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Abstract: Glycemic variability (GV) is an obstacle to effective blood glucose control and an au-
tonomous risk factor for diabetes complications. We, therefore, explored sample data of patients
with diabetes mellitus who maintained better amplitude of glycemic fluctuations and compared
their disease outcomes with groups having poor control. A retrospective study was conducted using
electronic data of patients having hemoglobin A1C (HbA1c) values with five recent time points from
Think Whole Person Healthcare (TWPH). The control variability grid analysis (CVGA) plot and coeffi-
cient of variability (CV) were used to identify and cluster glycemic fluctuation. We selected important
variables using LASSO. Chi-Square, Fisher’s exact test, Bonferroni chi-Square adjusted residual anal-
ysis, and multivariate Kruskal–Wallis tests were used to evaluate eventual disease outcomes. Patients
with very high CV were strongly associated (p < 0.05) with disorders of lipoprotein (p = 0.0014), fluid,
electrolyte, and acid–base balance (p = 0.0032), while those with low CV were statistically significant
for factors influencing health status such as screening for other disorders (p = 0.0137), long-term
(current) drug therapy (p = 0.0019), and screening for malignant neoplasms (p = 0.0072). Reducing
glycemic variability may balance alterations in electrolytes and reduce differences in lipid profiles,
which may assist in strategies for managing patients with diabetes mellitus.

Keywords: comorbidity; diabetes mellitus; glycemic variability; HbA1c

1. Background

The signs and severity of diabetes mellitus differ among people of different ethnic
group and countries, and there are currently no cures for the disease [1]. About two-thirds
of people with diabetes mellitus are of working age; in 2017, it was globally estimated that
about 425 million people are affected, and this number is predicted to rise to 629 million
in 2045 [2,3]. Amongst all countries surveyed, the United States had the highest number
of people (over 33,000,000) affected with diabetes mellitus [3] with 84 million people
considered pre-diabetic, and 10% of people in this category transition to type 2 diabetes
annually [4]. It is currently estimated that an average lifetime economic cost of about
$85,000 (or more with increasing age) is needed for clinically managing the disease and
its associated comorbidities [5]. Moreover, about 50% of all people with the disease
are undiagnosed, which further increases the cost and complexities of managing their
condition [6,7].

The clinical treatment goal in managing patients with diabetes mellitus is to prevent
the onset of associated comorbidities by relieving symptoms and controlling high and
low blood glucose episodes upon diagnosis [1]. Variability in the treatment of diabetes
mellitus may arise from the presence or absence of comorbidity, which could be further
impacted by self-treatment leading to severe consequences and a change in blood glucose
status [8]. Studies have given evidence that chronic high blood glucose is a major factor in
the pathogenesis of all diabetes-related comorbidities [9]. Apart from high and low blood
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glucose levels, glucose variability is another associated risk for complications in diabetes
mellitus, necessitating therapeutic approaches aimed at avoiding low glycemic episodes
and maintaining a balance in glucose levels [9]. Glucose variability (GV) is more studied
in type 1 diabetes(T1D) where it has been suggested to be higher than in type 2 diabetes
(T2D) [9].

It is pertinent that glucose levels are kept in a tight normal range in diabetic conditions
because although medication may lower glucose levels, lack of continuous monitoring
results in unacceptable daily variation in the low and high blood glucose range (<70 and
>180 mg/dL) respectively [9]. Mathematical measures such as standard deviation (SD),
percentage coefficient of variation (%CV), the mean amplitude of glycemic excursions
(MAGE), mean absolute glucose change (MAG), mean of daily differences (MODD), con-
tinuous overlapping net glycemic action (CONGA), low blood glucose index (LBGI), high
blood glucose index (HBGI), average daily risk range (ADRR), etc., have been proposed
for measuring intraday or interday (less commonly used) glycemic variability (GV) [9–13].
These metrics have been used to quantify dynamic variability in glucose concentration
profiles from continuous glucose monitoring (CGM) sensors [14].

The objective of the study was to find a group of patients with diabetes mellitus
from sample electronic health record (EHR) data to identify those that maintained better
amplitude of glycemic fluctuations and compare their disease outcomes, i.e., their associa-
tions with a particular diagnosis and/or comorbidity with groups having poor glycemic
control. The outcome of interest was to find differences in disease outcomes from clusters
of patients with varying glycemic control to see whether aggressive care and management
could result in better health outcomes and explain differences across the patient population.
The term “diabetic complication” used throughout this study was operationally defined as
any comorbidities resulting from long-term diabetes mellitus, while “risk for disease” was
defined as factors that increase the possibility for the onset of diabetes mellitus. Recom-
mendations from the study will inform and assist in better medical decisions and patient
care management.

This study utilized the control variability grid analysis (CVGA)–a statistical approach
to identify glycemic variability in electronic medical record of patients with diabetes
mellitus. The CVGA is a representation of the minimum/maximum blood glucose values
on a graph and is used to visually assess the quality of glycemic control in a population [15].
The CVGA is based on the variability grid analysis (VGA) method described by Breton
and Kovatchev [16]. One important function of the VGA is that it can be used to track
glycemic variability at the population level [16]. This study was aimed at finding a suitable
threshold to distinguish between stable and unstable glycemia from the electronic data of
a group of patients with diabetes mellitus, which is vital in comparing patient glycemic
fluctuations and performance across groups [15]. Next, the study applied LASSO (least
absolute shrinkage and selection operator) for selecting important diagnosis codes and their
influence on glucose control. LASSO is a penalized regression method that can be used
for estimating comorbidity outcomes because it selects and retains important variables,
providing interpretability and transparency within the regression framework [17,18]. To
evaluate disease outcomes by patient cohort, the differences in the presence or absence
of the selected diagnosis codes were analyzed using chi-Square and Fisher’s exact test,
while their association with each patient cohort was examined using Bonferroni chi-Square
adjusted residual analysis.

