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Abstract: Lignin nanoparticles, the innovative achievements in the development and utilization of
lignin, combine the structural characteristics of nanomaterials and lignin molecules and have a wide
range of applications. In this review, we summarize the methods for preparing lignin nanoparticles
by solvent exchange method, mechanical method, biological enzymatic method, interface polymer-
ization/crosslinking method, and spray freezing method, and emphatically introduce the application
prospects of lignin nanoparticles in ultraviolet protection, antibacterial, nano-filler, drug delivery, and
adsorption, aiming to provide a certain reference direction for additional high-value applications of
lignin nanoparticles.
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1. Introduction

In recent years, with the excessive consumption of fossil energy and environmental
pollution becoming more and more serious, natural biomass materials have been widely
studied by researchers due to their advantages of wide distribution, abundant resources,
low pollution, and renewability [1]. The efficient development and utilization of natural
biomass materials plays a very positive role in solving the problem of waste biomass
resources and low utilization rate in environmental protection, medical treatment, the
chemical industry, and other fields. Lignin, the second largest biomass resource after
cellulose in nature, is the most abundant renewable aromatic organic compound discovered
so far [2]. However, although more than 50 million tons of lignin are extracted in the pulp
and paper industry every year, only about 5% of lignin can be utilized efficiently, and most
of it is directly discharged or burned as a by-product of the paper industry, which not only
causes a great waste of resources, but also pollutes the environment [3].

With the rapid development of modern nanotechnology, the generation of lignin
nanoparticles (LNPs) provides a new direction for the high-value utilization of lignin [4].
Researchers have extensively studied the application fields of LNPs. Lignin colloidal
spheres [5] and lignin-based composite nanoparticles [6] have the advantages of UV re-
sistance, antibacterial properties, and non-cytotoxicity [7,8], showing great application
potential as natural sunscreen, drug carriers, and nano filler, etc. (Figure 1).

This review summarizes the preparation methods and application status of LNPs,
hoping to provide reference for the in-depth research of lignin processing technology, and
the research and development of LNPs related products.
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Figure 1. Preparation methods and application of lignin nanoparticles. 
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form precipitate under certain conditions, and the precipitate is washed and dried to pre-
pare corresponding LNPs. The solvent exchange method has the advantages of simple 
operation, mild conditions, and adjustable particle size of products [9]. Common precipi-
tation methods include the self-assembly method, dialysis method, acid precipitation 
method, etc. 

2.1.1. Self-Assembly Method 
The self-assembly method is a method which connects atoms, ions, and molecules 

together to construct a nanoscale structure through the action of non-covalent bonding 
forces between molecules. The advantages of this method include its simple process and 
stable and controllable size, making it a common method for preparing LNPs [10]. 

Li et al. prepared nanospheres by self-assembly using waste bamboo chips as raw 
material after acetic acid extraction [11]. Taking advantage of the high solubility and high 
phenolic hydroxyl content of the low-molecular-weight lignin obtained by fractionation, 
it is self-assembled to synthesize nanospheres with uniform morphology and size. The 
result shows that the nanospheres prepared by self-assembly under ultrasound are more 
dispersed, smoother, and more uniform in size than those prepared by direct magnetic 
stirring. Compared with the original lignin, the nanospheres have fluffier configuration, 
higher specific surface area, and show shallow coloration. 

Wang et al. modified lignin by microwave acetylation, which used acetic anhydride 
as the reaction reagent and dispersion solvent, and prepared high-yield LNPs by solvent 
transfer combined ultrasonic method [12]. The prepared LNPs can be formed quickly 
without dialysis and can be easily separated by centrifugation. At the same time, the THF 
used in the experiment can be recycled, which is beneficial to reducing the cost, 
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2. Preparation of Lignin Nanoparticles
2.1. Solvent Exchange Method

The preparation of LNPs by solvent exchange is a typical method, the process is as fol-
lows: lignin (hydrophobic group) in organic solvent and non-solvent (usually water) form
precipitate under certain conditions, and the precipitate is washed and dried to prepare
corresponding LNPs. The solvent exchange method has the advantages of simple opera-
tion, mild conditions, and adjustable particle size of products [9]. Common precipitation
methods include the self-assembly method, dialysis method, acid precipitation method, etc.

2.1.1. Self-Assembly Method

The self-assembly method is a method which connects atoms, ions, and molecules
together to construct a nanoscale structure through the action of non-covalent bonding
forces between molecules. The advantages of this method include its simple process and
stable and controllable size, making it a common method for preparing LNPs [10].

Li et al. prepared nanospheres by self-assembly using waste bamboo chips as raw
material after acetic acid extraction [11]. Taking advantage of the high solubility and high
phenolic hydroxyl content of the low-molecular-weight lignin obtained by fractionation,
it is self-assembled to synthesize nanospheres with uniform morphology and size. The
result shows that the nanospheres prepared by self-assembly under ultrasound are more
dispersed, smoother, and more uniform in size than those prepared by direct magnetic
stirring. Compared with the original lignin, the nanospheres have fluffier configuration,
higher specific surface area, and show shallow coloration.

