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Abstract: Oxygen vacancies (OVs) have critical effects on the photoelectric characterizations and
photocatalytic activity of nanoceria, but the contributions of surface OVs on the promoted photo-
catalytic properties are not clear yet. In this work, we synthesized ceria nanopolyhedron (P-CeO2),
ceria nanocube (C-CeO2) and ceria nanorod (R-CeO2), respectively, and annealed them at 600 ◦C in
air, 30%, 60% or pure H2. After annealing, the surface OVs concentration of ceria elevates with the
rising of H2 concentration. Photocatalytic activity of annealed ceria is promoted with the increasing
of surface OVs, the methylene blue photodegradation ratio with pure hydrogen annealed of P-CeO2,
C-CeO2 or R-CeO2 is 93.82%, 85.15% and 90.09%, respectively. Band gap of annealed ceria expands
first and then tends to narrow slightly with the rising of surface OVs, while the valence band (VB)
and conductive band (CB) of annealed ceria changed slightly. Both of photoluminescence spectra
and photocurrent results indicate that the separation efficiency of photoinduced electron-hole pairs is
significantly enhanced with the increasing of the surface OVs concentration. The notable weakened
recombination of photogenerated carrier is suggested to attribute a momentous contribution on the
enhanced photocatalytic activity of ceria which contains surface OVs.

Keywords: surface oxygen vacancies; nanoceria; photocatalytic property; band gap; photoinduced carriers

1. Introduction

Cerium is the first element in the periodic table to possess a ground state electron in a 4f
orbital (Xe 4f15d16s2), which is responsible for the powerful redox behavior between its two
ionic states, Ce4+ (the Xe ground state) and Ce3+ (Xe 4f1) [1]. Cerium dioxide is known for its
excellent redox ability, outstanding oxygen storage capacity and stable chemical properties,
which make ceria a prominent function material for various applications, e.g., three-
way catalysis [2], water gas shift reaction (WGS) [3,4], solar energy conversion [5,6], gas
sensor [7] and chemical-mechanical polishing [8]. Meanwhile, nanoceria is also employed
as one of the most attractive photocatalysts for environmental applications [9,10], clean
energy generation [11,12], CO2 utilization [13–15], etc.

It is generally accepted that the photocatalytic application of ceria is impeded by
its wide band gap ~3.2 eV and a quick recombination of photogenerated electrons (e−)
and holes (h+) [16,17]. Attributing to the redox characteristic of Ce4+/Ce3+ pairs, oxygen
vacancy is an inescapable topic for researching on ceria based catalysts [1,18,19]. Oxygen
vacancies (OVs) or Ce3+ have been reported to affect both band structure and recombination
of photocarriers significantly, and promote the photocatalytic activity of ceria [20–23]. It is
believed that the OVs are favorable for reducing the e-/h+ pairs recombination rate [24,25].
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Band gaps of ceria are mostly reported to be narrowed after more OVs generated [20,21,26],
while a few researchers, e.g., Gao et al. [22] found the ceria with a higher OVs concentration
had a blue-shift of light absorption. The existing divergent influence of OVs on ceria band
gap may be interrelated to the concentration, distribution or location of OVs in ceria lattice.
Though, the ceria containing more OVs shows a higher photocatalytic activity under the
same light source [20–22,26], then the contributions of OVs on the enhanced photocatalytic
property of ceria is unclear.

Reduction of the stoichiometric CeO2 is a main way to enrich OVs concentration in ceria
lattice, including CO or H2 reducing [22,27,28], X-ray/UV/Ar+/plasma exposing [29–34]
or a high temperature annealing [35]. Reducing ratio of ceria by H2 primarily depends on
H2 concentration and reduction temperature, while surface oxygen may be taken away
by H2 at a low temperature [36]. The subsurface or bulk oxygen of ceria would react
with H2 molecules and depart away over around 850 ◦C, and tends to form Ce2O3 [37].
Annealing the ceria at a same temperature for the same length of time with a different
concentration reductant, e.g., H2, is a facile way to produce ceria samples with a surface
OVs concentration gradient.

