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Abstract

Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is
difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a
computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene
Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients
compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between
transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the
results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that
biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found
have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and
EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF,
E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result.
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Introduction

Parkinson disease (PD) is a common chronic neurodegenerative

disorder characterized by selective loss of dopaminergic neurons

from the substantia nigra and presence of Lewy bodies [1]. The

obvious symptoms are tremor at rest, muscle rigidity, bradykinesia

and other movement-related symptoms [2]. PD is difficult to

diagnose in its early stages, and when it was diagnosed, the only

treatment involved boosting inadequate levels of dopamine in the

brain, which did not eliminate all symptoms. Therefore, it is of

significantly importance to find molecular biomarkers of PD to

improve diagnosis accuracy, monitor disease progression and

develop therapeutic interventions.

The etiology of PD remains a puzzling mix of environmental

factors, genes and the aged brain [3,4]. Epidemiological research

indicates that exposure to pesticides elevates the risk of PD. By

contrast, caffeine and tobacco are associated with reduced risk [5].

In recent years, several causative genes of PD have been identified,

including a-synuclein (SNCA), parkin (PARK2), UCHL-1

(PARK5), PINK1 (PARK6), DJ-1 (PARK7), LRRK2 (PARK8)

and ATP13A2 (PARK9) [6,7]. These PD-linked molecules are

candidate biomarkers for PD [8]. Among them, the levels of DJ-1

and a-synuclein in human cerebrospinal fluid and blood between

PD patients and non-PD controls are the most frequently tested

biomarkers in previous studies; however, the results are conflicting

[9,10,11,12,13]. At this stage, neither DJ-1 nor a-synuclein alone

appears to be satisfactory as the biological biomarker for PD.

Besides, changed levels of Urinary 8-hydroxydeoxyguanosin

(Urinary 8-OHdGe) and proinflammatory cytokines such as

tumor necrosis factor a (TNF-a), interleukin 6 (IL-6) and

interleukin 1b (IL-1b) are also been studied as biomarkers for

PD [14,15]. Godau et al. recently showed that the levels of serum

insulin-like growth factor (IGF-2) were significantly higher in PD

patients than that in controls [16].

The purpose of this study is to identify molecular biomarkers for

PD initiation using a computational bioinformatics analysis of

gene expression. The availability and integration of high-

throughput gene expression data and the computational bioinfor-

matics analysis may shed new lights on molecular biomarker

identification of PD.

Materials and Methods

Affymetrix Microarray Data
The transcription profile of GSE 20333 was downloaded from a

public functional genomics data repository GEO (Gene Expres-

sion Omnibus) (http://www.ncbi.nlm.nih.gov/geo/). Affymetrix

HG-Focus array was used to determine a global gene expression

profile of clinically and neuropathologically confirmed cases of

sporadic Parkinson disease (n = 6) compared to controls (n = 6).

Postmortem human brains were obtained from moderately to

severe Parkinsonism individuals based on the Hoehn & Yahr

criteria. The average age for PD and control is 76.6 and 77.8

years, respectively. The average postmortem delay for PD and

control is 26.2 and 19.8 hours, respectively.
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Pathway Data
KEGG (Kyoto Encyclopedia of Genes and Genomes) is one of

the most popular pathway databases; it groups genes into

pathways of interacting genes and substrates, and contains specific

links between genes and substrates that interact directly [17,18].

The PATHWAY database records networks of molecular inter-

actions in the cells, and variants of them specific to particular

organisms (http://www.genome.jp/kegg/). We collected pathway

information from KEGG on June 30, 2011.

Regulatory Data
UCSC (http://genome.ucsc.edu) is an interactive website

offering access to genome sequence data from a variety of

vertebrate and invertebrate species and major model organisms,

integrated with a large collection of aligned annotations. We

downloaded the human transcription factors (TFs) and their target

chromosome region from UCSC. Then, we downloaded the

chromosome annotation information from NCBI and analyzed the

relationships between TFs and their target genes.

Differentially Coexpression Analysis
From the perspective of systems biology, functionally related

genes are frequently coexpressed across a set of samples

[19,20,21]. Differentially Coexpressed Genes and Links (DCGL)

is designed for identifying differentially coexpressed genes and

links from gene expression microarray data [22].

For GSE20333, we used the DCGL package [22,23] in R [24]

to identify differentially coexpressed genes (DCGs) and links in PD

patients compared to non-PD controls. We calculated the p-values

and adjusted the raw p-values into false discovery rate (FDR) using

the Benjamini-Hochberg method [25] to circumvent the multi-test

problem which might induce too much false positive results. The

genes only with FDR ,0.25 were selected as differentially

coexpressed genes.

