental designs are model-based and a general linear model is used to approximate the solution

found by solving Eq (1). The simplified model is given by

s ¼ Jdθ; ð2Þ

where s 2 Rm is the state vector, θ 2 Rn is the vector of model parameters and Jd 2 Rm x n is the

sensitivity matrix (or the Jacobian matrix) defined by

Jd ¼
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Here si is the ith element in s and θj is the jth element in θ, and
@si
@yj

is the sensitivity of si with

respect to changes in θj. Eq (2) is a surrogate model for some system model–in this case, a

groundwater model. To set-up the experimental design problem the elements of Jd are formed
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from the groundwater model of which information is sought. Three different methods can be

used to calculate the sensitivities in Jd: (1) the parameter perturbation method, (2) the sensitiv-

ity equation method, or (3) the adjoint state method [23]. The parameter perturbation method

has the following general form:

@si
@yj
�
Dsi
Dyj
¼

siðθþ ΔθjÞ� siðθÞ
Dyj

ð4Þ

where Δθj is a small change of the jth parameter (called the perturbation of θj) [24]. There are

two general requirements for using Eq (4) to make accurate estimates of
@si
@yj

. First, θ must be

close to the true parameter values, and second, Δθj<< θj.

2c. Optimality criteria

When the objective or objectives of a study are clearly elicited, data should be judiciously col-

lected to attain the objective maximally. For example, if the interest is to estimate parameters

in a given model, data should be collected so that the parameters are estimated with maximum

precision at minimal cost. To this end, a given model is assumed and a stated objective is

expressed as a mathematical function of the design variables with the goal being to optimize

the objective function by choice of the settings of the design variables. In the context of the

given examples, the design variables are the locations of the wells to be constructed in the

region of interest. The objective function is mathematically formulated and is usually called

the design criterion. There are two general classes of information being sought: (1) Informa-

tion about the model parameters (θ) and (2) Information about the model’s predictions of the

state vector (s).
From classical experimental designs, there are several design criteria for estimating model

parameters or the response surface, wholly or partially. Table 1 lists 5 common optimality cri-

teria in the statistical literature [25].

Given a sampling strategy, or equivalently, a design ω, defined on a user-specified experi-

mental region, the matrix F in the table is given by

F ¼ Jd
TJd ð5Þ

where jd,i is the ith row in Jd, λi is the ith eigenvalue of F, ω is some sampling strategy, and Jd is

design matrix constructed from the design ω in (3). It is assumed that 1) a least-squares error

Table 1. Optimality criteria.

Criteria Information Class Objective Function ɸ(ω) Description

A θ max

ω

�
trace

�
F
�� Maximizes total information

E θ max

ω

min

li

Fð Þ

0

@

1

A
Maximizes unique information

D θ max

ω

�
det Fð Þ

� Maximizes uncorrelated information

G s min

ω

max

i
jd;i F

� 1ð Þ jd;i
� �T

� �
0

@

1

A
Minimizes the maximum prediction error

I s min

ω

mean

8i
jd;i F

� 1ð Þ jd;i
� �T

� �
0

@

1

A
Minimizes the average prediction error

https://doi.org/10.1371/journal.pone.0254620.t001
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criterion is used for parameter estimation and 2) the observation errors are uncorrelated and

have equal variance. The matrix F is the inverse of the covariance matrix of the estimated

parameters [26]. Among the listed design criteria, the third design criterion is most frequently

used in hydrology and in other disciplines as well. The resulting optimal design is called

D-optimal and it minimizes the volume of the confidence ellipsoid for the unknown model

parameters. A-optimality has a similar goal of estimating the model parameters as precisely as

possible; however in hydrology it is defined differently as the A-optimality used in the statisti-

cal literature. The latter finds design points that minimize the volume of the confidence ellip-

soid by minimizing the sum of the lengths of its principal axes. Both criteria may be viewed as

an approximation to one another.

The above criteria can be formulated in terms of the eigenvalues of the matrix F. For exam-

ple, it can be shown that D and A-optimality can be expressed as the product and average of all

the eigenvalues of F, respectively. Likewise, E- optimality finds a design that maximizes the

minimum eigenvalue of the information matrix. An E-optimal design may be used for estimat-

ing model parameters or for guaranteeing the highest power for conducting an omnibus test

whether explanatory variables are helpful in a linear regression model. Among all criteria in

Table 1, Pukelsheim [27] noted that the statistical justification for E-optimality seems the

weakest.