Wang et al. modified lignin by microwave acetylation, which used acetic anhydride
as the reaction reagent and dispersion solvent, and prepared high-yield LNPs by solvent
transfer combined ultrasonic method [12]. The prepared LNPs can be formed quickly
without dialysis and can be easily separated by centrifugation. At the same time, the
THF used in the experiment can be recycled, which is beneficial to reducing the cost,
simplifying the process, and achieving large-scale industrial production. It is found that the
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maximum yield of LNPs could reach 82.3% with the increase of initial lignin concentration
and ultrasonic intensity.

Xiong et al. prepared single-pore lignin hollow nanospheres by direct self-assembly
method [13]. The enzymatic hydrolysis lignin (EHL) was dissolved in THF and then
deionized water was gradually dropped into the lignin/THF mixture to form lignin hollow
nanospheres. The dispersion of nanoparticles is stable when the pH is between 3.5 and
12. As the initial lignin concentration increases, the diameter of the nanoparticles and the
thickness of the shell wall increased, while the single pore diameter, specific surface area,
and pore volume decreased.

Dai et al. prepared spherical nanoparticles with good dispersion by a simple self-
assembly method, using alkali lignin (AL) as raw material and methanol solution as
dispersant [14]. The study found that when the initial concentration of alkali lignin in
methanol is 0.5 mg/mL and the final water content is 90%, the particle size of lignin
nanoparticles is about 130 nm and the dispersion is uniform (Figure 2). The self-assembly
of AL with bioactive molecules resveratrol and magnetic nanoparticles can form stable
nanodrug carriers. Compared with free drugs, AL/RSV/Fe3O4 greatly improved the
stability of the anti-tumor effect of resveratrol.
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Figure 2. The preparation process, SEM, and TEM images of AL/RSV/Fe3O4. Reprinted with
permission from Ref. [14]. Copyright 2017 American Chemical Society.

Lintinen et al. synthesized colloidal lignin particles (CLPs) by dissolving lignin in a
mixture of THF and ethanol and subsequently introducing the lignin solution into water.
The organic solvent of this method can be recycled and reused by rotary evaporator, laying
the foundation for the recycling production of CLPs [15].

Li et al. studied a direct self-assembly method for the formation of kraft lignin (KL)
nanocapsules in a mixed solvent of ethanol and water [16]. Among them, π–π interaction
between aromatic rings plays an important driving role in the formation of KL nanocapsules.
The size of the prepared KL nanocapsule can be controlled in the range of tens to hundreds
of nanometers, which is suitable for different fields.

In order to investigate the effect of heterogeneity of lignin on self-assembled nanopar-
ticles, Pang et al. prepared different lignin micro/nano-particles (LMNPs) by using three
lignin fractions (F1, F2, F3) separated by enzymatic hydrolysis of lignin as raw materi-
als [17]. The LMNPs prepared by the three components show different morphological
characteristics: large and incomplete spherical particles with a diameter of 450–650 nm
were synthesized from F1; F2 was used as the raw material to prepare two different mor-
phological particles, one with a hollow structure of large size (500–700 nm) and the other
with a dense structure of small size (100–250 nm); using F3 as the raw material, small size
particles (about 50 nm) with uniform particle size distribution and compact structure were
formed (Figure 3). It is worth noting that the LNPs prepared by F3 have the advantages of
high yield, small particle size, uniform distribution, and high stability of water dispersion.
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Through the analysis of the formation mechanism of the three particles, the authors found
that the inhomogeneity of lignin is the key factor for the different sizes of self-assembled
nanoparticles, and the high molecular weight of fractionated lignin has a significant effect
on improving the performance of nanoparticles.
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Figure 3. Lignin fractionation is proposed as an efficient way to reduce heterogeneity in lignin
self-assembly nanosizing and produce uniform lignin nanoparticles with small size; SEM images of
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(e), F1 (f), F2 (g), and F3 (h). Reprinted with permission from Ref. [17]. Copyright 2020 American
Chemical Society.

2.1.2. Dialysis Method

Lievonen et al. proposed a simple and direct method to prepare lignin nanoparti-
cles [18]. This method can produce spherical LNPs with colloidal stability without chemical
modification of lignin. The sulfate lignin was dissolved in THF and dialyzed in deionized
water to obtain spherical LNPs with an average particle size of 200–500 nm. The results
show that when the pH is between 4 and 10, and the ionic strength is up to 500 mM, the
dispersion of LNPs is very stable and favorable for industrial application.

Ma et al. prepared LNPs with controllable particle size by combining the conventional
fractionation technique with dialysis [19]. The diameters of the prepared LNPs were in the
range of 21–139 nm, where 21 nm is one of the smallest particle sizes reported so far. This
method provides a new idea for the production of small-sized LNPs.

Lu et al. proposed a method to prepare LNPs directly from corn straw [20]. They used
THF as an organic solvent to separate lignin from corn straw, then placed the obtained
lignin solution in a dialysis bag and soaked it in deionized water for 12 h. The LNPs
prepared by this method have a smooth surface, controllable size and structure, and good
UV resistance properties.
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2.1.3. Acid Precipitation Method

Acid precipitation method is to dissolve lignin in organic solvent or alkaline aqueous
solution, by reducing the pH value of the solution, so that the lignin molecules in the
form of nanoparticle precipitation. This method is one of the most important methods in
preparation of LNPs because of its simple operation and low requirements on experimental
environment. However, this method requires modification of the lignin to improve its
solubility, so as to better control the morphology and size of lignin nanoparticles.