Moreover, different morphologies of ceria mainly expose diverse crystal faces, where
the typical morphologies including polyhedral, cubic and rod-like shape of nanoceria
primarily expose the (111), (100) and (110)/(100) plane, respectively [38,39]. It is suggested
that the (111) is the most stable face, and OVs are most easily formed on the (100) but which
would be partially oxidized due to high surface activity, and a higher concentration of
surface OVs normally exist on (110) plane [40–42]. The effects of OVs on the photoelectric
characterizations of various shaped ceria may be different, and which still need to be
systematically studied.

Thus, in present work, we synthesized polyhedral, cubic and rod-like shape of nanoce-
ria, and annealed them at 600 ◦C in air, 30%, 60% or pure H2 to obtain ceria with various sur-
face OVs concentration. The effects of the surface OVs on band structure, photogenerated
carriers, and photocatalytic activity of different shapes of nanoceria are carefully discussed.

2. Materials and Methods
2.1. Materials

Cerium nitrate hexahydrate (Ce(NO3)3·6H2O, 99.95%) and sodium hydroxide (NaOH,
99.9%) were purchased from Aladdin Chemistry Co. Ltd. (Shanghai, China), which were
used as received without further purification. The H2 and Ar gas with the purity of 99.999%
were ordered from Shen-Jian Co., Guiyang, China.

2.2. Synthesis Process

Nanoceria was synthesized by using a simple template-free hydrothermal method
under a variety of conditions to modify the morphology, which was similar to the synthetic
route reported in Ref. [43]. Briefly, NaOH aqueous solutions were dropwise added into
Ce(NO3)3·6H2O aqueous solution to form light purple mixtures with strong stirring for
30 min and then transferred to a 50 mL Teflon stainless steel autoclave, which would be
maintained at a designed temperature for 24 h. More synthetic conditions are listed in
Table S1. After the autoclave cooling down, all products were washed and filtered with
distilled water and alcohol several times to remove impure ions, followed by drying at
60 ◦C in air overnight. The obtained polyhedral, cubic, and rod-like nanoceria are named
as raw P-CeO2, C-CeO2 and R-CeO2, respectively.

2.3. Annealing Process

The raw P-CeO2, C-CeO2 and R-CeO2 were placed in a ceramic boat and then main-
tained in a tube furnace (gsl-1600×, Kejing, Hefei, China) for 2 h annealing at 600 ◦C with
a heating rate of 10 ◦C/min under air, 30, 60 or 100% H2 atmosphere, respectively. Before
a H2 annealing process, air was repeatedly expelled from the furnace tube by alternately
flowing argon and vacuuming for several times. The total gas flow rate was 400 mL/min
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and argon was selected as the balance gas (88.79 kPa total pressure of Guiyang), and the
annealed powders were henceforth named as P-CeO2-X, C-CeO2-X and R-CeO2-X (X = air,
30% H2, 60% H2 or H2).