Unlike D-, A- and E-optimality, G- and I-optimality have not been applied widely to

groundwater modeling even though they have sound statistical justifications. G-optimal

designs estimate the entire response surface by minimizing the largest variance of the fitted

responses across the design space. Like E-optimality, the G-optimality is not a differentiable

function and so properties of these two optimal designs are more difficult to study mathemati-

cally. There seems to be no known algorithms that are guaranteed to converge to the G- and

E-optimal designs and generally specialized algorithms are used to find them even when the

model is linear, see for example Rodriguez, el at. [28] and Hernandez and Nachtsheim [29],

respectively. I-optimality is an averaging criterion and allows the fitted responses to be esti-

mated over different parts of the experimental region with user-selected emphasis. As an

example, suppose a nonlinear model has a mean response modeled by f(x,θ), the G-optimality

criterion is to find a design to minimize the maximum value of approximate value of the

asymptotic variance of fitted response at x, i.e. v(x,θ) = gT(x,θ)F-1g(x,θ), where g(x,θ) is the

derivative of f(x,θ) with respect to x and x ranges over the entire the experimental region. The

I-optimality criterion is formulated as
R
v(x, θ)μ(dx), where μ(dx) is the weighting measure

across the experimental region. It is thus a weighted average of the variance of the fitted

response across the experiment region with greater weights for the more interesting parts. If μ
(dx) is degenerate and puts all its mass at a single point, then the design problem is an interpo-

lation or extrapolation, depending whether the point is inside or outside the experimental

region. Further mathematical properties of these criteria and their interpretation can be found

in design monographs in statistics, such as, Berger and Wong [30], Pukelsheim [27] and Silvey

[31]. The first monograph covers introductory material and aimed at the applied researchers,

the second has a high level of mathematical contents and the third is at a somewhat intermedi-

ate level between the first two. Table 1 displays the discrete versions of G- and I-optimality,

where the range of i may be limited, i.e. the minimization can be carried-out over some subset

of s that is of particular interest or over all the elements in s. In Table 1, λi is the ith eigenvalue

of the matrix F and the outer optimization of the design ω is among all designs in the experi-

mental region.

Once a model is postulated and an appropriate optimality criterion is selected, the experi-

mental design problem may generally be formulated as a constrained optimization problem,
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i.e. find a design to optimize ϕ(ω) among all designs ω in the user-selected set Ω contains all

possible sampling locations that satisfy the imposed constraints. The constraints typically

include limitations on the size (number of observation wells), location, or distribution of ω,

along with possibly non-linear constraints that arise from financial or geographic consider-

ations mentioned above.

2d. Optimal efficiency

In the seminal work on experimental design, Kiefer [32] argued that a design that is optimal in

one measure can be close to optimal with respect to other measures even the two criteria can

differently motivated. For example, he showed that D and G-optimal designs are the same

when the model is homoscedastic even though the two criteria have very different and useful

goals. However, there are numerous examples in the statistical literature that show an optimal

design constructed under one criterion can perform poorly under another criterion. The prac-

tical implication is that one should implement a robust design that performs well under two or

more design criteria. There is virtually no design research in the field of groundwater research

that uses this concept of design efficiency in evaluating the worth of a design. This paper uses

two experimental design problems and shows that this proof of concept is also workable in

hydrology research.

More generally, the performance of a design is compared with another design under the

same or a different criterion. Let ϕ(ω) be the design criterion and suppose a design ω� that

minimizes its value among all designs. The ϕ-efficiency of a design ω is defined by the ratio

EϕðoÞ ¼ ϕðo�Þ=ϕðoÞ

Clearly, the efficiency of any design and any criterion, Eϕ, has a value between 0 and 1. If the

criterion is G-optimality and the ratio is 0.5, the practical implementation is that the design ω
has to be replicated twice to do as well as the optimum ω� in terms of the G-optimality crite-

rion. The ratio can also be used to compare the competitiveness of two optimality criteria. For

instance, to assess how the G-optimal design performs under the I-optimality criterion and

vice versa, (5) measures their relative efficiencies. This ratio can convey, for example, how

much the G-information is contained in an I-optimal design. Wong [33] provides further

examples on how efficiencies of a design change across models and optimality criteria, and

details how the above ratio needs to be amended for some criterion, like D-optimality, to

maintain the appeal of the practical interprtation.

