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Abstract

A significant challenge facing high-throughput phenotyping of in-vivo knockout mice is ensuring phenotype calls are robust
and reliable. Central to this problem is selecting an appropriate statistical analysis that models both the experimental design
(the workflow and the way control mice are selected for comparison with knockout animals) and the sources of variation.
Recently we proposed a mixed model suitable for small batch-oriented studies, where controls are not phenotyped
concurrently with mutants. Here we evaluate this method both for its sensitivity to detect phenotypic effects and to control
false positives, across a range of workflows used at mouse phenotyping centers. We found the sensitivity and control of
false positives depend on the workflow. We show that the phenotypes in control mice fluctuate unexpectedly between
batches and this can cause the false positive rate of phenotype calls to be inflated when only a small number of batches are
tested, when the effect of knockout becomes confounded with temporal fluctuations in control mice. This effect was
observed in both behavioural and physiological assays. Based on this analysis, we recommend two approaches (workflow
and accompanying control strategy) and associated analyses, which would be robust, for use in high-throughput
phenotyping pipelines. Our results show the importance in modelling all sources of variability in high-throughput
phenotyping studies.
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Introduction

Phenotyping, the process by which an organism’s observable

characteristics are measured, is an essential component of

biological research. However, there is need for improvements in

phenotyping methodology to improve reproducibility and reduce

the sensitivity of assays to the environment [1–3].

The mouse is the premier model organism for understanding

gene function in development and disease. The International

Mouse Phenotyping Consortium (IMPC) [4] aims to phenotype

knockouts for all mouse protein coding genes, building on the large

collection of targeted alleles in C57BL/6N embryonic stem cells

available from the International Knockout Mouse Consortium [5–

7]. Currently ten centers, are screening mutant mouse strains with

a series of standardised tests carried at specific ages [4]. To do this,

each centre developed and implemented its own phenotyping

pipeline reflecting its local facilities and constraints. The IMPC has

developed a central resource (www.mousephenotype.org) to

disseminate and share all animal, experimental and phenotypic

data from every mutant line analysed. These data can be mined to

determine which factors influence phenotyping experiments and

whether different workflows produce comparable results.

Here, a phenotyping pipeline means a well-defined sequence of

phenotyping procedures carried out at specific ages. To date,

standardisation has focused on the experimental methods by

which data were collected [8,9]. However the workflow - the

practical implementation of a pipeline - varies from centre to

centre. Each centre’s workflow is a balance of resources, other

goals (e.g. allowing for additional phenotyping depending on

earlier results) and throughput requirements. Differences in the

number and frequency of controls, whether knockout animals are

phenotyped at one time or in multiple batches, and blinding

methodologies are the most important variables. Batch (defined

here as those readings collected on a particular day) is a significant

source of variation [10] and consequently how a pipeline is

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e111239

from the IMPC project portal (www.mousephenotype.org) as it can access data from the http://www.europhenome.org/.

http://creativecommons.org/licenses/by/4.0/
http://www.mousephenotype.org
http://www.europhenome.org/
www.nih.gov
www.bmbf.de
www.cnrs.fr
http://ec.europa.eu
www.mousephenotype.org
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0111239&domain=pdf


implemented (the workflow) is critical to how data from a pipeline

should be analysed.

For the purposes of this study, workflows vary in two important

ways. First, whether there are concurrent controls for each assay

day (batch). The use of concurrent controls significantly reduces

the capacity of the pipeline because far more controls are

phenotyped. Second, the breeding strategy implemented affects

the generation of knockout animals with the appropriate age

range. The breeding strategy and resulting batch size depends on

capacity of vivarium, budget, fertility, fecundity, and viability. In

consequence, controls are not necessarily phenotyped concurrently

with each knockout line nor are the knockout animals all

phenotyped in one batch. In the presence of temporal variation,

where the mice in the same batch are likely to be more similar

than those from different batches, these issues make phenotyping a

challenge, particularly as only seven mice per knockout strain per

sex are phenotyped. With variation in workflow across institutes,

this raises the question as to how data should be analysed to

reliably identify phenotypes for the community.