2.4. Subsection Analysis

The obtained powders were subjected to several analyses. X-ray powder diffraction
pattern was recorded by using X-Pert Powder (Panalytical, The Netherlands) with Cu
Kα radiation (λ = 0.15418 nm) from 5.00 to 90.00◦ at a rate of 0.02◦/s. Micrographs were
taken by SEM (JSM 7610, JEOL, Tokyo, Japan) and TEM (Tecnai G2 F20, FEI, Hillsboro, OR,
USA) in which the samples were ultrasonically dispersed in alcohol and dropped on the
silicon wafer or copper grid. TG analysis was recorded by Mettler TGA/SDTA 851e at a
heating rate of 10 ◦C/s from room temperature to 1000 ◦C with the air and 30%, 60% and
pure H2, where Ar was used as carrier gas. H2-TPR was analyzed by AutoChem1 II 2920,
0.1000 ± 0.0005 g of sample was kept at 500 ◦C in the air for 1 h and cooled down to room
temperature. After 30 min purification in Ar at room temperature, the sample was heated
to 1000 ◦C with the mixed gas of 10% H2 and 90% Ar with a total gas flow of 30 mL/min
and a heating rate of 10 ◦C/min. X-ray photoelectron spectroscopy (XPS) was recorded by
K-Alpha (Thermo Fisher Scientific, Waltham, MA, USA), in which a monochromatic Al
source (hv = 1486.6 eV) and the samples were tested in a vacuum situation of 2× 10−9 mbar
with C 1s peak (284.8 eV) reference. The UV-visible diffuse reflectance spectra (UV-Vis DRS)
were recorded by UV 2700 (Shimadzu, Tokyo, Japan) with the wavelength from 200 to
800 nm and BaSO4 was used as reference, while the photoluminescence spectroscopy (PL
spectra) was analyzed by FluoroMax-4 (HORIBA, France) with an excitation wavelength
of 300 nm. The ultraviolet photoelectron spectroscopy (UPS) recording by ESCALAB 250Xi
(Thermo Fisher, Waltham, MA, USA) was performed the valence states of all samples at
the He I line (hv = 21.2 eV) with C 1s reference in a vacuum situation of 2 × 10−8 mbar.
Transient photocurrent curves were recorded under a light irradiation provided by a 250 W
xenon lamp in 0.1 mol/L Na2SO4 aqueous solution at bias voltage of 0.4 V, which was
employed by an electrochemical workstation (CHI660C, CHI shanghai Co., Shanghai,
China) in three electrode cells. The tested samples were dispersed in a nafion (10 µL),
ethanol (750 µL) and deionized water (750 µL) mixture solution and further dip-coated on
a glassy carbon plate (Φ = 3 mm), which was used as the working electrode, and a Pt plate
and Ag/AgCl were employed as the counter and reference electrode, respectively. The
BET surface area and N2 adsorption results were analyzed by ASAP2460 (Micromeritics,
Norcross, GA, USA).

2.5. Photocatalytic Performance

The photocatalytic performances were tested by a self-built photochemical reactor,
which was composed of a 250 W xenon lamp and a quartz vessel. In total, 80 mL of methy-
lene blue (MB) solution with a concentration of 10 mg/L was used for simulating the waste
dye solution, and 20 mg of synthesized catalyst was added into the reactor with ultrasound
for 10 min. After 30 min of dark adsorption, the lamp was turned on and the catalyst was
reacted with the MB under a light facula, 5 mL solution was sampled for 30 min each in
the next 2 h. The sampled solution was centrifuged firstly with a speed of 10,000 r/min
for 5 min and then the MB concentration was measured by a spectrophotometer under the
maximum wavelength of 664 nm. The degradation ratio can be calculated by the following
formula [44,45]:

Degradation ratio (%) = (C0 − Ci)/C0 × 100%. (1)

At a low concentration of MB with a weak adsorption, the photocatalytic reaction
kinetics in general follow the Langmuir–Hinshelwood (L-H), and the equation of the
pseudo-first-order reaction rate constant [46] can be given as:

ln(Ci) = −kt + ln(C0), (2)
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where C0 and Ci are the initial and tested concentration of MB, respectively, k is the pseudo-
first-order reaction rate constant (min−1), t is the photocatalytic reaction time (min).

3. Results and Discussion
3.1. Phase and Morphology

XRD patterns of synthesized nanoceria are exhibited in Figure 1, it can be seen that all
samples show the typical diffraction peaks of CeO2 with a fluorite-type structure and Fm3m
space group (PDF: #03-065-2975). The raw C-CeO2 has the strongest diffraction intensity,
followed by raw P-CeO2 and R-CeO2, the crystal sizes of raw P-CeO2, raw C-CeO2 and
raw R-CeO2 were calculated as 6.7, 36.5, and 10.0 nm, respectively.

Figure 1. XRD patterns of raw P-CeO2, C-CeO2 and R-CeO2.

In Figure 2, TEM images clearly exhibit that the synthesized nanoceria samples own
the desired morphology of polyhedron, cube and rod, the counted statistical particle size
of synthesized ceria is given in Figure S1, showing the average size of P-CeO2, C-CeO2 and
R-CeO2 is around 9, 40, and 100 nm (for length), respectively. From the HRTEM images as
shown in Figure 2, the spacing lattice fringes are measured as 0.318 and 0.321 nm for the
P-CeO2 associating with presenting (111) plane, and the (100) face is found in the HRTEM
image of C-CeO2, while both (110) and (100) planes are exposed in the R-CeO2, which is in
agreement with the theory for the main exposing face of various shaped ceria [38].