Pathway Enrichment Analysis
In order to facilitate the functional annotation and analysis of

large lists of genes in our result, we inputted all the DCGs into

DAVID (The Database for Annotation, Visualization and

Integrated Discovery) for KEGG (Kyoto Encyclopedia of Genes

and Genomes) term enrichment analysis. The DAVID identifies

canonical pathways associated with a given list of genes by

calculating the hypergeometric test p-value for probability that

association between this set of genes and a canonical pathway [26].

We chose p-value ,0.05 as the cut-off criterion.

Measures of RIF
Regulatory impact factor (RIF) appears to be a robust and

valuable methodology to identify the regulators with the highest

evidence of contributing to differential expression in two biological

conditions. It is a metric given to each TF that combines the

change in coexpression between the TF and the DEGs (i.e. the

potential targets). The measures of RIF are computed as follows

[27]:

RIFi~
1

nde

Xj{nde

j{1

e1j|r1ij

� �2
{ e2j|r2ij

� �2
h i

ð1Þ

where nde is the number of DEGs; e1j and e2j represent the

expression value of the jth DEG in conditions 1 and 2,

respectively; r1ij and r2ij represent the coexpression correlation

between the ith TF and the jth DEG in conditions 1 and 2,

respectively.

Results

Identification of Differentially Coexpressed Genes in PD
We downloaded publicly available microarray dataset

GSE20333 from GEO database and applied DCGL package in

R to identify DCGs in 6 PD patients and 6 non-PD controls.

Among all genes tested, we found a total of 1004 DCGs with FDR

,0.25. Besides, a total of 459683 links were predicted among

these DCGs.

Enrichment of PD Associated Pathways
In order to functional annotation of the large lists of genes in our

result, we used the online biological classification tool DAVID and

observed significant enrichment of these genes in multiple KEGG

categories (Table 1). Pathway analysis revealed that the DCGs

were strongly associated with Ribosome (p = 2.21E-06), and

Neurotrophin signaling pathway (p = 1.45E-04). In addition,

Steroid biosynthesis, Spliceosome, and NOD-like receptor signal-

ing pathway showed evidence of association with the differentially

co-expressed genes (p,0.01).

Regulatory Network Construction
We matched the 1004 DCGs and the 459683 links to the known

regulatory data between transcription factors (TFs) and target

genes, and obtained a total of 745 pairs of relationships between

82 TFs and 601 target genes. By integrating the regulatory

relationships above, we built a regulatory network using Cytoscape

[28] (Figure 1).

Impact Analysis of Transcription Factor
The above network generates vast amounts of data. In order to

focus on the most meaningful information, we calculated the RIF

of each TF. The top 5 ranked TFs are HLF (hepatic leukemia

Table 1. The enriched KEGG pathways (p,0.05).

ID P-value Count Size Term

3010 2.21E-06 13 88 Ribosome

100 0.001496 4 17 Steroid biosynthesis

3040 0.001795 11 128 Spliceosome

4621 0.002702 7 62 NOD-like receptor signaling pathway

4610 0.018662 6 69 Complement and coagulation cascades

5215 0.019005 7 89 Prostate cancer

980 0.021211 6 71 Metabolism of xenobiotics by cytochrome P450

982 0.023986 6 73 Drug metabolism - cytochrome P450

140 0.027895 5 56 Steroid hormone biosynthesis

72 0.029307 2 9 Synthesis and degradation of ketone bodies

4612 0.031962 6 78 Antigen processing and presentation

620 0.033264 4 40 Pyruvate metabolism

5210 0.040861 5 62 Colorectal cancer

4962 0.044997 4 44 Vasopressin-regulated water reabsorption

30 0.04856 3 27 Pentose phosphate pathway

*ID represents the pathway ID in KEGG. Count represents the number of DCGs
enriched in each pathway. Size represents the total number of genes in each
pathway. Term represents the pathway name.
doi:10.1371/journal.pone.0052319.t001
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factor), NKX3-1 (NK3 homeobox 1), TAL1 (T cell acute

lymphocytic leukemia 1), RFX1 (regulatory factor X, 1) and

EGR3 (early growth response 3) (Table 2). The relationships

between these top 5 TFs and their target genes were shown in

Figure 2 and Table 3. From Table 3, we could find that HLF,

E2F1 (E2F transcription factor 1) and STAT4 (signal transducer

and activator of transcription 4) are both TFs and DCGs. Other

TFs, such as NKX3-1, TAL1, RFX1 and EGR3, are not DCGs,

but their target genes are.