There are two published analysis methodologies for quantitate

traits that try to account for these issues. In the reference range

(RR) methodology, a mouse knockout is classed as having a

phenotype of interest if the majority of the knockout animals lay

outside the range of variation observed in the controls [11]. This is

a conservative, non-quantitative method that has a non-constant

significance levels and restricts downstream analysis of the data

[10]. With the RR methodology implemented at Wellcome Trust

Sanger Institute (WTSI), the probability of observing a significant

phenotype by chance is about 661026 per sex per tested

phenotype, and the chance that either sex is significant is about

1.261025 per phenotype. The disadvantage of the RR is that it

does not take into account batch variation, and as we show below,

it is thereby possible to make false positive RR calls despite its

apparently stringent significance threshold. Recently, we demon-

strated that a mixed model (MM) methodology in which temporal

variation is modelled gave significantly improvements [10]. The

methodology is implemented in the PhenStat R package [12].

PhenStat starts with a model that includes fixed effects for sex,

genotype, genotype-by-sex interaction and optionally weight, and

a random effect for batch. It tests the significance of each of these

terms in order to optimise the assessment of the genotype effect.

The genotype-by-sex effect is also tested to determine whether

there is a sexual dimorphic knockout effect.

In this study we investigate the impact of temporal variation and

workflow differences on our ability to call phenotypes. To do this,

we constructed datasets sampled from real control data from the

WTSI MGP Select pipeline to mimic various workflows. To

investigate false positive rates (FPR) we relabelled a subset of

controls as knockout mice and then compared them to the

remaining controls. Thus at a nominal p% significance threshold

there should be p% significant calls if the statistical test is accurate

when the null hypothesis is true. We consider data from five assays

to ensure the findings are representative. The assays studied

included the open field behavioural assay, three blood parameters

(peripheral blood leukocytes, haematology and clinical chemistry)

and Dual-energy X-ray absorptiometry (DEXA) that assesses body

composition. We also investigated data from other phenotyping

institutes. We show our ability to call phenotypes accurately and

sensitivity depends on the workflow. We observed the FPR was

inflated in certain workflows, so we constructed and tested further

simulated data that perfectly met the mathematical assumptions

underlying the mixed model. Our analysis demonstrates that the

inflated FPR is associated with the distribution of control data,

combined with the workflow characteristics. We also show that

unexpectedly large batch-to-batch fluctuations in the control data,

cause false positive significant phenotype calls when mice are

phenotyped across only a few batches. Finally we identify

workflow implementations and control strategies that are robust

to the presence of environment fluctuations.

Methods

Ethics
The care and use of mice in the WTSI study was carried out in

accordance with UK Home Office regulations, UK Animals

Table 1. Description of workflow tested.

Workflow Classification Resampling strategy

Random multi-batch For each sex, 7 assay dates selected randomly and one mouse randomly selected from this.

Multi-Group multi-batch For each sex, 3 assay dates selected randomly. From one date, assay 3 mice, and 2 mice from the other dates.

OneBatch traditional 7= and 7R mice selected from one assay date.

TwoBatch low-batch 4= & 4R selected for an assay date, from the next sequential assay date 3= & 3R.

ThreeBatch low-batch 3= & 3R selected for an assay date, from the next sequential assay date 2= & 2R and then from the next sequential
date 2= & 2R.

doi:10.1371/journal.pone.0111239.t001

Figure 1. Example false positive call. Shown are chloride blood
chemistry measures collected for Expitm1a(KOMP)Wtsi/Expitm1a(KOMP)Wtsi

(HOM) and wildtype (+/+) mice at week 16 with the high throughput
pipeline. The phenotype was classed as female specific effect (p value:
0.0016, Genotype by female effect quantified as 25.3461.29 (se) with
PhenStat MM without weight). Comparison based on 298 female and
264 male wildtype mice and 7 female and 6 male knockout mice.
doi:10.1371/journal.pone.0111239.g001
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(Scientific Procedures) Act of 1986 under two UK Home Office

licences which approved this work (80/2076 and 80/2485) which

were reviewed regularly by the WTSI Ethical Review Committee.

The care and use of mice at the German Mouse Clinic (permit:

55.2-1-54-2532) was in accordance of the German Animal Welfare

Act and were approved by the Government of Upper Bavaria via

the Regierung von Oberbayern committee. The care and use of

mice at the Institut Clinique de la Souris were performed under

protocols (2011-024a and 2011-024b) approved by the Com’Eth

committee.