The overarching goal of the study was to (1) identify, cluster, and validate glycemic
fluctuations from data of patients with diabetes mellitus and (2) to evaluate eventual
disease outcome, identifying beneficial factors. The remaining sections of this paper will
highlight the purpose of the study and explain the methods used. Next, a brief overview of
the findings will be discussed and the paper will conclude with how subjects with diabetes
mellitus may benefit from future improvements and management strategies.
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2. Purpose of the Study

The degree of GV depends on an individual’s physiological parameters of glucose–
insulin kinetics, insulin secretion, and sensitivity [11]. It is essential to know the GV in
fasting plasma glucose within diabetes subjects and between different time points to be able
to appropriately prescribe medication, and keep glucose levels within an acceptable range
that reduces the risk of hypoglycemia and other associated complications. The quality of
glycemic control is accessed by the GV; however, GV estimate is rarely obtained, which
necessitates the need to quantify it [12]. Quantifying GV across a patient population will
allow for understanding differences in disease outcomes and for deciding appropriate
management strategies for patients with normal glycemic levels and those with erroneous
control, respectively.

Additionally, there is a need to identify patterns across clusters of patients with di-
abetes mellitus for an actionable decision-making process that informs further clinical
management strategies employed by healthcare professionals. Apart from indicating the
quality of glycemic control and antihyperglycemic therapies, GV has been suggested as an
independent risk factor for diabetes complications [19–21]. Findings from comparing GV
across and within groups and in association with diabetes complications and diagnosis
codes (ICD-10) will assist in evaluating disease outcomes and providing a possible expla-
nation for patient encounters that kept glycemic levels under tight control with reduced
amplitude. We are able to understand how comorbidities, contact with health facilities,
medical screening, and non-adherence influences blood glucose fluctuations by using ICD
codes and relating them to the GV profiles of patients with diabetes mellitus.

3. Methods

This retrospective study used EHR data with no identifiable information from Think
Whole Person Healthcare (TWPH)—a large independent primary care center located at
Omaha, United States, and serving over 40,000 patients [22]. The TWPH sees patients
with chronic conditions who need ongoing care coordination [22]. The medical records for
diabetic patients used in this study captured datapoints on diagnosis codes, demography
(age, gender, race), number of medications (antidiabetic drug class), and hemoglobin A1c
(HbA1c) levels. The patients who had type-2 diabetes were classified as diabetic based on
their HbA1c values.

To maintain research integrity and in full compliance with the Health Insurance
Portability and Accountability Act (HIPAA), the data were de-identified and the Office of
Regulatory Affairs (ORA) at the University of Nebraska Medical Center (UNMC) reviewed
the study proposal and determined that it does not constitute human subject research as
defined at 45CFR46.102. An Institutional Review Board (IRB) exempt was approved.

4. Eligibility Criteria

Only patients with diabetes mellitus (type 2) having glycated HbA1c values with five
time points were included from the electronic medical data of 40,000 patients. For patients
with more than five time points, only the most recent five records were included. HbA1c is
a blood test that tells the physician the average level of blood sugar present in a patient’s
blood over a period of three months [23]. It has the advantage of reflecting glycemic control
status [24] and may not reflect short-term changes in glucose control [1]. The rationale
for choosing the latest five time points of HbA1c values was to evaluate blood glucose
fluctuation for a sustained period to have an overview of glycemic control, since five time
points of HbA1c is estimated to a timeline of about 15 months.

A modified CVGA was used to calculate between time point variability of a patient’s
glucose profile and within-series variability of HbA1c. The CVGA was obtained by making
a plot on the X and Y coordinates, representing the minimum and maximum blood glucose
levels for each patient at a particular period of time [15,16]. The coefficient of variability
(CV) and amplitude of blood glucose fluctuation was visualized at the population level
using the variability grid analysis (VGA) plot [16,25]. Next, diagnosis codes were used
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to identify comorbidities and other explanations for patient encounters in line with the
outcome of interest. These data were included as comorbidity indicators according to the
International Classification of Diseases, Tenth Revision, and Clinical Modification (ICD-10-
CM). Comorbidities and diagnosis codes present in at least 10 percent of the sampled data
were included, while those with less than 10% prevalence were excluded leaving a total of
83 diagnosis codes which were further analyzed for feature selection using LASSO.

5. Statistical Analysis

GV was measured using the coefficient of variation (CV), which is an estimation of
the standard deviation (SD) of GV divided by the mean blood glucose value. It is an
easy-to-calculate and a reliable marker to assess the amplitude of GV [9]. The formula for
CV can be represented as shown below in Equation (1), where Rj is the actual blood glucose
value at time j and R is the blood glucose value [11].

CV =
SD

Mean
; SD =

√∑
(Rj− R)2

n− 1
(1)

Apart from accessing amplitude, studies have suggested that CV is an efficient marker
of GV when combined with other metrics of glycemic control [26]. CV can be used to
compare fluctuations between stable and unstable diabetes subjects by using its upper
limits in healthy individuals as a threshold for comparison between two groups to reveal
differences in subgroups exhibiting stable (%CV ≤maximum CV) and unstable (%CV ≥
maximum CV) glycemic fluctuations [9]. %CV was used to find a threshold to distinguish
between stable and unstable GV based on the recommendation that the relative blood glu-
cose deviation must be less than 20% [27,28] and suggestions that the ideal target for %CV
should be less than 33% [20]. In this study, %CV was calculated from the data of patients
with diabetes mellitus based on their SD and mean HbAIc values and this was used to
cluster patients into four cohorts from best to worst, namely: best CV ≤ 10%, intermediate
CV from 10% to 20%, high CV from 20% to 30%, very high CV > 30% according to CV
classification by Faria et al. [29]. The term “glucose control” was operationally defined
using the %CV range. Patients having diabetes mellitus with %CV range between 0 and
10% were operationally defined as having the best glucose control, those having %CV
greater than 10% but less than 20% were defined as having good control, while those within
the %CV range greater than 20% but less than 30% were defined as having intermediate-
to-poor glucose control, and those above 30% were classified as having poor/erroneous
glucose control.