3.2. Reduction of Ceria in H2

The TG analysis results of raw R-CeO2 under different atmospheres are shown in
Figure 3a, obviously weight loss can be found under each atmosphere and the weight loss
increases in a higher H2 concentration atmosphere. In air condition, the first weight loss is
about 5.6 wt. % corresponding to the vaporization of free water, then the R-CeO2 continues
to weightlessness from 138 to 356 ◦C, where the weight loss is about 3.2 wt. %, which
may be in connection with the Ce(OH)4 decomposition [47]. At a higher temperature,
the weight signal of sample stabilizes at about 89.0 wt. % of initial weight. The weight
loss of ceria in 30%, 60% or pure H2 atmosphere can be divided into four steps: (i) free
water evaporation; (ii) H2 adsorbs on the surface of R-CeO2 and hydroxylates with Ce4+

accompanying by the water decomposing [48], which leads to around 2.9, 4.2 and 5.7 wt. %
of weightlessness at 356 ◦C under different hydrogen concentration; (iii) the surface of
R-CeO2 is continually and incompletely reduced by H2, and the decrement of weight is
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about 1.7 wt. % at 837 ◦C for 30% H2, 2.0 wt. % at 782 ◦C for 60% H2, and 6.0 wt. % at
757 ◦C for pure hydrogen atmosphere, respectively; (iv) the subsurface of ceria is reduced
and tends to form Ce2O3 [37]. With the increasing of H2 concentration, the weight loss of
raw R-CeO2 at the same temperature increases, which means more O atoms are divorced
from ceria lattice by the following reaction:

CeO2 + x H2 ↔ CeO2−x + x/2 H2O (g), (3)

where 0 < x < 0.5, and nonstoichiometric value of x depends on the temperature and H2
partial pressure.

Figure 2. TEM images of raw P-CeO2 (a), C-CeO2 (b) and R-CeO2 (c), HRTEM images of raw P-CeO2 (d), C-CeO2 (e) and
R-CeO2 (f).

The H2-TPR results of synthesized raw CeO2 are shown in Figure 3b. The first and
second peak shown in TPR curves corresponds to the surface reduction and bulk reduction
of ceria by hydrogen, respectively [36]. The synthesized various structural nanoceria
samples show different start/end reduction temperatures for the first reduction stage of
three tested samples, where R-CeO2 has the widest reduction range of 254.1–501.9 ◦C,
P-CeO2 shows the narrowest range from 360.1 to 485.8 ◦C, followed by the 271.9–492.0 ◦C
for C-CeO2. At the second reduction step, the maximum reduction peaks are found to be
achieved at the temperature of 758.8, 776.4 and 787.7 ◦C for C-CeO2, R-CeO2 and P-CeO2,
respectively. The notable diversity of the reducing behavior for the R-CeO2, C-CeO2 and
P-CeO2 further verifies the different activities of the mainly exposed crystal faces in ceria,
where (110) and (100) are more active than (111) facet [40,41,49,50]. Based on the TG and
H2-TPR results, annealing ceria at a same temperature of 600 ◦C in different hydrogen
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partial pressure atmosphere will produce ceria samples with various concentration of
surface OVs.

Figure 3. Thermal reduction behavior of synthesized ceria, (a) the thermo-gravimetric analysis of raw R-CeO2 under
different atmosphere, (b) the H2-TPR of raw P-CeO2, C-CeO2 and R-CeO2.

3.3. OVs Characterization

Three shaped ceria powders were annealed in four types of atmospheres, and different
colored products were obtained, where the ceria annealed in air is pale yellow for P-CeO2
and R-CeO2, white for C- CeO2, and then turns to greyish-green or blue-yellow with the
increasing of H2 partial pressure, and the colors of annealed ceria are shown in Figure S2.
It is known that the color of pure and stoichiometric cerium dioxide is pale yellow [51],
and its color will turn to blue or even black after the formation of nonstoichiometric
ceria [52], the observed color variation means an abundance of OVs were generated after
hydrogen annealing.