Yang et al. dissolved alkali lignin in ethylene glycol and then adjusted the pH of the
solution with different acids (HCl, H2SO4, and H3PO4) to prepare LNPs [21]. It was shown
that the physical properties of LNPs were significantly affected by the pH of the solution.
The size of the prepared LNPs was uniform and varied with the change of pH, which were
32.8 ± 6.0 nm (HCl, pH 2.5), 58.9 ± 8.6 nm (H2SO4, pH 2.9) and 54.1 ± 6.7 nm (H3PO4,
pH 2.6), respectively. The highest LNPs yield of 87.9% was obtained when pH was 2.5.

Azimvand et al. prepared LNPs by dissolving alkali lignin in polyethylene glycol and
adjusting the pH of the solution to 4 using hydrochloric acid [22]. The results show that the
diameter of LNPs is suitable when the pH value is 4–6. The smallest particle size of LNPs
was in the range of 40–60 nm at pH 4. In addition, the method is easy to operate and the
process is green, which is suitable for further large-scale synthesis of LNPs.

Agustin et al. directly prepared LNPs from alkaline pulping liquor by combining acid
precipitation with ultrasonic method [23]. It was found that the yield of LNPs prepared by
HCl was the highest, and the diameter of LNPs prepared by three acids (HCl, H2SO4, and
HNO3) was less than 100 nm. The DH of LNPs prepared from HCl and HNO3 remained
constant for 180 days (Figure 4). Furthermore, the LNPs exhibited good emulsification
properties, and they could form stable emulsions (oil-in-water) without the addition of
surfactants. This process is efficient and green, providing a sustainable development path
for solvent-free LNPs production, and has a wide application prospect in the food, medical,
and other fields.
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Alipoor et al. prepared functionalized LNPs from carboxymethylated or carboxypenty-
lated lignin using an acid deposition method [24]. Firstly, they carboxymethylated lignin
with sodium chloroacetate (SCA) and reacted activated lignin with chlorohexanoic acid



Int. J. Mol. Sci. 2022, 23, 7254 6 of 19

(CHA) to prepare carboxypentylated lignin. Next, the carboxymethylated or carboxypenty-
lated lignin was mixed with ultrapure water, and the lignin was completely dissolved with
sodium hydroxide, and then the pH was adjusted with hydrochloric acid to precipitate
LNPs. Both carboxypentylated lignin nanoparticles (PLNPs) and carboxymethylated lignin
nanoparticles (CLNPs) prepared by this method have certain adsorption properties, among
which the adsorption capacity of PLNPs is larger. This study can achieve precise control of
nanoparticle size and regulate the adsorption behavior of LNPs, providing a new idea for
the application of lignin nanoparticles in drug delivery and other applications.

The above three solvent exchange methods are often used to prepare LNPs, but there
are some disadvantages. For example, lignin cannot be completely uniformly dispersed in
the solvent, and agglomeration may occur in some cases. In the subsequent process, the
solvent has to be removed by rotary evaporation or freeze-drying, which is unfavorable for
precise control of the size and morphology of the nanoparticles.

2.2. Mechanical Method

The mechanical method is a preparation method that uses external mechanical shear
force or high-frequency vibration to create the lignin interface reaction, so that large particles
become small particles [25]. At present, the mechanical method mainly includes high shear
homogenization method, ultrasonic method, and so on.

2.2.1. High Shear Homogenization Method

Nair et al. proposed a method to prepare lignin nanoparticles using a high shear
homogenizer [26]. It is found that the lignin sulfate particles are completely homogenized
and the particle size is less than 100 nm after mechanical shearing for 4 h. Moreover,
13C-NMR and 31P-NMR spectra analysis showed that after 4 h of mechanical treatment,
the chemical composition and structure of lignin nanoparticle did not change significantly
compared with the starting sulfate lignin particles.

2.2.2. Ultrasonic Method

Gonzalez et al. prepared LNPs by ultrasonic treatment of softwood lignin, and
obtained a lignin/water dispersion system with good colloidal stability [27]. After 6 h
of ultrasonic treatment, the particle size of lignin decreased significantly, which could be
controlled between 10 and 50 nm. In addition, ultrasonic treatment has a certain chemical
modification effect on lignin. Compared with untreated lignin, the polarity of LNPs is
enhanced and their stability in water is dramatically improved.

Gilca et al. proposed a physical method that modifies lignin with ultrasound to
obtain nanoparticles [28]. Using industrial lignin as raw material, they sonicated the lignin
suspension for 60 min to obtain a uniform and stable nano-dispersion system. The anterior
and posterior structures were characterized by FTIR-spectroscopy, GPC-chromatography
HSQC and 31P-NMR-spectroscopy, and the results showed that the composition and
structural changes of LNPs were related to the properties of lignin, not to the strength
of lignin.

Compared with the solvent exchange method, the mechanical method has the ad-
vantages of low cost and environmental protection because it avoids the use of organic
solvents. Moreover, mechanical method has the advantages of simple preparation, large-
scale application, etc., greatly promotes the application of LNPs in food industry, medicine
and other fields. However, the structure and dimensional stability of LNPs prepared by
this method are poor.