Important diagnosis codes were selected using LASSO with %CV as the target vari-
able. LASSO is a penalized regression tool which adds a regularization term (sum of
absolute values of coefficient estimates) to the least squares loss function to estimate co-
efficients [17,18]. The penalty or amount of regularization added to the least squares loss
function is determined by multiplying the regularization term with lambda (λ)–a model
hyperparameter, as seen in Equations (2)–(4). Apart from being a penalized regression
method that models estimation, LASSO also simultaneously computes how the model
influences the outcome variable. In this study, LASSO was applied as a method for feature
selection; cross-validation using the default number of folds (10 folds) was implemented
to obtain the optimal lambda value having the minimal cross-validation mean standard
error [30].

λ
p
∑

j=1
|βj|

Penalty
(2)

n
∑

i=1

(
yi− βo−

p
∑

j=1
βjxij

)2

Ordinary least square estimates

(3)
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n
∑

i=1

(
yi− βo−

p
∑

j=1
βjxij

)2

+ λ
p
∑

j=1
|βj| = RSS + λ

p
∑

j=1
|βj|

LASSO

(4)

In our study, the beta coefficients selected by LASSO represented the independent
influencers of %CV and were used for comparing differences in disease outcomes across
patient cohorts using the Pearson chi-Square test for homogeneity as well as the Fisher’s
exact test given the non-parametric distribution of the data. The Pearson chi-Square test (χ2)
in Equation (2) is a non-parametric tool used to analyze differences between two factors
with nominal levels [31,32]. The Fisher exact test was applied where the assumptions
for chi-Square test were not met, i.e., where the expected value for the chi-Square test
statistics (χ2) were below 5 [31]. In the analysis, the factors (i.e., the dependent variable)
were the presence or absence of comorbidity as indicated by the diagnosis codes, while the
independent categorical variables were the four patient cohorts.

χ2 = ∑
i

∑
j

(
f ij− eij

eij

)2
(5)

A probability value less than 0.05 was used as the criteria for statistical significance in
all statistical analysis carried out. Although the Pearson chi-Square test tells whether there
is a significant difference in the presence or absence of comorbidity across the patient cohort,
it is important to know where this significance comes from. Therefore, the Bonferroni
chi-Square adjusted residual analysis—a post hoc test, was used to test for cell/cohort
significance after a statistically significant chi-Square test was obtained [32]. The test was
done to find associations of specific comorbidity and ICD code with each of the cohorts
for statistical inference. Multivariate Kruskal–Wallis (MKW) test was used to determine
whether differences in age and number of medications taken (continuous dependent
variables) vary by cohort level (categorical independent variable). All data were analyzed
using R software version 3.6.0 and IBM SPSS Statistics version 26.0.0 on Windows.

6. Results

A total of 3333 diabetes patient’s data consisting of 1795 (55.03%) males and 1467
(44.97%) females met the eligibility criteria; only 3262 records had information on diagnosis
codes. The data consisted of 2583 Whites, 129 African Americans, 27 Asians, 7 American
Indian or Alaska Native, other Pacific Islander 1, undefined 501, and unreported 14. The
baseline statistics reporting the patient’s %CV, age, number of medications, and antidiabetic
drug class in each cohort can be found in Table 1.

6.1. Visualizing Glycemic Control with VGA Plot

Figure 1 shows the glycemic control of all patients using the modified CVGA plot [16].
The modified CVGA plot is a minimum/maximum plot of the HbA1c values for a patient
observed over an arbitrary period. The plot is split into zones; the minimum HbA1c value
is plotted on the x-axis, while the maximum HbA1c value is plotted on the y-axis and the
difference represents the amplitude observed for a patient. Zone 1 is the area of optimal
glycemic control with points less than 5 showing deviations into hypoglycemia. Majority
of the patients within this zone have HbA1c values that were never above 7.89, where 6.5
is considered the strict target value for people with diabetes [33]. HbA1c recommended
guideline of a range between 7.5 and 6.5 in type 2 diabetes patients was reported by Pfeiffer
and Klein [34]. Zone 4 has a HbA1c range from 12.08 to 4.0 and shows suboptimal control
of blood glucose variations. Zone 5 represents departures into hyperglycemia while zone
7 represents an area of poor glucose control with the greatest amplitude (below 7.89 and
above 12.08 HbA1c values). Zone 8 represents an area of poor hyperglycemic control, while
Zone 9 is an area of excessive neutralization of hypoglycemia. The explanation of data
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points in each zone comes from the VGA model created by Breton and Kovatchev [16] and
discussed by Kovatchev and Cobelli [11].

Table 1. Antidiabetic drug class and baseline statistics.