2e. Evaluation challenges

In general, for small-scale problems, A-optimal designs may be found through linear program-

ming, and D-, E-, and I-optimal designs may be found using convex optimization tools. G-

optimal designs, however, are not linear or convex and are generally difficult to find even for

small-scale problems. In the context of experimental design problems for developing an opti-

mal observation well network for a groundwater model, solving such optimization problems is

even harder. Often these problems are non-convex, non-differentiable, and require a combina-

torial search to solve. For a realistically-scaled groundwater model, the combinatorial search

would be infeasible to solve with traditional mathematical programming techniques because

of the hundreds or thousands of nodes in the model.

Nature-inspired metaheuristic algorithms are essentially assumptions free and are increas-

ingly used to overcome all types of challenging optimization problems, including for the prob-

lems described herein [34]. They are fast and easy to implement. Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO) are examples of metaheuristic algorithms. GA utilizes
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breading and mutation to search a solution space [35] and PSO searches in the solution space

by deploying sets of particles that utilize position and velocities to update the best candidate

solution [36]. The algorithms come with different motivations and so, as expected, they have

their own unique advantages and disadvantages. Utilizing velocities allows PSOs to converge

quickly but at the cost of an increased likelihood of becoming trapped in a local optimum. On

the other hand, a GA sacrifices speed to take advantage of the randomness of its mutations to

attempt to avoid being trapped in local optima [37]. All metaheuristic algorithms have tuning

parameters and a common challenge working with these algorithms is to find appropriate val-

ues for them so that the algorithms perform well.

Metaheuristic algorithms generally do not have proofs of convergence and so they do not

guarantee convergence to the global optimum. They are stochastic components in these algo-

rithms and consequently, they will not necessarily produce the same design with repeated

runs. Nevertheless, it is widely reported that they frequently produce the optimum or solutions

close to the optimum, which explains their popularity [38, 39]. The researchers experience is

similar; GA, PSO and modern nature-inspired metaheuristic algorithms, such as swarm-based

techniques [40, 41] Imperialist Competitive Algorithm [42], Differential Evolutionary [43, 44]

and Competitive Swarm Optimizer [45] can also produce highly efficient designs for compli-

cated nonlinear models with or without random effects. They include finding high-dimen-

sional optimal supersaturated designs, more flexible adaptive two-stage Phase II designs [41]

and Bayesian optimal designs [42] using adaptive cubature for models with possibly multiple

interacting factors and some factors are discrete [43] or continuous [46] or random [45]. The

searches in the current research have the additional challenge that an inordinately large num-

ber of model calls are required, possibly rendering the search ineffective. However, past

research has demonstrated that this can be overcome through methods such as model reduc-

tion [10, 11].

From a computational standpoint, finding an A- or E-optimal design ω is relatively easier

than searching for D-, G-, or I-optimal designs. Computing the determinant (det(•)) of a gen-

eral matrix will be unstable for a nearly singular matrix (i.e. det(•)� 0). For this reason utiliz-

ing the determinant in an algorithm is discouraged [47]. A method that can be used to

stabilize the calculation of the determinant takes advantage of the fact that the determinant of

a matrix is the product of all the eigenvalues of that matrix. One could include a heuristic to

declare the determinant equal to zero if a small enough eigenvalue is observed.

An additional challenge that optimal observation network heuristic searches face when uti-

lizing D-optimality is that the objective function surface tends to be very flat, making it very

difficult to find a good search direction. A way to overcome this challenge is to artificially exag-

gerate the objective function surface features to assist the algorithm to find a good search direc-

tion. Since det(cA) = cn det(A) for any square matrix (A) and constant c, c is chosen such that

O(det(cF))� 1, where O(•) is the order of magnitude. This simple procedure ensures that

small fluctuations in the objective function surface are magnified so that they are not missed

by a heuristic search due to round-off error. Once the heuristic algorithm has searched-out the

optimal solution, cn may then be divided-out to obtain the true value of det(F).

To evaluate G- or I-optimality, there are potential numerical stability issues because F has

to be inverted. To this end, singular value decomposition is applied to Eq (5) obtaining

F� 1 ¼ J � 1

d ðJ
T
d Þ
� 1
¼ J � 1

d ðJ
� 1

d Þ
T
;

where Jd = USVT, U is a matrix containing the left singular vectors, ∑ is a diagonal matrix con-

taining the singular values (σi), and V is a matrix containing the right singular vectors.
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Consequently, J � 1

d ¼ VΣ � 1UT ,

jd;iðF
� 1Þðjd;iÞ

T
¼ jd;iðVΣ

� 1UTUΣ � 1VTÞðjd;iÞ
T

¼ ðjd;iVÞΣ
� 2ðjd;iVÞ

T

and the values of G- and I-optimality of a design ω can be evaluated stably.