2.3. Enzymatic Hydrolysis

Juikar et al. extracted LNPs from coconut fibers by microbial hydrolysis and compared
them with LNPs prepared by high shear homogenization and ultrasonic methods [29].
The FEG–SEM micrographs of LNPs prepared by homogenization and ultrasonic method
showed that the particles aggregated, while the FEG–SEM micrographs of LNPs prepared
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by microbial method showed that the particles dispersed well. The technology is an efficient
and environmentally friendly method for preparing lignin nanoparticles and is also suitable
for lignin obtained from other sources such as wood and agricultural biomass.

Rangan et al. prepared lignin-rich nanoparticles using lignocellulose from loofah as
the raw material and specific enzymes to decompose lignin-cellulose complex [30]. These
nanoparticles were characterized by electron microscopy. The observation results showed
that the lignin nanoparticles were cubic with uniform particle size of about 20~100 nm.
The nanoparticles with high content of lignin have a wide application prospect in the
automobile, pharmaceutical, and other fields.

Juikar et al. used aspergillus oryzae to hydrolyze the bulk lignin in cotton stalks
for producing LNPs [31]. Subsequently, they compared it with the lignin nanoparticle
produced by high shear homogenization and ultrasonic methods. The results showed that
the yield of LNPs produced by the enzymatic hydrolysis method (45.3%) was lower than
that of the high shear homogenization method (79.5%) and the ultrasonic method (62.6%).
In addition, the prepared LNPs has various properties such as antibacterial, UV protection,
and antioxidant, after coating on the surface of cotton and linen fabrics.

The preparation of LNPs by enzymatic hydrolysis methods has the characteristics of
mild reaction conditions, simple operation, cleanliness, and efficiency. However, the price
of this method is high and the product yield is relatively low.

2.4. Interfacial Polymerization/Crosslinking

Yiamsa et al. selected toluene diisocyanate (TDI) to react with the hydroxyl group
of lignin to generate a hollow lignin nanocapsule with a hydrophilic nucleus [32]. Firstly,
lignosulfonate was dissolved in ultra-pure water to form a dispersed phase, and mixed
with cyclohexane containing biocompatible surfactant polyglycerol polyricinoleate (PGPR).
Then, the pre-emulsion was stirred at room temperature and treated by ultrasound to obtain
stable microemulsion. The solution of TDI in cyclohexane was added to the nano-droplet
interface of the microemulsion, and the polymerization reaction was initiated to generate
hollow lignin nanocapsules. The wall thickness of the dried capsule is 10~20 nm, and the
particle size ranges from 150~200 nm. The capsules can be lysed by laccase and effectively
encapsulate bioactive drugs. It is a potential nano container for agricultural applications.

Nypelo et al. proposed a new method to assemble lignin macromolecules into colloidal
structures by taking advantage of their aromatic and cross-linking properties [33]. In this
study, the authors controlled the size and integrity of the resulting particles by the con-
centration of surfactants and crosslinking agents. The water-in-oil (W/O) microemulsion
was composed of a colloidal dispersion system of non-ionic surfactant and low molecu-
lar weight alkali lignin. After self-emulsification, the internal phases rich in lignin were
crosslinked to form spherical particles with particle size ranging from 90 nm to 1 mm.
Furthermore, the LNPs were found to be effective carriers of Ag nanoparticle.

Chen et al. successfully synthesized lignin-based pH-responsive nanocapsules us-
ing lignosulfonate as the starting material through interfacial microemulsion crosslinking
method [34]. Firstly, lignin was grafted onto allyl group by etherification, and then ultra-
sonic dispersed into oil-in-water (O/W) microemulsion system (Figure 5). At the interface
of the microemulsion droplet, allyl functionalized lignin and mercaptan crosslinking agent
reacted with sulfhydryl radical to form nanocapsules. The particle size of the synthe-
sized lignin nanocapsules is about 100–400 nm. The particle size of the synthesized lignin
nanocapsules can be well adjusted by controlling the loading levels of surfactants and
stabilizers. It is found that lignin nanocapsules can effectively encapsulate hydrophobic
molecules through microemulsion, which has great application potential in the controllable
transport of hydrophobic molecules such as drugs, essential oils, and antioxidants.
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The interfacial polymerization/crosslinking method for LNPs preparation has many
advantages, such as: (1) the particle size is uniform and controllable; (2) LNPs with special
properties can be obtained by modifying the surface of particles with different surfactants;
(3) the surface of the particle is covered with a layer (or several layers) of surfactant, which
is not easy to coalesce between the particles and has good stability; and (4) the interfacial
properties of LNPs can be improved by coating the surface with surfactants. However,
this method also has some disadvantages, such as a large amount of emulsifier, a small
monomer concentration, and poor purity of product particles.

2.5. Spray Freezing Method

Spray freezing is a process in which lignin solution is atomized, frozen into ice particles
by contacting with cold medium (such as liquid nitrogen and cold air flow), and then the
frozen particles are dehydrated and dried to obtain nanoparticles [35].

Mishra et al. reported a simple method for synthesis of LNPs by spray freezing [36].
Lignin can be well dissolved in dimethyl sulfoxide (DMSO), and DMSO itself has a high
melting point. Based on the above two points, the authors dissolved lignin in DMSO and
sprayed the resulting solution onto copper plates cooled by liquid nitrogen using a hand-
held sprayer. Because of DMSO’s high melting point, when the droplets hit the copper plate
they immediately freeze and form particles. This method can avoid the interaction among
lignin, solvent, and non-solvent, and the good solubility of lignin in DMSO is conducive to
the stability of LNPs.