Statistics of %CV, Age, and Medication

%CV Age No. of Medications

Number of Patients Valid 3262 3262 3262
Missing 0 0 0

Mean 6.90 74.36 0.69
Std. Error of Mean 0.09 0.2 0.022

Std. Deviation 5.07 13.052 1.271
Minimum 0.72 21 0
Maximum 44.51 107 9

Antidiabetic drug class for control of glucose for each cohort

Antidiabetic drug class

Cohort 1 Cohort 2 Cohort 3 Cohort 4

Metformin,
Insulins,

Sulfonylurea,
Insulins,

Thiazolidinediones(TZDs),
Dipeptidyl peptidase 4

(DPP IV) inhibitors,
Combination products,
glucagon-like peptide1
(GLP) agonist, DGLT V

inhibitors

Metformin,
Sulfonylurea,

Insulins,
GLP agonist, DPP IV inhibitors,

Combination Products, TZDs, DGLT V
inhibitors

Sulfonylurea,
GLP agonist,
Metformin,

DPP IV inhibitors

Combination
products,
Insulin,

Metformin

Figure 1. Modified variability grid analysis (VGA) plot: Zone 1: shows optimal control with points
<5 showing deviations into hypoglycemia, Zone 4: control of GV amplitude, Zone 5: departures
into hyperglycemia, Zone 7: poor glucose control, Zone 8: poor control of hyperglycemia, Zone 9:
excessive neutralization of hypoglycemia.
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6.2. Distinguishing between Stable and Unstable GV Using %CV

The threshold for stable and unstable GV was determined using %CV for blood
glucose fluctuations. The %CV have been described as a reliable marker for assessing the
amplitude of glycemic fluctuations, because it adjusts the mean glucose value [9]. Subjects
having %CV less than 10 were considered the most stable and were clustered as the best
cohort with low variability, while those with %CV greater than 30% were the most unstable
cohort with very high variability as seen in Figure 2 [27–29]. In our sample data, the
percentage of patients exhibiting low, intermediate, high, and very high %CVs were 80.5,
16.4, 2.49, and 0.51 in cohorts 1, 2, 3, and 4, respectively. In brief, the %CV was used as
a range to distinguish between stable and unstable GV irrespective of the subjects being
in the hypoglycemic or hyperglycemic range. Figure 2A shows that most patients had
good glycemic control (80.5%), while patients having poor/erroneous control were in the
minority and had the least data points (0.51%) as seen in Figure 2D.

Figure 2. Coefficient of variability (CV): four cohorts of minimum/maximum glycemic variability (GV) plot based on %CV
range. (A) Patients in the hypoglycemic and hyperglycemic range with low %CV, (B) intermediate %CV, (C) high %CV,
(D) very high %CV.

6.3. Selecting Important Diagnosis Codes and Influencers of %CV

Out of 83 diagnosis codes, LASSO regression (R2 = 0.1062483, λ = 0.1051296) with
%CV as the target variable selected 22 important influencers of GV including age and
number of medications along with their beta estimates (coefficient) while shrinking other
variables to zero as can be seen in Figures 3 and 4. The beta estimates describe the effects of
the respective diagnosis codes, age, and number of medications by antidiabetic drug class
on the %CV. Figure 3 shows the cross-validation plot and lambda with the best minimal
standard error. Among the LASSO-selected variables, 15 were comorbidity indicators,
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while 7 (31.8%) were ICD-10-CM diagnosis codes (Z00-Z99), which are associated with
factors influencing health status, contact with health services, and non-adherence to medical
treatment. The diagnosis codes, coefficients, and ICD-10 explanations are reported in
Table 2.

Figure 3. Least absolute shrinkage and selection operator (LASSO): cross-validation plot.

Figure 4. LASSO: a plot showing important variables selected and their coefficients with respect
to %CV.

LASSO regression showed that candidiasis (B37); other anemias (D64); other disorders
of fluid, electrolyte, acid–base balance (E87); edema, not elsewhere classified (R60); and
male erectile dysfunction (N52) were the most positive %CV influencers, while elevated
blood glucose (R73), disorders of lipoprotein (E78), and osteoarthritis (M15) were negative
influencers. Within our study population, a patient with R73 has a decrease of approxi-
mately −1.43 in %CV, while a patient with E87 has approximately 0.36 increase in %CV
with other variables kept constant. Encounters for general examination (Z00) and screening
for neoplasms (Z12) were the two main factors applicable to non-adherence to medical
treatment that were negatively associated with %CV. The coefficients for LASSO regression
showing the relative contribution of each variable to %CV can be found in Table 2.
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Table 2. Coefficients for diagnosis codes and International Classification of Disease (ICD)-10 explana-
tions.

Diagnostic Codes and ICD 10 Explanation Coefficients

Elevated Blood Glucose (R73) −1.426739684

Encounter for General Examination (Z00) −0.537150731

Disorders of Lipoprotein (E78) −0.478726309

Vitamin D Deficiency (E55) −0.451607901

Screening for Other Disorders (Z13) −0.428622075

Screening for Malignant Neoplasm (Z12) −0.423327639

Osteoarthritis (M15) −0.383649241

Disorders of Bone Density (M85) −0.259501973

Long-Term (current) Drug Therapy (Z91) −0.124074972

Age −0.063355789

Personal Risk, Not Classified Elsewhere (Z79) −0.001640932

Chronic Kidney Disease (N18) 0.074005080

Cellulitis and Acute Lymphangitis Diagnosis (L03) 0.181943299

No. of Medications by Antidiabetic Drug Class 0.189978300

Dermatophytosis (B35) 0.192212136

Other Anemias (D64) 0.227729951

Encounter for Suspected or Reported Diagnosis (Z01) 0.229726767

Male Erectile Dysfunction Diagnosis (N52) 0.336851533

Edema Not Elsewhere Classified (R60) 0.349784394

Other Disorders of Fluid, Electrolyte, Acid–base (E87) 0.361342201

Candidiasis (B37) 0.495985527

(Intercept) 12.46255677
Negative coefficients are highlighted.

6.4. Differences and Association of Comorbidity by Patient Cohort

From Table 3, elevated blood glucose (p = 0.0009); edema (p = 0.0206); male erectile
dysfunction (p = 0.0324); osteoarthritis (p = 0.0051); vitamin D deficiency (p = 0.0003);
disorders of lipoprotein (p = 0.0019); bone density (p = 0.0031); fluid, electrolyte, acid–base
balance (p = 0.0009) as well as cellulitis and acute lymphangitis (p = 0.0051) significantly
varied across patient cohorts, which indicates a difference in their association with %CV.
The presence of other variables (Z79, Z01, Z51, N18, B35, D64) were not significantly
different across the four patient cohorts in this study population (p > 0.05).