3. Optimal efficiency study

With each of these elements in place, a course of action is constructed to evaluate the variation

in optimal efficiencies within a groundwater model. The flowchart (Fig 1) describes the steps

to carry out an optimal efficiency study. The optimality criterion should be chosen with the

scientific question in mind and the mathematical optimization problem is then carefully for-

mulated. Even though it may be time consuming, it is helpful to run one or more appropriately

selected metaheuristic algorithms to confirm optimality of the design before its sought robust-

ness properties are evaluated.

4. Test cases and results

To demonstrate the method study two synthetic, two-dimensional test cases are developed.

Though synthetic, these test cases fit two categories of model testing. The first test case is a

small-scale test case that is easily reproducible and carried out without the need for specialized

software or hardware. A model of this category allows for easy, independent analysis of the

methodology proposed. The second test case is a large-scale test case, representative of a

Fig 1. Steps to carry out an optimal efficiency study.

https://doi.org/10.1371/journal.pone.0254620.g001
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realistic model that would is encountered in groundwater modeling. This test case demon-

strates the real-world applicability of the methods being proposed.

4a. Small-scale two-dimensional test case

The first test case is synthetic, confined aquifer with dimensions of 25m x 35m and is divided

into three hydrologic zones (see Fig 2) with varying hydrologic properties. Table 1 (Table 2,

right?) shows the hydrologic properties of the aquifer. Note that an unusually large value of

specific storage is assumed to speed-up the simulation (i.e. decrease the time required to reach

steady state). Constant-head conditions are imposed on the north and south boundaries and

no-flow conditions apply to the east and west boundaries.

The hydraulic conductivities in this aquifer are assumed to be unknown, so the experimen-

tal design seeks to gain information on the hydraulic conductivities in each of the zones. The

aquifer is divided into nine observation/pumping zones (Fig 3). Zones 1–6 are set as observa-

tion zones and zones 7–9 are set as pumping zones. One set of constraints that is placed on the

experimental design is that at most one observation well may be placed in an observation zone

and no observation wells may be placed in a pumping zone.

Since Jd depends on hydraulic conductivity, a robust experimental design is performed for

the worst case scenario [11] assuming the hydraulic conductivity in each of the three hydro-

logic zones is in the range [0.1m/day, 20.0m/day]. The technique outlined by Ushijima and

Fig 2. Small-scale test case hydrologic zones.

https://doi.org/10.1371/journal.pone.0254620.g002
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Yeh [11] is followed and the experimental design is solved over the set formed by discretizing

the range of each zone into three levels, then forming all combinations of levels of zonal

hydraulic conductivity. In addition to the constraints on number and location of observation

wells with respect to the observation/pumping zones, the way the results vary with respect to

changes in the total number of observation wells is explored by constraining the total number

of observation wells, then varying that constraint over the range interval, [1,6]. In order to

observe how differences in heuristic searches may affect the results, for each of the optimality

criteria list in Table 1 both a GA [35] and a PSO [36] is used to find the robust one-observa-

tion-well network (one-well design) up through the six-observation-well network (six-well

Table 2. Small-scale test case hydrologic properties.

Zone Specific Storage (m-1) Depth (m)

1 1 20

2 1 15

3 1 22

https://doi.org/10.1371/journal.pone.0254620.t002

Fig 3. Small-scale test case experimental design setup.

https://doi.org/10.1371/journal.pone.0254620.g003
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design). Table 3 shows the tuning parameters used for the heuristic algorithms. The default

values provided by Wall and Pedersen were used for the two algorithms since our focus is not

on the performance of the algorithms themselves. The developers of the particular algorithms

note that although the algorithms are tuned for some circumstances, they are of course not

generally tuned and the algorithms performances could be improved by applying appropriate

parameter tuning techniques.

The results found by the algorithms are tied closely to the specific experimental design

setup, thus precluding absolute general statements, but some interesting observations may be

made.

First, as would be expected, the GA and PSO converged to similar but different results in

terms of both spatial distributions of the observation wells and objective function score. In

general the scores were within O(1%) of each other but for this test case, the PSO outper-

formed the GA (i.e. produced more optimal results) for smaller designs (i.e. those with smaller

observation well networks) but the GA outperformed the PSO for larger designs. From these

two sets of results, the best (based on objective function score) designs were compiled into one

set and are shown in Figs 4 and 5.