The preparation of LNPs by spray freezing method has the advantages of continuous
production and simple operation, but the particle yield is low and the particle uniformity
is poor.

The preparation details and properties of LNPs by different methods are shown in
Table 1.
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Table 1. Preparing LNPs by different methods.

Lignin Source Technique
Reaction Conditions

Size (nm) Morphology Yield Advantages Ref.
Solvent Temp.

(◦C) Time pH

Elephant grass;
acid-alkali

extraction; pure
lignin

Self-
assembly
method

Acetone and
deionized water NR 10 min NR 55 ± 26; 86

± 29

Spherical;
hollow

nanospheres

37 ± 3% (LNP); 36
± 3% (AcLNP)

Simple and
greener
method

[37]

Corncob alkali
lignin; mixed

softwood kraft
pulping; Kraft

lignin

Self-
assembly
method

Deep eutectic
solvents, H2SO4,

NaOH and
deionized water

25 60 min 4, 5, 6 30.4–138.2 Spherical 90.3% Eco-friendly,
high yield [38]

Corn cob; alkali
lignin

Self-
assembly
method

Methanol, ethanol,
and

Tetrahydrofuran
(THF)

NR NR NR 130 Spherical NR

Certain
stability and
excellent bio-
compatibility

[14]

Wheat straw
Self-

assembly
method

Aqueous
p-toluene sulfonic

acid and
deionized water

NR 10 min NR 295 Oblate
spheroidal 81% Facile and

green method [39]

Corncob
residue;

enzymatic mild
acidolysis

Dialysis
method

Dimethyl
sulfoxide, sodium

acetate buffer
solution

NR
At

least 2
days

4.7 60–200 Spherical NR
Controllable
and larger
size range

[40]

Corn stover;
Tailored lignin

(SOFA)

Dialysis
method

THF and
deionized water 120 15 min

1.8,
3.8,
6.2,
13.0

130 Spherical NR High-quality,
uniform [41]

Kraft lignin Dialysis
method

THF and
deionized water NR

At
least
24 h

1–11 200–500

Spherical,
colloidal
nanopar-

ticles

NR
Very stable,

scalable
method

[18]

Alkali lignin
Acid pre-
cipitation
method

Ethylene glycol,
three acids (HCl,

H2SO4 and
H3PO4).

35 2 h 2.5–4.7

32.8 ± 6.0
(HCl);

58.9 ± 8.6
(H2SO4);
54.1 ±

6.7(H3PO4)

Spherical

87.9%,
85.4%, and 78.5%
for HCl, H2SO4,

and H3PO4

Simple
method, high

yield
[21]

Alkali lignin
and hardwood
dioxane lignin

Solvent
exchange
method

Acetone and
deionized water 20 10 min NR 80–104 Spherical 63% (DLNP); 33%

(ALNP)

High yield,
excellent
stability

[42]

Wheat straw
lignin,

sarkanda grass
lignin

Ultrasonication H2O NR 60 min NR 100 Spherical NR

Simple
physical
method,

no organic
solvents

[28]

Kraft lignin Mechanical
shearing H2O NR 1, 2, 4

h NR <100 Irregular NR
Simple

mechanical
treatment

[26]

Cotton stalk Enzymatic
hydrolysis H2O Ice

bath 1 h NR 37.3 ± 2.3
Non-

uniform
spherical

45.3% Eco-friendly [31]

Sodium
lignosulfonate

Interfacial
polymer-

iza-
tion/crosslinking

butyl acetate, H2O 60 6 h NR 100–400 Nanocapsules NR

Particle size
is uniform

and
controllable

[34]

Alkali lignin Spray
freezing DMSO 4 NR NR 150 Spherical NR

Continuous
production
and simple
operation

[36]

NR: not reported.

3. High Value Utilization of Lignin Nanoparticles
3.1. UV Protection

The most widely used sunscreen active ingredients on the market, whether natural
or synthetic, are small organic molecules. They are usually insoluble in water, have the
potential to penetrate the skin, and can cause skin allergy symptoms after long-term use.
It is obviously beneficial to discover natural polymer anti-ultraviolet active substances
and develop polymer sunscreen. Lignin contains a large number of phenols, ketones, and
intramolecular hydrogen bonds, which has great potential in ultraviolet resistance. In
addition, lignin from various sources has been shown to be safe and lignin-based capsules
are not cytotoxic [43].
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Qian et al. prepared LNPs by self-assembly method, in which sizes and structures are
different, and then mixed it with pure skin cream to develop lignin-based sunscreen [44].
The result shows that the emulsion with lignin nanoparticles as the active ingredient has
better sunscreen performance. The sun protection factor (SPF) of the sunscreen decreases
with the increase of the particle size of LNPs.