The Ce 3d spectra of raw and annealed ceria are shown in Figure 4, three final states of
Ce4+, including Ce3d94f0O2p6, Ce3d94f1Op5 and Ce3d94f2O2p4 expressed as u”’ (v”’), u” (v”)
and u (v) for Ce3d3/2(Ce3d5/2), respectively; two final states of Ce3+, including Ce3d94f1O2p6

and Ce3d94f2O2p5, are expressed as u’ (v’) and u0 (v0) for Ce3d3/2(Ce3d5/2) [53–56]. The Ce3+

fraction was calculated by the following equation [57].

Ce3+ / (Ce3+ + Ce4+) = area(v0, u0, v′, u′) / total area. (4)

As shown in Figure 4, the areas of v’ and u’ corresponding to the Ce3+ are increasing
after annealing in a higher hydrogen contained atmosphere, which means more Ce4+ in
ceria was reduced to Ce3+. Calculated Ce3+ fractions are shown in Figure 4d, where an
obvious rising of Ce3+ fraction can be found with the increasing of hydrogen concentration,
the Ce3+ % increases from 10.66 to 16.56%, 9.71 to 15.12%, and 11.73 to 19.55% for the
P-CeO2, C-CeO2, and R-CeO2, respectively. More OVs appear on the surface of R-CeO2
which is related to the suitable surface activity of (110) facet [58]. In O 1s spectra (are
given in Figure S3), oxygen species are originated from lattice oxygen (OL) attached to Ce4+

ion and adsorbed oxygen to Ce3+ site (OV), which can be deconvoluted into two peaks
at around 529.2 and 531.3 eV, respectively [59,60]. The area and intensity of OV peak are
relevant to the oxygen vacancy in the host lattice, which is calculated and given in Table S2.
It can be found that the OV fraction of ceria increases with the rising of H2 concentration in
annealing gas, which further identified the results shown in Ce 3d spectra that more surface
OVs are generated after annealing in a higher H2 concentration atmosphere at 600 ◦C.
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Figure 4. The XPS spectra of P-CeO2 (a), C-CeO2 (b) and R-CeO2 (c) annealed in different concentration of H2, and the
calculated Ce3+ fractions (d).

3.4. Photocatalytic Activities

Photocatalytic properties of tested ceria are shown in Figure 5, and the photodegra-
dation ratio of the tested samples is presented in Table S3 together with the calculated
degradation rate constants. It is clearly found that the annealed ceria has a higher pho-
tocatalytic activity than that of raw material, and the photocatalytic activities of three
structural ceria are elevated gradually with the increasing of surface OVs concentration.
The observed results further verified the reported results [20–22,26] that the OVs are bene-
ficial for the enhancement of photocatalytic property of ceria. P-CeO2-H2 has the highest
photodegradation ratio of MB of 93.82%, which is larger than 90.09% of R-CeO2-H2 and
85.15% of C-CeO2-H2. The excellent photocatalytic activity of P-CeO2 may be due to its
smallest average particle size around 9 nm.

As it is known that size [61], morphology [62] and OVs concentration [63] are the
main factors which influence the photocatalytic activity as well as the photoelectric charac-
terizations of ceria. The TEM images of the CeO2 annealed in air and pure hydrogen are
given in Figures S4–S7. It can be seen that the annealed P-CeO2 still exhibits (111) facet,
the crystal plane of annealed C-CeO2 is transformed from (100) to stable (111). The plane
of calcined R-CeO2-Air is also tended to (111) with small particles aggregating, but the
previously existing (110) facets are turned to active (100) in R-CeO2-H2 with the small holes
on nanorods. The average particle size of P-CeO2-H2 and C-CeO2-H2 is larger than that of
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P-CeO2-air, and C-CeO2-air, respectively, but the length of R-CeO2-H2 is found as around
60 nm which is shorter than that of R-CeO2-air.

Figure 5. The photocatalytic degradation ratio and rate of P-CeO2 (a,b), C-CeO2 (c,d), and R-CeO2 (e,f) calcining in different
atmosphere.