Table 3. Heuristic algorithm parameters.

GA Parameter PSO Parameters

Number of generations: 250 Swarm size: 148

Crossover probability: 0.9 Inertia weight: -0.046644

Mutation probability: 0.01 Agent’s weight: 2.882152

Population size: 30 Swarm weight = 1.857463

Number of populations: 10 Termination: convergence for not less than 2000

generationsReplacement percentage: 0.25

Elitism: TRUE

Number of offspring: 2

Migration percentage: 0.1

Migration number: 5

Termination: convergence for not less than 2000

generations

https://doi.org/10.1371/journal.pone.0254620.t003

Fig 4. A-, D-, and E-optimal designs.

https://doi.org/10.1371/journal.pone.0254620.g004
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In the rest of the paper, the designs found by the algorithm are referred to as a ϕ –design.

For example, an A-design is one found by the algorithm under the A-optimality criterion. The

rationale is that metaheuristic algorithms do not guarantee that they will find the optimal

design. However, repeated runs of the algorithm will frequently do so or find one with very

high efficiency, which likely will suffice in practice. For this reason, the terms ϕ-design and ϕ-

optimal design are sometimes used interchangeably.

Figs 4 and 5 show that the spatial distribution of observation well for the various

designs are consistent with what would be expected from each of the criteria. The A-

designs (i.e. the designs to which the GA and PSO converged over the A-solution space)

grouped their observation wells close to pumping wells regardless of whether or not the

information gained would be redundant; the D-designs tended to spread-out the observa-

tion wells the most, consistent with minimizing covariance; and the E- designs spread-out

the observation wells evenly, consistent with maximizing unique information. Though it

is harder to predict how I- and G-designs will behave individually but it may be guessed

that both designs would have similar spatial distribution as both designs seek to gain the

maximal of the same type of information. As may be seen in Figs 4 and 5, this assumption

holds for this test case.

After plotting-out the observation well locations, the efficiencies for these designs are

graphed in Figs 6–10.

In this test case, note that all the designs are fairly A-optimal (i.e. have high A-efficien-

cies) but for the most part, the A-designs did not have high non-criterion efficiencies. As

might be expected, the E- and D-designs are fairly optimal with respect to each other, as are

the G- and I-designs. Taking a higher-level view, the prediction-designs (G- and I-designs)

are more optimal with respect to the other prediction-design than they are to parameter-

designs (A-, E-, and D-optimality). The same is observed for the parameter-designs, as they

are more optimal with respect to the other parameter-designs than they are with respect to

the prediction-designs. While analyzing the results, the general weakness of heuristic

searches becomes apparent, as both the GA and PSO converge to sub-optimal solutions.

This becomes obvious when the non-criterion efficiencies are calculated and it is clear that

the GA-one-, three-, and four-well D-designs and the four-well G-design had E-efficiencies

greater than 100%, i.e. these designs are more E-optimal than the E-designs of the same size.

Fig 5. G- and I-optimal designs.

https://doi.org/10.1371/journal.pone.0254620.g005
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In addition, the five- and six-well G-designs have I-efficiencies greater than 100%. Thus it is

concluded that the GA became trapped in sub-optimal solutions while searching the E- and

I-solution spaces. Based on efficiency, it is also concluded that the PSO was trapped in a

sub-optimal solution while searching for the five-well I-design. Although neither the GA

nor the PSO are able to converge to the best observed location, both five-well designs were

close approximations of the best observed location such that the I-efficiencies of the five-

well G-design were 103% and 107%, respectively. Based on the “best” criterion, the GA-five-

well I-design was included in the best set (Fig 9).

Fig 6. A- efficiencies of various optimal designs for the first case study.

https://doi.org/10.1371/journal.pone.0254620.g006

Fig 7. D-efficiencies of various optimal designs for the first case study.

https://doi.org/10.1371/journal.pone.0254620.g007
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4b. Large-scale test case

To build the large-scale test case, the finite-element mesh is taken from a groundwater model

constructed for an aquifer in the Oristano plain in west-central Sardinia, Italy [48] and

Fig 8. E-efficiencies of various optimal designs for the first case study.

https://doi.org/10.1371/journal.pone.0254620.g008

Fig 9. G-efficiencies of various optimal designs for the first case study.

https://doi.org/10.1371/journal.pone.0254620.g009
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synthetic parameter zones and boundary conditions are applied to the model. The test case

aquifer is 11km x 9km and the finite-element mesh has 29,197 nodes, 57,888 elements, seven

parameter zones, 20 pumping wells, and is surrounded by constant head boundaries (Fig 11).