Wang et al. prepared different kinds of lignin sunscreens by mixing LNPs with pure
creams [12]. The ultraviolet (UV) transmittance is shown in Figure 6. The result shows that
the SPF value of pure cream is 1.03, while the SPF value of cream containing different LNPs
is between 1.26 and 2.23. The SPF increase of lignin sunscreen is mainly related to the size
of LNPs. The author thinks that the good sunscreen performance of LNPs may be due to
the conjugation of lignin during the preparation of nanoparticles. Methoxy groups in S- and
G-type lignin play an important role in the conjugation of lignin. The π–π accumulation
between the aromatic rings in the sunscreen and lignin nanoparticles also contributes to
the improvement of sunscreen performance.
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Trevisan et al. isolated pure lignin from elephant grass and prepared LNPs and
lignin acetate nanoparticles (ACLNP) by self-assembly method using pure lignin as raw
material [37]. Due to the good biocompatibility and UV resistance properties of lignin, the
authors added LNPs to neutral creams and successfully formed tinted sunscreens with UV
protection properties. The creams containing LNPs (3.0 and 10 wt%) and ACLNP (10 wt%)
showed lower transmission in the visible region compared to commercial sunscreens with
SPF 30. Among them, the creams containing 10 wt% ACLNP had the lowest transmittance
in the visible region. Furthermore, compared with the antioxidants on the market, the
LNPs prepared by authors have higher antioxidant activity.

Lee et al. extracted light-colored lignin (CEL) from rice husk and prepared spherical
nanoparticles of CEL (CEL-NP) which was combined solvent transfer and ultrasonic [45].
The authors added CEL and CEL-NP to commercial moisturizers, and studied the UV
protection performance of the mixed cream. The results indicated that the lignin-containing
cream showed obviously lower transmittance in the range of UVA and UVB comparing to
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the single moisturizer. Notably, the UV transmittance of the emulsion with CEL-NP was
significantly reduced. In addition, the authors found that CEL-NP had a synergistic effect
with organic sunscreens, with an overall increase of approximately 5-fold in SPF and UVA
PF values for organic sunscreens containing 5 wt% CEL-NP, while there was little synergy
between CEL-NP and inorganic sunscreens.

3.2. Antibacterial Agent

Phenolic compounds in lignin play an important role in its antibacterial properties,
especially its side chain structure and functional groups. In general, phenols have double
bonds at the α and β positions of the side chain, and methyl groups at the γ position, giving
them the strongest antibacterial properties [46].

Richter et al. embedded silver ions into LNPs and then coated polydiallyl dimethyl
ammonium chloride to form a biodegradable substitute for Ag nanoparticles [47]. PDAC
coating can promote the adhesion of microbial cell membranes and has some antibacterial
activity of its own. However, controls of lignin nanoparticles without PDAC or silver
ion loading showed lower antibiotic efficiency, which suggests a synergistic effect of
these drugs.

Lintinen et al. prepared colloidal silver carboxylate lignin particles (AgCLPs) by
deprotonation of an anhydrous wood organic solution, followed by ion exchange with
silver nitrate, and solvent exchange to form colloids [48]. Silver will not be released from
the particles in deionized water, but can be released under physiologically acidic conditions,
manifested by low silver load and good antibacterial effect (Figure 7).
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Maldonado-Carmona et al. prepared acetylated lignin water-dispersible nanoparticles
(THPP@AcLi) by adding 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (THPP)
to acetylated lignin solutions of acetone [49]. THPP@AcLi was characterized by TEM,
DLS, and Zeta potential, and it was found that THPP@AcLi retained the photosensitive
activity of porphyrin. Compared with acetylated lignin nanoparticles (@AcLi), THPP@AcLi
can generate singlet oxygen more efficiently. In addition, two Gram-negative bacteria (Es-
cherichia coli and Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus
aureus, Staphylococcus epidermidis, and Enterococcus faecalis) were used to investigate the
antimicrobial activity of THPP@AcLi. The results showed that THPP@AcLi reduced the
survival rate of Gram-positive bacteria to 0.1% when exposed to low dose white LED (4.16
J/cm2), but did not reduce the survival rate of Gram-negative bacteria. The author’s further
research aims to reduce the survival rate of Gram-negative bacteria, expand the application
range of @AcLi, and apply THPP@AcLi to water pollution control and other aspects.
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3.3. Nano Filler

LNPs have been used in many fields. Compared with lignin, nanoscale lignin particles
have higher glass state transition temperature, melting temperature, and crystallization
temperature, and better thermal stability. Therefore, they can be efficiently used as natural
fillers of nanocomposites [50]. In rubber materials, compared with carbon black, lignin has
the advantages of low density, non-conductivity, and light color, so it can replace carbon
black to make rubber products with light color. If the lignin powder is directly mixed with
rubber, the interaction of hydrogen bonds between lignin molecules in the mixing process
will make the lignin bond, and it is difficult to disperse in the rubber [51]. Eventually, the
strength of the rubber is difficult to change.

Jiang et al. slowly added the lignin sulfate solution at pH 12 into the rapidly stirred
polydiallylammonium chloride solution, formed a lignin-polydiallylammonium chloride
complex with an average particle size of less than 100 nm by self-assembly method [52].
Then, the colloidal particles prepared were compounded with rubber to prepare nanocom-
posites. It is found that the lignin nanoparticles can be evenly dispersed in rubber, which
is beneficial to accelerate the hardening of rubber and enhance the thermal stability and
mechanical properties of rubber–lignin nanocomposites.

Wang et al. filled the prepared lignin nanoparticles into gluten to prepare nanocom-
posite membrane materials. After adding LNPs, although the transparency of the nanocom-
posite membrane material will decrease, the presence of LNPs will increase the ultraviolet
absorption capacity of the nanocomposite membrane material [53]. At the same time, LNPs
enhance the thermal stability and mechanical properties of the membrane, but weaken the
hydrophilicity, which is beneficial to expanding the application of the gluten substrate.