The XRD patterns of C-CeO2 annealed in air, 30%, 60% and pure H2 are shown in
Figure S8. It can be found that all annealed samples have the similar diffraction pattern
of CeO2, no peaks of Ce2O3 can be found. The calculated crystal size is given in Table S4,
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the crystal size of the ceria increased after annealing, which is in agreement with the
TEM images, while the sample annealed in hydrogen has a slightly increased crystal size
compared with that in air. Moreover, the nitrogen adsorption–desorption isotherms of the
P-CeO2, C-CeO2, and R-CeO2 calcining in air or pure H2 are shown in Figure S9. It was
calculated that the BET surface area of P-CeO2-air, C-CeO2-air and R-CeO2-air is 60.25,
20.94 and 68.20 m2/g, respectively, where that of P-CeO2-H2, C-CeO2-H2 and R-CeO2-H2
is 10.41, 16.43, and 44.76 m2/g. We found that the BET surface area of all samples decreased
after calcining in H2, which further indicates that the surface OVs concentration is the
major factor on the photocatalytic properties of ceria in this study. In addition, the excellent
photocatalytic performance of P-CeO2 may be related to the ordered mesoporous structure.

Hence, the similar morphology, size and BET surface area of the annealed ceria in
different atmospheres suggests that the surface OVs concentration is the major factor in the
photocatalytic properties of ceria in this study.

3.5. Band Structure of as Prepared Ceria

The UV-Vis DRS spectra and the band energy curves of CeO2 are shown in Figure 6,
and the calculated band gap values are given in Table S5, and it is found that the variations
of the light absorption behavior and the band gap for the different morphology ceria before
and after annealing are not stereotyped. After annealing, the band gap firstly expands and
then slightly narrows with the increase of surface OVs concentration. Raw P-CeO2 has a
band gap of 2.987 eV, while the band gap values of annealed cubic nanoceria are in the
range of 2.796–2.864 eV. C-CeO2 samples have similar band gaps of 3.170–3.204 eV. Raw
R-CeO2 has a narrower band gap of 2.882 eV than that of annealed R-CeO2 samples, while
the band gap value of R-CeO2-air increases to 3.019 eV and then turns to 3.283 eV for 30%
H2 annealed sample, by continually increasing the H2 concentration the values tend to
decrease slightly. Interestingly, the observed variations of band gap are quite different from
the previous reports (e.g., [21,26]), and no significant changes of band gap are observed
with the increasing of OVs concentration, which indicates that the surface OVs generated
by hydrogen annealing at 600 ◦C have minimal effects on the band gap of nanoceria.

Band gap energy (Eg) of ceria depends on the conduction band (CB) and valence band
(VB), the energy of VB (EVB) of annealed ceria was analyzed by UPS and the results are
shown in Figure 7, where the band edge position of CB (ECB) was calculated based on the
relationship as given in Equation (5).

EVB = ECB + Eg. (5)

Moreover, the value of EVB and ECB can be generally calculated by the Mullikan
Electronegativity equation [64]:

ECB = χ − EC − 1 / 2 Eg, (6)

where χ is the absolute electronegativity of EC the semiconductor, the χ value of CeO2
is reported as 5.56 eV [65], and EC is the energy of free electrons on the hydrogen scale
(−4.5 eV [66]). The measured and calculated EVB and ECB are listed in Table S5, where it
can be found that the band edge positions obtained under different conditions present a
similar variation trend for the same shaped ceria samples. For three studied structured
ceria, the EVB expands to a more positive position when the annealing atmosphere turns to
30% H2 from air, then decreases with the rising of H2 concentration. On the contrary, the
values of ECB of C-CeO2 and P-CeO2 are firstly moved to the Fermi level closely and then
become more negative with the OVs concentration rising, while the ECB of R-CeO2 is firstly
expanded to a more negative position and then turns back to Fermi level with the increase
of surface OVs.
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Figure 6. UV-Vis DRS and energy band curves of P-CeO2 (a,b), C-CeO2 (c,d) and R-CeO2 (e,f) calcining in different
concentration of H2.

3.6. Separation/Recombination of e−/h+

PL spectra, as shown in Figure 8, were employed to investigate the recombination
efficiency of photoinduced electrons and holes, where a lower recombination rate is charac-
terized by a lower PL intensity [17,67]. It can be found that all PL spectra show strong blue
emission peaks centered at 430–490 nm, which is associated with the defect levels localized
between the Ce 4f and O 2p bands [68–71]. With the rising of surface OVs concentration,
the intensities of PL spectra for P-CeO2 and C-CeO2 obviously weaken firstly, then decrease
slightly. However, the intensities of emission spectra for R-CeO2 samples are continually
weakening with the increasing of OVs concentration, which may offer an evidence for the
potential or further reducing of the recombination rate of photogenerated carrier for ceria
nanorod with a higher surface OVs concentration. Besides, after annealing in air, 30% and



Nanomaterials 2021, 11, 1168 11 of 18

60% H2, R-CeO2 shows a lower PL intensity than that of other typical structure nanoceria,
while after annealing in pure hydrogen, the P-CeO2 exhibits the lowest PL intensity.