This is a highly discretized, realistic groundwater model.

This is the same test case used by Ushijima and Yeh [10] to test their robust experimental

design algorithm. Following their methodology, a reduced model is constructed that has a size

Fig 11. Large-scale test case hydrologic zones and pumping wells.

https://doi.org/10.1371/journal.pone.0254620.g011

Fig 10. I-efficiencies of various optimal designs for the first case study.

https://doi.org/10.1371/journal.pone.0254620.g010
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(np) of 103, and a dimension reduction of two orders of magnitude. After constructing the

reduced model, the aquifer is divided into 22 observation/pumping zones and for practicality,

overlay a course observation grid that has a discretization of 400m (Fig 12).

A feasible observation location is defined as a location that falls within an observation zone

(i.e. an observation/pumping zone without a pumping well) and on a node of the observation

grid. After imposing these constraints, it is found that there are 531 feasible observation loca-

tions. Then, seeking information on the hydraulic conductivity with the experimental design,

a robust experimental design following the methodology of Ushijima and Yeh [11] is con-

structed. Previous research by Sun and Yeh [49] demonstrated that for a robust experimental

design for hydraulic conductivity, it is sufficient to consider only the upper and lower bounds

of the hydraulic conductivity, so upper and lower bounds of 0.1m/day and 20m/day are

assumed for the hydraulic conductivity in all parameter zones and consider all possible combi-

nations of zonal hydraulic conductivity. As with the first test case, both a GA and a PSO are

used to search for the solution to the experimental design problem. In this case, one- through

12-well designs are developed for each of the optimality criterion listed Table 1. These two sets

of designs are combined to form a best set whose locations are shown in Figs 13–15.

Again, as with the small scale test case, generalized statements are hard to make since these

results are tied to this specific experimental design, but some interesting results are seen. The

general trends observed in the small-scale test case again appear in this realistically-scaled test

case; for example, with regards to the spatial distribution of the different designs the A-designs

tend to group the observation wells close to the area of the aquifer that has the highest concen-

tration of pumping wells, while the other criteria tend to spread the observation wells through-

out the aquifer.

Fig 12. Large-scale test case experimental design setup.

https://doi.org/10.1371/journal.pone.0254620.g012

PLOS ONE Constructing robust and efficient experimental designs in groundwater modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0254620 August 5, 2021 18 / 27

https://doi.org/10.1371/journal.pone.0254620.g012
https://doi.org/10.1371/journal.pone.0254620


In terms of efficiencies (graphed in Figs 16–20), the designs for the realistically-scaled

test case also behave similarly to the designs for the small test case. All the designs are fairly

A-optimal but the A-designs are not non-criterion-optimal. Though less obvious than in

the small-scale test case, the E- and D-designs are relatively optimal with respect to each

other. In general, the prediction-designs (G- and I-designs) are more optimal with respect

to each other than with respect to the parameter-designs (A-, D-, and E-designs), while sim-

ilarly the parameter-designs are more optimal with respect to each other than with respect

to the prediction-designs.

One interesting feature that, while present, is not as noticeable in the small-scale results is

that for the smaller designs, there are many instances that the D-, G-, and I-efficiencies are all

virtually equal to zero, indicating that these designs captured minimal information about these

criteria. This behavior makes sense, as it could be difficult for a small number of observation

wells to obtain sufficient information to characterize a large aquifer.

Fig 14. Five-, six-, seven-, and eight-well designs.

https://doi.org/10.1371/journal.pone.0254620.g014

Fig 13. One-, two-, three-, and four-well designs.

https://doi.org/10.1371/journal.pone.0254620.g013
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While analyzing the results, it is again observed that the PSO tends to outperform (with

respect to objective function score) the GA for the smaller designs (i.e. those with smaller

observation well networks) while the GA outperforms the PSO for the larger designs (see S1

File in S1 File, S1 Fig in S1 File., and S1 Table in S1 File for additional discussion). In addition,

both the GA and PSO again fail to search-out all the best-possible locations. For the GA, the

five-well I-design is outperformed (with respect to I-optimality) by the five-well G-design, and

the two- and seven-well E-designs are outperformed by the G- and D-designs of the same size,

respectively. Similarly, the PSO converges to a three-well G-design that has an I-efficiency

greater than 100%. For both algorithms and both test cases these algorithmic issues may be

alleviated by either tuning the algorithm parameters. As noted before, as heuristic algorithms

are not the focus of this study, this tuning was not carried out.