In the Bonferroni chi-square adjusted residual analysis as seen in Appendix A, the
presence of E78 (p = 0.0014) was only significantly associated with cohort 4. E87 was
statistically significant in cohort 4 (0.0322) and cohort 2 (0.0360) compared to cohort 1
and 3. The association of disorders of osteoarthritis (M15), bone density (M85), and male
erectile dysfunction (N52) were statistically significant in cohort 1 (0.0054, 0.0109, and
0.3055, respectively) compared to the other cohorts. The association of cellulitis and acute
lymphangitis (L03) (p = 0.0047), edema (R60) (p = 0.0355), and candidiasis (B37) (p = 0.0005)
were significant in cohort 1 and cohort 2 (p = 0.0036, 0.0157, and 0.0036), respectively, while
vitamin D deficiency (E55) was only significantly associated with cohort 1 (p = 0.0017) and
cohort 3 (p = 0.0313).
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Table 3. Chi-Square and Fisher’s exact test for cohort differences in the presence of comorbidity.

Diagnosis X2 df Asymptotic Significance
(Two Sided)

Exact Significance
(Two Sided) ICD 10 Explanation

Z12 11.557 3 0.0090 Screening for malignant neoplasm
Z91 16.221 3 0.0010 Personal risk, not classified elsewhere
R60 9.7755 3 0.0205 Edema, not elsewhere classified
Z00 3 9.29 × 10−6 Encounter for general examination
R73 3 0.0009 Elevated blood glucose
E78 3 0.0019 Disorders of lipoprotein
M15 3 0.0052 Osteoarthritis
E55 3 0.0003 Vitamin D deficiency
Z13 3 0.0108 Screening for other disorders
M85 3 0.0030 Disorders of bone density
L03 3 0.0050 Cellulitis and acute lymphangitis
N52 3 0.0324 Male erectile dysfunction

E87 3 0.0009 Other disorders of fluid, electrolyte,
acid–base

Z79 5.0793 3 0.1661 Long term (current) drug therapy

Z01 2.8959 3 0.4080 Encounter for suspected or reported
diagnosis

Z51 3 0.5930 Encounter for other outer, medical
care

N18 3 0.5002 Chronic kidney disease
B35 3 0.2162 Dermatophytosis
D64 3 0.2373 Other anemias

Significant p-values are highlighted.

The association of factors (Z00–Z99) influencing health status, contact with health
services, and non-adherence to medical treatment varied significantly by cohort level.
Screening for other disorders (Z13) was associated with only cohort 1 (p = 0.0137), while
screening for personal risk not classified elsewhere (Z91) was associated with cohort 3
(p = 0.0478) and cohort 1 (p = 0.0019) but not cohort 4; screening for neoplasms (Z12) was
only associated with cohort 1 (p = 0.0072) and cohort 2 (p = 0.0304) as seen in Appendix A.

Given the data also had continuous dependent variables (age and number of medi-
cation), the multivariate Kruskal–Wallis test was used to determine whether distribution
of these diagnosis variables were statistically significant (p < 0.05) across the patient co-
hort. The pairwise comparison of %CV and age in cohort 3 and cohort 1 (p < 0.000) as
well as cohort 2 and cohort 1 (p < 0.000) were statistically significant as seen in Table 4;
while the pairwise comparison of %CV and number of medications was only statistically
significant in cohort 1–cohort 2 (p < 0.000). The mean age for patients in cohort 1, 2, and 3
were 69.64, 66.64, and 62.36, respectively, indicating that patients with lower %CV were
slightly older within this population. Overall, our data were mainly comprised of older
patients and on average, patients in cohort 4 took more combination of drugs, as the
mean number of medications taken by patients from cohort 1 to 4 were 0.646, 0.886, 0.778,
and 1.188, respectively.
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Table 4. Pairwise comparisons of %CV, number of medications, and age.

Pairwise Comparisons of %CV and Age

Sample 1–Sample
2 Test Statistic Std. Error Std. Test Statistic Significance Adjusted

Significance

cohort 3–cohort 4 −57.841 257.569 −0.225 0.8220 1.0000

cohort 3–cohort 2 280.031 112.346 2.493 0.0130 0.0760

cohort 3–cohort 1 537.612 106.203 5.062 0.0000 0.0000

cohort 4–cohort 2 222.190 238.909 0.930 0.3520 1.0000

cohort 4–cohort 1 479.771 236.082 2.032 0.0420 0.2530

cohort 2–cohort 1 257.581 44.887 5.738 0.0000 0.0000

Pairwise Comparisons of %CV and Number of Medications

cohort 1–cohort 3 −127.472 88.261 −1.444 0.1490 0.8920

cohort 1–cohort 2 −152.083 37.304 −4.077 0.0000 0.0000

cohort 1–cohort 4 −224.917 196.198 −1.146 0.2520 1.0000

cohort 3–cohort 2 24.611 93.366 0.264 0.7920 1.0000

cohort 3–cohort 4 −97.445 214.055 −0.455 0.6490 1.0000

cohort 2–cohort 4 −72.833 198.547 −0.367 0.7140 1.0000

Significant p-values are highlighted.