Figure 7. UPS valence band spectra and energy band gap schematic diagram of P-CeO2 (a,b), C-CeO2 (c,d), and R-CeO2

(e,f) annealed in different concentration of H2.
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Figure 8. The PL spectra of annealed P-CeO2 (a), C-CeO2 (b), R-CeO2 (c) and the samples annealed in same condition (d–g).

In order to further confirm the separation efficiency of photogenerated electron-hole
pairs of the studied samples [72], the transient photocurrent response experiments were
measured, and the average photocurrent densities are shown in Figure 9 and Table S6.
Higher photocurrent densities are presented with the rising of surface OVs concentration in
P-CeO2, C-CeO2 and R-CeO2 annealed in increasing concentration of H2, which suggests
a higher surface OVs concentration may elevate the e−/h+ separation efficiency of CeO2
photocatalyst. It is generally known that a higher separation and lower recombination
rate of e−/h+ are beneficial to the better photocatalytic activity [73], which provide further
evidence for the enhancement of photocatalytic activity of ceria after annealing in hydrogen.

3.7. Proposed Mechanism for Photocatalytic Enhancement

To evaluate the contributions of surface OVs on the photoelectric characterizations
and photocatalytic activity of ceria, the offset values of each property of different hy-
drogen annealed ceria compared with the air annealed CeO2 were calculated using the
following equation:

Offset Value = (Pi − P0)/P0 × 100%, (7)
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where P means the properties including band gap value, photodegradation ratio of MB at
2 h or the photogenerated current, i (i = 0, 1, 2, and 3) represents the number of annealed
samples, where 0, 1, 2, and 3 means the sample annealed in air, 30%, 60%, and pure
H2, respectively.

Figure 9. The transient photocurrent curves of P-CeO2, C-CeO2 and R-CeO2 calcining in different
concentration of H2.

The relationships of offset values vs. surface Ce3+ concentration of ceria are shown
in Figure 10 and Table S7. The offset value of band gap is slightly decreasing with the
increasing of surface Ce3+ while the 30% H2 annealed samples have a wider band gap than
that of air annealed ceria, suggesting that surface OVs may expand the band gap of ceria
firstly, and then the band gap value tends to decrease slightly with a continual rising of
surface OVs. Revealed results may explain the reported references, e.g., Gao et al. [22]
obtained rich surface OVs ceria by surface engineering with a blue shift of the UV-Vis
spectra. Interestingly, the variations both of the offset value of photodegradation ratio
and the photocurrent density are notably rising with an increase of surface OVs, which
indicates that the reduction of e−/h+ recombination may be the major contribution of
surface OVs on the enhancement of photocatalytic activity under same light source.

Comparing the effects of surface OVs on different shaped ceria, it can be found that
surface OVs affect the photocatalytic activity most significantly on the cubic ceria, while C-
CeO2 contains low surface OVs due to its large particle size and high activity of (100) facet,
more surface OVs induced in ceria nanocube lattice may result in a moderate photocatalytic
activity. Even the effect of surface OVs working on photocatalytic activity of R-CeO2 is
slightly smaller than that of P-CeO2, but more OVs can be generated in the R-CeO2, which
also results in a high photocatalytic activity. On the other hand, the polyhedral ceria has
the smallest size distribution, which may be one of important reasons for its excellent
photocatalytic property.