Fig 15. Nine-, ten-, eleven-, and twelve-well designs.

https://doi.org/10.1371/journal.pone.0254620.g015

Fig 16. A-efficiencies of various optimal designs for the second case study.

https://doi.org/10.1371/journal.pone.0254620.g016
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5. Discussion and conclusions

The A-, E-, D-, G-, and I-optimality criteria are analyzed and their applicability is demon-

strated to a groundwater experimental design problem. The analysis compares the properties

of the different optimality criteria, including what information each seeks, as well as challenges

that could be faced in implementing the criteria in an experimental design problem. The larg-

est challenge is the numerical instability encountered when computing the objective function

for some of the criteria, specifically D-, G-, and I-optimality. To overcome this difficulty, tech-

niques are suggested that could be used to stabilize the computation of these objective

Fig 17. D-efficiencies of various optimal designs for the second case study.

https://doi.org/10.1371/journal.pone.0254620.g017

Fig 18. E-efficiencies of various optimal designs for the second case study.

https://doi.org/10.1371/journal.pone.0254620.g018
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functions. It is shown how heuristic searches coupled with POD-reduced models could be

used to find various types of groundwater optimal experimental designs and how the concept

of optimal efficiency can be employed usefully to compare the relative performance of compet-

ing designs before implementation. Although not studied in this paper, another immediate

application of the concept of design efficiency is to ascertain robustness properties of a design

to model assumptions. This is of practical interest because the postulated model is often speci-

fied with some uncertainty and so it is desirable to implement a design that retains high effi-

ciencies under slightly changed models, which includes misspecifications in the nominal

parameters in the model. The results are specific to the test cases presented but some general

Fig 20. I-efficiencies of various optimal designs for the second case study.

https://doi.org/10.1371/journal.pone.0254620.g020

Fig 19. G-efficiencies of various optimal designs for the second case study.

https://doi.org/10.1371/journal.pone.0254620.g019
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conclusions can be drawn. One observation is that the optimal designs for the models are not

necessarily efficient under another criterion. This is especially true when the optimality criteria

are seeking the different types of information, i.e. information about model parameters versus

model predictions. For the test cases, among the criteria seeking information about model

parameters, it is observed that the D- and E-designs are fairly optimal with respect to each

other (i.e. had high efficiencies) and exhibit fairly high A-efficiencies; however the A-designs

produce very low D- and E-efficiencies. These results make sense in light of the fact that A-

designs seek the maximum amount of information, while D- and E-designs seek the highest

quality information (uncorrelated or unique data, respectively). The maximum amount of

information may be highly correlated or not unique, leading to low D- or E-efficiencies; how-

ever, high quality information should contain a large amount of information, leading to a high

A-efficiency. The test case results show that the optimal designs for model prediction (G and I)

do not have high model parameter efficiencies. This might be expected, as different model

parameter values could produce similar predictions. However, it was surprising to see that

optimal designs for model parameters (A, D, or E) did not necessarily produce high model

prediction efficiencies, as one might expect a model with parameter values close to the true val-

ues would produce good model predictions.

In this study, a reduced model was developed using POD and coupled with GA and PSO to

solve the combinatorial optimization problem for experimental design. One downside of heu-

ristic searches is that there is no guarantee that the distribution of the location wells found by

the algorithm is globally optimal; rather, it shows just that it is more optimal than all visited

locations. This leads to the risk that the search would converge to a sub-optimal solution, par-

ticularly when the solution space is difficult to search. In the context of experimental design,

the solution spaces could have large areas whose score is very close to the computer’s round-

off error threshold (particularly with the D- and E-optimality criteria), leading to difficulties

for the algorithms in determining search directions. In addition, these types of solution spaces

tend to have very spiky optimal regions, making it easy for the algorithm to bypass the global

optimum. An optimality criterion, such as G-optimality, may have a very discontinuous solu-

tion space that could lead to the algorithm getting stuck on one side or the other of a “cliff”. In

terms of heuristic searches, the A-optimality criterion presents the most searchable solution

space, as its formulation (a summation) lends itself to a relatively smooth and well-behaved