7. Discussion

The frequency of hypoglycemia and the mean blood glucose driven by degree and
period of hyperglycemia, are two parameters that govern the optimization and stability of
diabetes control; and GV is a barrier to attaining this stability [35]. In the modified VGA plot
in Figure 1, the zone with optimal glucose control (zone 1) showed tight normal stability
with only minor deviations into hypoglycemia, while the zone with erroneous blood
glucose control (Zone 7) had the highest instability with frequent episodes of hypoglycemia
and hyperglycemia. This instability represents the amplitude of glycemic control, which is
a standard assessment of GV [11]. Although Dai et al. [36] reported that HbA1c variability
is not a robust predictor of poor glycemic control in the older person, it is vital to note that
departures toward hypoglycemia and hyperglycemia having the same amplitude vary in
order of importance and severity [11]. A unit rise in HbA1c values toward hyperglycemia
does not equal a unit decline toward hypoglycemia, which is more clinically important for
optimizing glucose control. Moreover, the risk for hyperglycemia is clinically independent
from that of hypoglycemia [25]. Apart from amplitude, the timing of glycemic fluctuations
is also considered clinically relevant (e.g., in closed-loop control of diabetes) as GV has
been suggested as a process in time [11]. This study did not consider the speed of change
from one state to another due to the limitation of the data. However, this could be possible
on data with real-time reaction to glucose fluctuations and GV estimates [11].

A high coefficient of variability is a measure of GV that may cause harmful effects. GV
is independent of hypoglycemia but associated with poor glycemic control and heightened
severity of diabetes-related comorbidities [37,38]. GV has been associated with increased
protein kinase C-β (PKC) which promotes oxidative stress [37]; and atypical PKC conserved
in the liver has been reported to promote lipid and metabolic abnormalities in people with
type 2 diabetes [39]. From our study, patients with very high %CV were significantly
associated with disorders of lipoprotein and disorders of fluid, electrolyte, and acid–base
balance. Patients having diabetes mellitus with erroneous glycemic control are susceptible
to dyslipidemia [40], and it has been reported that the risk of contracting several diseases
among diabetics is affected by differences in lipid and electrolyte profiles [41]. Although
the risk for major cardiovascular outcome (MACE) was not directly significant in the
study, a reduction in cholesterol has been strongly touted as a means of lowering the
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risk for MACE, even in patients with unusual lipid profiles [40]. Lipid changes during
8 weeks of low caloric diet in a trial study by Valsesia et al. [42] have been used to predict
insulin-resistant patients. Apart from that, it has been reported that metformin is associated
with atherogenic lipid markers such as high- and low-density lipoprotein cholesterol, total
cholesterol, etc., and is suggested to be more effective in persons with reduced atherogenic
lipid markers [43]. It is however unclear how effective metformin was in cohort 4, given
that it was one of the few antidiabetic medications taken by the patients in that cohort;
however, data on lipid profiles were not readily available.

A unique strength of this study is the comparison and link between glucose fluctua-
tions and disease outcomes. Analysis showed that patients who had their personal risks
classified and were screened for factors influencing health status, including those that have
had contact with healthcare services, were more likely to have adequate glycemic control.
This may be due to a corrective non-adherence to medical treatment and management
regimen, even though the patients may be around the hyperglycemic range and have other
existing comorbidities. The findings were in agreement with the study on HbA1c variability
and the risk of poor glycemic control among older adults by Dai et al. [36], who reported
that frequent specialist visits may indicate the presence of complex multi-morbidity, but
reduces the risk of poor glycemic control due to intensive monitoring. Our study showed
that patients who had the lowest %CV, some of whom were in the hyperglycemic range,
were significantly associated with factors influencing health status such as screening and
classification of personal risk and contact with health services (Z00–Z99) despite being
significantly associated with disorders of osteoarthritis (M15), bone density (M85), male
erectile dysfunction (N52), edema (R60), candidiasis (B37), vitamin D deficiency (E55), cel-
lulitis and acute lymphangitis (L03). While the duration of compliance to medical regimen
is unknown, patients with increasing %CV within our population data were less likely to
be classified, and therefore it was difficult to decipher whether they followed the prescribed
course of treatment. Proper screening, classification of personal risk not otherwise known,
and engagement with healthcare services will help in patient compliance with prescribed
treatment and management strategies that will probably keep additional complications
and diabetes-associated inflammation in check [44].

Factors influencing health status and non-adherence to treatment were negative in-
fluencers of %CV as seen in our result reported in Table 2 and Figure 4. Adopting the
penalized regression, a patient associated with Z00 and Z12 diagnosis codes within our
sampled population for instance has an approximate −0.537 and −0.423 respective de-
crease in %CV with other variables kept constant. In other words, patients positively
associated with diagnosis codes influencing health status had a higher likelihood of having
low glycemic fluctuation. Healthcare providers may benefit from adopting this method for
further classifying diabetes patients and studying them to reveal patterns that may assist
in optimizing care and management strategies for the population they serve.

Additional factors associated with glucose fluctuations were age and number of
antidiabetic medications taken. Patients who had very high/erroneous glycemic fluctuation
took on average more combinations of drugs. Polypharmacy, which is the use of multiple
medications, has been reported to be more prevalent in older adults with diabetes [45]
and is associated with adverse drug events, non-adherence to treatment, and drug–disease
interaction [45,46]. Apart from polypharmacy, age-related changes and diabetes-related
diseases increase the difficulty of managing older persons with diabetes [7,45]. From our
study, patients in cohort 1 had the highest mean age (µ = 69.64) and on average took
less combinations of drugs (µ = 0.646), while those in cohort 4 took on average more
drugs (µ = 1.188) and had a decreased mean age (µ = 62.36) compared to the other cohorts.
While the number of antidiabetic medications taken was a positive influencer of glycemic
fluctuation in our study, age was negatively correlated with %CV. Furthermore, despite the
fact that Kasim et al. [47] reported that old age is associated with diabetes, our results with
respect to our sample data indicated otherwise, possibly reflecting the synopsis by Kalyani
and Egan [48], who posited that although older persons are vulnerable to alterations in
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glucose metabolism and diabetes-related complications, abnormal glucose metabolism
is not an essential component of aging. This probably explains the negative correlation
between age and stable glycemic fluctuations.