Yang et al. mixed LNPs with polylactic acid, and prepared polylactic acid films by
solvent extrusion and solvent casting [54]. The result shows that the LNPs cannot disperse
evenly in the polymer matrix for polylactic acid thin films prepared by solvent casting
method. For polylactic acid thin films prepared by solvent extrusion method, LNPs can
be uniformly dispersed in the polymer matrix. When the mass fraction of LNPs reaches
1%, the tensile strength, modulus, and elongation at break of polylactic acid thin films are
significantly higher than that of films without LNPs.

Bian et al. used cellulose nanofibrils (CNF), polyvinyl alcohol (PVA), borax and LNPs
as raw materials to prepare a hyperelastic composite hydrogel [55]. It was found that
the concentration of free LNPs plays a key role in the viscoelasticity of the composite
hydrogel. LNPs were used as nano-spacers to fill the 3D network, which enhanced the
interactions between the polymers and improved the viscoelasticity and thermal stability
of the hydrogel.

3.4. Drug Transport Carrier

LNPs are characterized by low cytotoxicity and biocompatibility, so they can be applied
to tissue engineering, bio-based pharmaceutical carriers and drug sustained release, and
also have the function of repairing, replacing, and enhancing specific tissues or organs [56].

Dai et al. used industrial waste lignin to graft poly-N-isopropyl acrylamide onto
lignin by atomic transfer radical polymerization, prepared a thermally responsive lignin
copolymer, and then formed self-assembling nanoparticles [57]. The nanoparticles can
improve the stability of palm oil emulsions containing trans-resveratrol, making it useful
for the storage and heat-controlled release of photosensitive and low water-soluble drugs
(Figure 8).
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Li et al. prepared pH-responsive lignin-based composite micelles in green solvent
using purified alkali lignin as raw material [58]. TEM images showed that the composite
micelles were uniform spherical nanoparticles. It was found that more than 74.44% of
the drugs could be encapsulated by hydrophobic interaction when ibuprofen was used as
the drug loading model. In vitro release behavior is pH-dependent and controllable. This
study provides a new method for the preparation of oral lignin delivery carrier, which is of
great significance for the high-value utilization of lignin.

Mendez et al. synthesized LNPs from lignin-corn-poly (lactic-co-glycolic) acid by
emulsion evaporation. The effects of LNPs on the transport of MFZ in soybean hydroponics
were studied using methoxyfenozide (MFZ) as a model [59]. The result showed that LNPs
were able to significantly promote the transport of non-systemic MFZ from soybean roots
to aerial tissues within 24 h. This study provides a new way to improve the accuracy of
pesticide delivery, which may provide an efficient aid for sustainable nano-agriculture.

Porto et al. extracted lignin from orange trunk by alkaline pulping process and
synthesized LNPs by solvent transfer method using this lignin [60]. Nanocurcumin capsules
were prepared by encapsulating curcumin (1%, 5%) in LNPs, and the encapsulation rates of
curcumin in both concentrations were above 90% (Figure 9). In order to study the potential
of nano-curcumin capsules in biomedicine, photodynamic therapy experiment was carried
out. The result showed that LNPs with 5% curcumin had selective toxicity to cancer cells.
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Alqahtani et al. prepared LNPs by interfacial polymerization/cross-linking and used
them to load curcumin [61]. The physicochemical properties of curcumin nanoparticles
were characterized. The average particle size of curcumin nanoparticles was 104 nm, and
the encapsulation rate of curcumin in LNPs was 92%. In vitro release experiments, the
authors found that the curcumin-loaded LNPs had high stability in simulated gastric
juice. Subsequently, they also carried out cell viability studies, and found that compared
with free curcumin, curcumin nanoparticles enhanced the cellular uptake and intestinal
permeability of curcumin, and increased the apparent permeability of the monolayer of
CacO-2 cells by five times. In addition, in vivo pharmacokinetic experiments showed
that LNPs loaded with curcumin significantly increased the bioavailability and half-life
of curcumin compared with oral curcumin suspension. Furthermore, Alqahtani et al.
characterized the wound healing activity of curcumin-loaded LNPs. Cytotoxicity assays
showed that curcumin nanoparticles were biocompatible, non-cytotoxic, and did not
interfere with cell proliferation during the wound healing process [62]. Curcumin-loaded
LNPs exhibited potent antibacterial activity against Staphylococcus aureus in vitro. In vivo
studies showed that curcumin-loaded LNPs significantly improved wound healing activity
compared to blank nanoparticles or curcumin solution. In summary, LNPs can be used
as a potential nanocarrier for the delivery of orally administered lipophilic molecules
(e.g., curcumin). And curcumin-loaded LNPs are expected to be a delivery system for
accelerated wound healing.

In addition to using LNPs to encapsulate drugs, Alqahtani et al. investigated the
potential of LNPs as vaccine adjuvants [63]. The authors prepared ovalbumin lignin
nanoparticles (OVA-LNPs) by adding ovalbumin (OVA) to lignin solution using solvent
evaporation technique. The size of nanoparticles was 216 nm and the encapsulation rate of
OVA antigen was 81.6%. In vitro studies showed that LNPs were non-cytotoxic and that a
significantly higher percentage of antigen was taken up by dendritic cells encapsulated in
LNPs compared to free OVA. Immunological studies in mice showed that IgG antibody
titers produced by OVA-LNPs were notably higher than those produced by OVA with free
OVA and OVA with alum added. These findings imply that LNPs are a promising vaccine
adjuvant and ovalbumin delivery system to induce long-term immune responses.