solution space. In this study, it is observed that there is evidence that both the GA and PSO got

stuck in sub-optimal solutions, as many GA- and PSO-designs had non-criterion efficiencies

greater than 100%–something that would be impossible had the searches converged to the

global optima. While this is of course undesirable, many times the sub-optimal solution

appeared to be a good estimate of the best-possible solution. For example, Fig 9 shows the I-

optimality of the five-well G-design is 102%. This inspires confidence that in general, a GA or

a PSO, will find at least good approximate solutions to the experimental design problems. A

second and perhaps more significant drawback of heuristic searches is the large number of

model calls required to achieve convergence of solution. POD model reduction effectively

combats this challenge by allowing the user to control the tradeoff of model accuracy vs.

model speed. Some increase in speed will always be achieved but depending on how much

uncertainty in result the user is willing to accept, more speed may be acquired at the cost of

more uncertainty.

The self-created computer code used in this study is provided in the below github reposi-

tory and it was used to generate all Figs to gain further insights on the choice of the design for

the design problem. The Figs showing the design points of the various optimal designs are

helpful because they tell us about the distribution of the design points and how their proximity

aquifer features (pumping wells, hydrologic zones, etc.) varies within the experimental region.

PLOS ONE Constructing robust and efficient experimental designs in groundwater modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0254620 August 5, 2021 23 / 27

https://doi.org/10.1371/journal.pone.0254620


The user may decide that the A and D-optimality are equally appealing but the geography and

hydrology properties of the experimental region may make it impracticable or expensive to

take observations at several design points required by the A-optimal design and not by the D-

optimal design. Likewise, the Figs showing how the efficiencies of an optimal design vary

under a change of criteria provide meaningful information to the user for choosing a robust

criterion for implementation. For example, consider results from our first case study. Fig 6

shows none of the other optimal designs has acceptable A-efficiencies regardless of the net-

work size; among the E, G, I and D-optimality criteria, the maximum A-efficiency attained

was by the D-optimal designs across different network sizes even though the A-efficiency

attained is only 60%. In contrast, Fig 7 suggests that for all practical purposes, E-optimal

designs are almost as efficient as the D-optimal designs for making inference on the model

parameters across different network sizes. This is followed by A-optimal designs. The other

two optimal designs, I and G-optimal designs performed best when the network size is 6 and

both attained a D-efficiency of about 55%; for the other network sizes, Fig 7 shows their D-effi-

ciencies are not more at most 40%. The same interpretation and implications can also similarly

be made for the second case study. Consequently, the Figs presented can assist the user in

selecting an optimality criterion and an optimal design using case studies before they are

implemented in practice.

While our results and interpretations apply to the specific case under consideration and do

not generalize, our codes can be amended to facilitate similar and meaningful evaluations for a

real application. The only modification that would be required is to replace the test case

reduced model with a reduced model of a real world case which may be constructed following

the techniques outlined in this paper. With very little modification, our codes are designed to

be modular with easy swapping out of optimization algorithm and the reduced model. By

swapping or optimizing the algorithm, the user may achieve quicker and/or more optimal

results (since metaheuristic algorithms do not guarantee optimal solutions). More importantly,

the reduced model of the test cases may be swapped for a reduced model of a real world case

so that the techniques applied in this study may be applied in a real-world situation.

In conclusion it is emphasized that it is imperative to have a clear understanding of what

information is being sought at the start of any wells allocation study so that an appropriate

optimality criterion can be chosen. The computation complexities faced by an experimental

design problem must also be understood and pro-active steps be taken. If heuristic searches

are used to overcome some of the computational complexities, their own computational com-

plexities also must be dealt with. In addition, the choice of an algorithm must be made wisely,

as not all searches perform equally well. Despite these challenges heuristic searches, particu-

larly when coupled with reduced models, may be the only option to solve realistically-scaled

experimental design problems. In the future, this study could be expanded to include other

heuristic searches such as randomized PSOs [37] or Cuckoo searches [50]. Alternate design

methods also could be explored, such as hybrid searches or methods that identify critical

design points within a groundwater model. Examples include the Greedy Algorithm proposed

by Boyce et al. [51] and the discrete empirical interpolation method (DEIM) [52], or extension

using a Bayesian formulation [53]. A recent example of a hybrid algorithm is Shi et al. [54],

who combined an advanced version of PSO called quantum PSO and Random Forest to pre-

dict disease progression of patients with idiopathic pulmonary fibrosis.
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