Based on the revealed results, the contributions of surface OVs on the photocatalytic
activity of ceria can be concluded as shown in Figure 11. In the range of studied surface
OV concentration in cubic, polyhedral or rod-like ceria, a significantly reduction of the
combination of e−/h+ is the major contribution of surface OVs on the promoted photo-
catalytic activity, while the band gap varies slightly. The surface OVs in CeO2 lattice are
rearranged to produce small microdomains [74] and ordered together to form electron deep
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traps which can facilitate the reduction of the recombination rate between photoelectrons
and holes during the photocatalytic process [24,75]. Moreover, surface OVs profit the
adsorption of O2 or OH− on ceria surface, which will promote the generation of radical
and reduce the recombination of e−/h+ photocarriers [69]. Hence, under the same illu-
mination condition, the photocatalytic activity is obviously enhanced with the rising of
surface OVs concentration, which is majorly influenced by the reduced recombination of
e−/h+. In addition, the effect rule of surface OVs on photoelectric characterizations and
photocatalytic activity of cubic, polyhedral and rod-like ceria is similar but with different
incidence, furthermore, reducing particle size and gaining OVs concentration of ceria are
still the major tactics for enhancing its photocatalytic activity.

Figure 10. The contributions of Ce3+ on the photoelectric characterizations and photocatalytic activity.

Figure 11. Mechanism schematic of promoted photocatalytic activity of surface contained nanoceria.

4. Conclusions

After sufficient discussion of the revealed results, it can be concluded that a concentra-
tion gradient of surface OVs can be generated in ceria lattice after annealing nanoceria at
600 ◦C in various H2 concentration atmospheres, and the ceria annealed in hydrogen has a
larger particle size and the exposing lattice face tuned after annealing. Surface OVs sig-
nificantly enhanced the photocatalytic activity of ceria, the MB degradation ratio after 2 h
with pure hydrogen annealed C-CeO2, P-CeO2, or R-CeO2 is 85.15%, 93.82% and 90.09%,
respectively, which is 1.5, 1.29 and 1.33 times higher than that of the air annealed sample.
The band structure, including band gap, VB, and CB of annealed samples vary slightly,
even the surface OVs in ceria lattice changed obviously. Recombination of photoinduced
carrier, e−/h+, has a notable reduction with the rising of surface OVs, which is suggested
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to be the main contribution for the enhancement of photocatalytic activity of ceria with
more surface OVs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11051168/s1, Figure S1. Size distribution of raw P-CeO2 (a), C-CeO2 (b) and R-CeO2 (c).
Figure S2. Color variation of P-CeO2, C-CeO2 and R-CeO2 (from left to right) calcining in different
atmospheres: (a) raw samples without annealing, (b) air, (c) 30% H2, (d) 60% H2, and (e) pure H2
condition. Figure S3. O 1s spectra of P-CeO2 (a), C-CeO2 (b) and R-CeO2 (c) calcining in different
concentration of H2. Figure S4. TEM images and size distribution of P-CeO2 calcining in air (a–c) and
H2 (d–f) at 600 ◦C. Figure S5. TEM images and size distribution of C-CeO2 calcining in air (a–c) and
H2 (d–f) at 600 ◦C. Figure S6. TEM images and size distribution of R-CeO2 calcining in air (a–c) and
H2 (d–f) at 600 ◦C. Figure S7. TEM images of raw R-CeO2 (a), R-CeO2-Air (b) and R-CeO2-H2 (c).
Figure S8. The XRD patterns of C-CeO2 annealed in air, 30%, 60% and pure H2. Figure S9. Nitrogen
adsorption–desorption isotherms of the P-CeO2 (a), C-CeO2 (b), and R-CeO2 (c) calcining in air or
pure H2. Table S1. Synthetic conditions of raw P-CeO2, C-CeO2 and R-CeO2. Table S2. Ce3+ and
absorbed oxygen concentration of P-CeO2, C-CeO2 and R-CeO2 calcining in different concentration
of H2. Table S3. Photocatalytic degradation ratio and rate constants of P-CeO2, C-CeO2, and R-CeO2
calcining in different atmospheres. Table S4. The calculated crystal size of C-CeO2 annealed in air,
30%, 60% and pure H2. Table S5. Energy band gap, calculated valence and conductive band, tested
valence and conductive band of P-CeO2, C-CeO2, and R-CeO2 calcining in different concentration
of H2. Table S6. Average current density (µA/cm2) of P-CeO2, C-CeO2, and R-CeO2 calcining in
different concentration of H2. Table S7. Offset values of photodegradation ratio, band gap and
photocurrent density of different hydrogen annealed ceria.
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