Overall, it is important to establish that while race was not an important variable
with respect to %CV from our analysis, over 79% of our data sample were Whites, which
could potentially limit conclusions for non-White patients due to the respective small
sample size. Furthermore, it is vital to keep in mind that, while HbA1c is one of the few
measures of glycemic control and an influencer of diabetes-related outcomes, there are
instances where its use may not be appropriate. For example, HbA1c has been found to
vary significantly during different seasons, being lower in warmer months and higher in
colder temperatures [49]. It has also been reported to be unreliable in people with variant
homozygous hemoglobin such as HbC or HbS than in people with heterozygous variants
HbAC or HbAS [24]. It was reported to be falsely elevated in transfused patients due to
the amount of glucose composition of the storage vector, in patients with lead poisoning,
in people using opioid and salicylate, and in alcoholics [50]. It has also been found to be
lowered with the treatment of hemolytic anemia, end-stage renal disease, splenomegaly,
and in conditions that shorten the life cycle of red blood cells and reduce erythrocyte
exposure to glucose [51,52]. Therefore, healthcare practitioners should consider alternative
measures to validate HbA1c test and to question results in these instances.

Generally, a 1% change in HbA1c values corresponds approximately with a 30 mg/dL
change in mean glucose levels; so, a more recent change in glucose levels will have a greater
influence on HbA1c values than preceding changes, because HbA1c measures the weighted
mean of glycemic levels over a three-month period and may not be suitable for estimating
per diem fluctuations [50]. The implication is that a patient might have an overall normal
glycemic control from HbA1c test even though there could have been preceding changes
in glucose levels that may not have been captured which represents another limitation. It
is important to note that every index of glycemic control has a limitation; however, the
advantage of the HbA1c test is that it is a convenient and good metric for estimating GV
and does not require fasting or timed samples. In general, while patients with diabetes
mellitus within the four cohorts of our study were linked to a particular diagnosis, this
study does not imply a causal relationship between them but rather was carried out to
investigate differences in outcomes within the context of a sampled population.

8. Conclusions

This study showed that GV is an obstacle to effective blood glucose stability and that
the link between glucose fluctuations and risk for disease outcome is minimized with
proper screening and engagement with healthcare services for classification of personal
risk not otherwise known, as patients with this practice have a higher likelihood of having
lower amplitude of glycemic fluctuation. Healthcare providers may benefit from adopting
a penalized regression method for further classifying diabetes patients and studying them
to reveal patterns in a bid to optimize care and reduce the risk for future disease outcomes.

While age was an important factor in understanding stable glycemic fluctuation, it
was not an essential positive influencer for controlling it. Reducing glycemic variability
could lower lipid profiles and reduce differences in electrolyte alterations, which may assist
in intervention strategies for managing patients with diabetes mellitus. Future prospective
and randomized controlled studies are needed to investigate and validate treatments and
practices targeting a reduction in glycemic variability.
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Appendix A

Table A1. Bonferroni chi-square adjusted residual analysis.

Crosstab ICD-10
Explanations

ICD-10 Cohort 1 Cohort 2 Cohort 3 Cohort 4 Total Disorders of
Lipoprotein

E78 Absent Count 239 64 10 6 317

Expected Count 256.3 51.3 7.9 1.6 317.0

% within E78 75.4% 19.6% 3.2% 1.9% 100.0%

Adjusted Residual −2.6 1.7 0.8 3.8

p-value 0.0762 0.6901 0.9100 0.0014

Present Count 2398 466 71 10 2945

Expected Count 2380.7 476.7 73.1 14.4 2945.0

% within E78 81.4% 15.8% 2.4% 0.3% 100.0%

Adjusted Residual 2.6 −1.7 −0.8 −3.8

Adj. p-value 0.0762 0.6901 0.9100 0.0014

M15 Absent Count 2342 491 77 16 2927

Expected Count 2366.2 473.8 72.7 14.4 2927.0 Osteoarthritis

% within M15 80.0% 16.8% 2.6% 0.5% 100.0%

Adjusted Residual −3.4 2.7 1.6 1.4

Adj. p-value 0.0054 0.0559 0.8756 1

Present Count 294 37 4 0 335

Expected Count 270.8 54.2 8.3 1.6 335.0

% within M15 87.8% 11.0% 1.2% 0.0% 100.0%

Adjusted Residual 3.4 −2.7 −1.6 −1.4

Adj. p-value 0.0054 0.0559 0.8756 1

E55 Absent Count 2118 452 76 14 2660 Vitamin D
difficiency

Expected Count 2150.3 430.6 66.1 13.0 2660.0

% within E55 79.6% 17.0% 2.9% 0.5% 100.0%

Adjusted Residual −3.7 2.6 2.9 0.6

Adj. p-value 0.0017 0.0688 0.0313 1
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Table A1. Cont.