Discussion

Molecular biomarkers are useful to improve diagnosis, to

predict clinical behavior and to demonstrate new therapeutic

efficacy. Since microarray can interrogate expression levels of

thousands of genes in human genome simultaneously, it has been

widely used in discovery of disease biomarkers [29,30,31]. In this

work, we have analysed gene expression data with computational

methods with the aim of uncovering genes that potentially

dysregulate in PD. We identified a total of 1004 DCGs in PD

patients compared to non-PD controls. After regulatory network

construction and regulatory impact factor analysis, we found that

Figure 1. Regulatory network construction among TFs and their target genes. The red nodes represent TFs and the green nodes represent
their target genes. Large nodes are differentially co-expressed genes and small nodes are non-DCGs.
doi:10.1371/journal.pone.0052319.g001
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the transcription factors HLF, E2F1, STAT4, NKX3-1, TAL1,

RFX1 and EGR3 may play important roles in PD initiation. Of

these, HLF, STAT4 and E2F1 were found have altered expression

levels in PD patients. The expression levels of other transcription

factors, NKX3-1, TAL1, RFX1 and EGR3, were not found

altered. However, they regulated differentially expressed genes.

HLF encodes a member of the proline and acidic-rihc protein

family, a subset of the bZIP transcription factors. Chromosomal

translocations fusing portions of this gene with the E2A gene cause

a subset of childhood B-lineage acute lymphoid leukemias [32].

While HLF has been linked to malignancies of the lymphoid

system, it is detected in the liver, kidney, and adult nervous system

by northern blotting [33]. Hitzler et al. found that HLF expression

increased markedly with synaptogenesis and was coincident with

barrel formation and suggested that HLF plays a role in the

function of differentiated neurons in the adult nervous system [34].

HLF appears as the most significant transcription factors related to

the differential expression of genes in PD patients.

E2F1 is a member of the E2F family of transcription factors.

The E2F family plays a crucial role in the control of cell cycle and

action of tumor suppressor proteins and is also a target of the

transforming proteins of small DNA tumor viruses. Several studies

have demonstrated that E2F1 contributes to neuronal damage and

Figure 2. The regulatory relationships between the top 5 TFs and their target genes. The red nodes represent transcription factors and the
green nodes represent their target genes.
doi:10.1371/journal.pone.0052319.g002

Table 2. The top 5 ranked TFs.

TF RIF Rank

HLF 121368.2 1

NKX3-1 112874.1 2

TAL1 109026.6 3

RFX1 103119.9 4

EGR3 102361.6 5

*TF represents the transcription factor. RIF represents regulatory impact factor
of TF. Rank represents the impact rank of TF.
doi:10.1371/journal.pone.0052319.t002
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death using in vitro models of neurodegeneration [35,36,37].

E2F1 immunoreactivity and/or protein levels were reported to

increase in neurons of patients with PD [38]. They showed that

pRb/E2F pathway is activated in dopaminergic neurons in PD,

but also demonstrated that activation of this pathway is

instrumental in the degeneration of these neurons in the

MPTP/MPP+ model of the disease [38]. In a recent study, Lu

and his colleagues showed that mutations in LRRK2 cause PD

through inhibiting the translational repression of the transcription

factors E2F1 and DP [39].

STAT4 is a transcription factor belonging to the signal

transducer and activator of transcription protein family [40].

STAT4 is involved in the signaling of interleukin-12 and

interferon -c, as well as interleukin-23 [41]. Though we found

STAT4 was differentially expressed in PD patients compared to

non-PD controls, the gene has no known role in PD pathogenesis

to data.

From Table 1, we could find that the most significant enriched

pathway is ribosome which is responsible for catalyzing the

formation of proteins from individual amino acids. Besides, some

pathways associated with protein synthesis were also enriched in

the result, such as ribosome, steroid biosynthesis, and spliceosome.

This result suggests that biological processes of protein turnover

were impaired in PD. Our result is in line with previous study

[42,43].

In conclusion, we have identified molecular biomarkers for PD

initiation using a computational bioinformatics analysis of gene

expression. A total of 1004 differentially coexpressed genes were

identified between PD patients and non-PD controls. Pathway

enrichment of these genes suggests that biological processes of

protein turnover were impaired in PD. After regulatory network

construction and regulatory impact factor analysis, we found that

the transcription factors HLF, E2F1, STAT4, NKX3-1, TAL1,

RFX1 and EGR3 may play important roles in PD initiation. Of

these, HLF, STAT4 and E2F1 were found have altered expression

levels in PD patients. Therefore, we suggested that HLF, E2F1 and

STAT4 may be used as biomarkers for PD; however, more work is

needed to validate our result.
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