3.5. Adsorbent

As an inexpensive and easy-to-use paper byproduct, lignin has its own adsorption
capacity, which can be used for the removal of heavy metal ions, dyes and organic pollu-
tants [64]. Because of the presence of various active functional groups (such as hydroxyl,
carbonyl, carboxyl, methyl, etc.), lignin can be chemically modified to obtain lignin-based
adsorbent materials with high efficiency and to improve the commercial value of lignin [65].

Ma et al. synthesized magnetic lignin-based carbon nanoparticles (MLBCN) by
precipitation-carbonization method and investigated their adsorption properties on methyl
orange [66]. It was shown that the adsorption percentages of methyl orange were much
higher in the concentration range of 20–40 mg/L, indicating that the removal of methyl
orange by MLBCN was more complete at lower concentrations (20–40 mg/L). In addition,
the authors compared MLBCN with other published absorbents and found that the adsorp-
tion capacity of MLBCN was significantly superior to other published absorbents. This
study shows that MLBCN is an effective green adsorbent for the removal of methyl orange,
which is important for the high-value utilization of lignin and resource recovery. Luo et al.
modified lignin to aminated lignin by Mannich reaction, and then chelated FeCl3 with
aminated lignin to prepare Fe (III)-complexed lignin (Fe-Cl) adsorbent [67]. The adsorption
experiments and characterization showed that the phosphate adsorption mechanism of
Fe (III)-complexed lignin (Fe-Cl) followed the complex mechanism of iron and phosphate
on Fe-Cl (Figure 10). Moreover, the adsorption experiment further confirmed the strong
interaction between phosphate and Fe-Cl, which can effectively remove phosphate. This
study demonstrates that lignin is a potential adsorbent that can be used for the removal of
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low concentrations of sulfate from wastewater, with great environmental and economic
benefits in wastewater treatment.
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Behboudi et al. synthesized lignosulfonate nanoparticles (LS-NPs) by solvent transfer
method using ethanol as the anti-solvent [68]. The authors investigated the adsorption
potential of LS-NPs on dye molecules using Safranin-O as a simulated contaminant. The
results showed that the maximum adsorption capacity of Safranin-O was 85.14 mg/gr
at pH 10. At this time, there was a strong electrostatic interaction between LS-NPs and
cationic Safranin-O molecules, so it has a strong adsorption capacity.

Araújo et al. prepared lignin/Fe3O4 nanoparticles from green coconut fiber using
an anti-solvent self-assembly method [69]. The adsorption properties of lignin/Fe3O4
nanoparticles for textile dyes (methylene blue (MB), cycloparon blue (CB), and rimazole red
(RR)) were investigated. Compared with other dyes, MB dye has a higher affinity for Lignin
Fe3O4 nanoparticles. When the concentration of lignin nanoparticles was 40.0 µg/L, the
removal rate of MB dye could reach 87.22% of the initial content. The adsorption kinetics
study showed that the lignin/Fe3O4 nanoparticles had a lower equilibrium time and higher
adsorption capacity for textile dyes compared with other adsorbents. However, with the
increase of reuse times, the adsorption capacity of lignin/Fe3O4 nanoparticles for dyes re-
duced sharply. In the future, this irreversible adsorption mechanism can be further explored
to improve the performance of lignin/Fe3O4 nanoparticles in wastewater treatment.

4. Summary and Outlook

Due to the complex structure of lignin, its application is greatly limited. The de-
velopment of LNPs opens up a new direction for the transformation and application of
lignin. Compared with traditional inorganic nanomaterials, LNPs have the characteristics
of biodegradability, good biocompatibility, anti-ultraviolet, antibacterial, etc., showing
great application potential in materials, chemicals, microorganisms, medicine, and other
fields. This review focuses on the preparation techniques of LNPs by solvent exchange,
mechanical, enzymatic, and interfacial polymerization/crosslinking methods, as well as
the application of LNPs in UV protection, antibacterial, nanofiller, etc., providing more
ideas for the high-value utilization of LNPs.

At present, the preparation and application of LNPs is gradually accelerating, but is
still in its infancy. The prospects and challenges for LNPs in the future mainly include the
following aspects: (1) develop efficient separation and purification technology of lignin,
which is the key to control the structure and properties of lignin. The structural and
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functional properties of lignin determine its applications. Lignin and its derivatives have
a wide range of functionalities and can be used in various fields. However, all these
applications depend on the improvements and innovations of lignin separation, which
can provide a stable and continuous source of high purity lignin source for enterprise;
(2) develop green, stable and controllable preparation technology of LNPs, which is the
premise of large-scale industrial application of lignin. The problems for the current large-
scale preparation of LNPs are the complex process, overuse of toxic organic solvents,
and uncontrollable LNPs size. In view of these problems, efficient separation technology
(such as fractional purification) and preparation methods (such as electrostatic spinning)
can be utilized; and (3) broaden the field of high-value utilization of LNPs, especially in
biomedicine, intelligent manufacturing and other high-value fields.
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