Crosstab ICD-10
Explanations

ICD-10 Cohort 1 Cohort 2 Cohort 3 Cohort 4 Total Disorders of
Lipoprotein

Present Count 519 76 5 2 602

Expected Count 486.7 97.4 14.9 3.0 602.0

% within E55 86.2% 12.6% 0.8% 0.3% 100.0%

Adjusted Residual 3.7 −2.6 −2.9 −0.6

Adj. p-value 0.0017 0.0688 0.0313 1

Z13 Absent Count 1828 395 65 13 2301 Screening for
other disorders

Expected Count 1860.1 372.4 57.1 11.3 2301.0

% within Z13 79.4% 17.2% 2.8% 0.6% 100.0%

Adjusted Residual −3.1 2.4 1.9 0.9

Adj. p-value 0.0137 0.1496 0.4183 1

Present Count 809 133 16 3 961

Expected Count 776.9 155.6 23.9 4.7 961.0

% within Z13 84.2% 13.8% 1.7% 0.3% 100.0%

Adjusted Residual 3.1 −2.4 −1.9 −0.9

Adj. p-value 0.0137 0.1496 0.4183 1

M85 Absent Count 2346 488 79 16 2929 Disorders of
bone density

Expected Count 2367.8 474.1 72.7 14.4 2929.0

% within M85 80.1% 16.7% 2.7% 0.5% 100.0%

Adjusted Residual −3.2 2.2 2.3 1.4

P-value 0.0109 0.2326 0.1586 1

Present Count 291 40 2 0 333

Expected Count 269.2 53.9 8.3 1.6 333.0

% within M85 87.4% 12.0% 0.6% 0.0% 100.0%

Adjusted Residual 3.2 −2.2 −2.3 −1.4

Adj. p-value 0.0109 0.2326 0.1586 1

Z91 Absent Count 1592 354 62 11 2019
Personal risk,
not classified

elsewhere

Expected Count 1632.2 326.8 50.1 9.9 2019.0

% within Z91 78.9% 17.5% 3.1% 0.5% 100.0%

Adjusted Residual −3.7 2.7 2.7 0.6

Adj. p-value 0.0019 0.0621 0.0478 1

Present Count 1045 174 19 5 1243

Expected Count 1004.8 201.2 30.9 6.1 1243.0

% within Z91 84.1% 14.0% 1.5% 0.4% 100.0%

Adjusted Residual 3.7 −2.7 −2.7 −0.6

Adj. p-value 0.0019 0.0621 0.0478 1
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Table A1. Cont.

Crosstab ICD-10
Explanations

ICD-10 Cohort 1 Cohort 2 Cohort 3 Cohort 4 Total Disorders of
Lipoprotein

L03 Absent Count 2263 421 67 14 2765
Cellulitis and

acute
lymphangitis

Expected Count 2235.2 447.6 68.7 13.6 2765.0

% within L03 81.8% 15.2% 2.4% 0.5% 100.0%

Adjusted Residual 3.4 −3.5 −0.5 0.3

Adj. p-value 0.0047 0.0036 0.4828 0.6081

Present Count 374 107 14 2 497

Expected Count 401.8 80.4 12.3 2.4 497.0

% within L03 75.3% 21.5% 2.8% 0.4% 100.0%

Adjusted Residual −3.4 3.5 0.5 −0.3

Adj. p-value 0.0047 0.0036 0.4828 0.6081

N52 Absent Count 2311 444 67 12 2834 Male erectile
dysfunction

Expected Count 2291.0 458.7 70.4 13.9 2834.0

% within N52 81.5% 15.7% 2.4% 0.4% 100.0%

Adjusted Residual 2.6 −2.1 −1.1 −1.4

Adj. p-value 0.0674 0.3055 0.2088 0.1266

Present Count 326 84 14 4 428

Expected Count 346.0 69.3 10.6 2.1 428.0

% within N52 76.2% 19.6% 3.3% 0.9% 100.0%

Adjusted Residual −2.6 2.1 1.1 1.4

Adj. p-value 0.0674 0.3055 0.2088 0.1266

E87 Absent Count 2309 438 74 10 2831

Other disorders
of fluid,

electrolyte,
acid−base

Expected Count 2288.6 458.2 70.3 13.9 2831.0

% within E87 81.6% 15.5% 2.6% 0.4% 100.0%

Adjusted Residual 2.7 −2.8 1.2 −2.9

Adj. p-value 0.0584 0.0360 0.1749 0.0322

Present Count 328 90 7 6 431

Expected Count 348.4 69.8 10.7 2.1 431.0

% within E87 76.1% 20.9% 1.6% 1.4% 100.0%

Adjusted Residual −2.7 2.8 −1.2 2.9

Adj. p-value 0.0584 0.0360 0.1749 0.0322
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Table A1. Cont.

Crosstab ICD-10
Explanations

ICD-10 Cohort 1 Cohort 2 Cohort 3 Cohort 4 Total Disorders of
Lipoprotein

R60 Absent Count 1782 320 55 10 2167
Edema, not
elsewhere
classified

Expected Count 1751.8 350.8 53.8 10.6 2167.0

% within R60 82.2% 14.8% 2.5% 0.5% 100.0%

Adjusted Residual 2.8 −3.1 0.3 −0.3

Adj. p-value 0.0355 0.0157 0.6213 0.5908

Present Count 855 208 26 6 1095

Expected Count 885.2 177.2 27.2 5.4 1095.0

% within R60 78.1% 19.0% 2.4% 0.5% 100.0%

Adjusted Residual −2.8 3.1 −0.3 0.3

Adj. p-value 0.0355 0.0157 0.6213 0.5908

B37 Absent Count 2347 440 66 14 2867 Candidiasis

Expected Count 2317.7 464.1 71.2 14.1 2867.0

% within B37 81.9% 15.3% 2.3% 0.5% 100.0%

Adjusted Residual 4.0 −3.5 −1.8 0.0

Adj. p-value 0.0005 0.0036 0.5869 0.7693

Present Count 290 88 15 2 395

Expected Count 319.3 63.9 9.8 1.9 395.0

% within B37 73.4% 22.3% 3.8% 0.5% 100.0%

Adjusted Residual −4.0 3.5 1.8 0.0

Adj. p-value 0.0005 0.0036 0.5869 0.7693

Z12 Absent Count 1057 249 38 9 1353
Screening for

malignant
neoplasm

Expected Count 1093.8 219.0 33.6 6.6 1353.0

% within Z12 78.1% 18.4% 2.8% 0.7% 100.0%

Adjusted Residual −3.3 2.9 1.0 1.2

Adj. p-value 0.0072 0.0304 0.2517 0.1834

Present Count 1580 279 43 7 1909

Expected Count 1543.2 309.0 47.4 9.4 1909.0

% within Z12 82.8% 14.6% 2.3% 0.4% 100.0%

Adjusted Residual 3.3 −2.9 −1.0 −1.2

Adj. p-value 0.0072 0.0304 0.2517 0.1834

Significant p-values are highlighted.
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