All efforts were made to minimize suffering by considerate

housing and husbandry (see Methods S1 for details). Animal

welfare was assessed routinely for all mice involved. Adult mice

were killed by terminal anaesthesia followed by exsanguination

and either cervical dislocation or removal of the heart.

Datasets
For information on datasets; including the housing and

husbandry, procedural methods for collection of data, and how

data can be accessed please see Methods S1.

Construction of artificial data
Artificial control data were constructed based on the current

knowledge of having sex and temporal variation as dominate

sources of variation and assumes that the temporal variation arises

from a batch effect that is independent normally distributed. As

these sources of variation are modelled within the mixed model,

this data would meet the assumptions of the mixed model test

perfectly. A script (Code S1) generated data by randomly sampling

from a population with defined mean and standard deviation.

Batch variation was simulated under the assumption it was

normally distributed with mean zero and defined variance. Data

were generated for fifteen dependent variables with 300 indepen-

dent batches for different values of the population mean and

standard deviation, and batch variance.

Assessing the false positive rate (FPR)
Resampling studies were conducted to assess the FPR under the

null hypothesis. Mice (7 males and 7 females) were selected from

the control dataset without replacement and relabelled as

knockout. Prior to combining the knockout mice back with the

control mice dataset, the mice selected to be relabelled as knockout

were removed from the control dataset. The resulting dataset were

then examined statistically for statistically significant differences

between control and fake knockout mice (phenodeviants), which

would all be false positives. The mice were selected in a manner to

mimic the various workflows used in high throughput pipelines,

which depend on breeding strategy and pipeline operational issues

(Table 1). Up to 500 datasets were constructed by selecting

different mice based on the workflow rules. For certain workflows

Figure 2. Variation of chloride readings with time. Shown are chloride blood chemistry measures collected at week 16 by batch for those
collected within 2012 for both knockout and control mice collected on the WTSI MGP Select high throughput pipeline for the core strain B6N. The
dotted lines indicate the 95% percentile values. The boxplot highlighted in black shows the date on which the Expitm1a(KOMP)Wtsi female data were
collected, and shows that all values collected on that date were low. Whilst these data points were low, the instruments daily QC checks were within
the required boundaries.
doi:10.1371/journal.pone.0111239.g002

Impact of Temporal Variation in Phenotyping

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e111239



the number of distinct datasets that could be constructed is limited

by the structure of the control data (number and size of batch).

The numbers of datasets tested in each study are given in (Table

S1).

Assessing the statistical power
Simulated control data, comprising 300 batches with 7 males

and 7 females in each date, were constructed based on the

population characteristics estimated for the WTSI DEXA control

dataset. The population characteristics were estimated by fitting a

mixed model with sex and weight as a fixed effect and assay date as

a random effect. From the model fitting, estimates were extracted

for the male and female biological mean. The standard deviation

estimated on the intercept equating the female data was taken as

the biological standard deviation. To assess the impact of batch

variability, datasets were constructed with varying amounts of

batch variant (from 25 to 400% of the estimated biological

standard deviation). Phenodeviant mice were constructed by

sampling 7 male and 7 female animals from the simulated dataset,

adding a defined signal and relabeling as knockout mice and

assessed using PhenStat (model: without Weight). To assess

sensitivity, the amount of signal added varied between 25 to

200% of the estimated standard deviation within a batch for a

variable. This process was completed 500 times for each variable

for each scenario. The study was repeated independently for each

workflow studied (see Table 1).

Identification of significant phenotypes
An iterative top down mixed modelling strategy was performed

as described in [10] using PhenStat an R package [12] freely

available from Bioconductor [13]. There are two possible start

models, depending on whether weight is included as a factor (see

Eq1. and Eq2.). The complexity of the model is limited by the low

number of mice used in high throughput studies as such key fixed

effects have been selected.

depVariable*GenotypezGender

zGenotype � GenderzWeight
ð1Þ

depVariable*GenotypezGenderzGenotype � Gender ð2Þ

Results

Investigating reproducibility issues
At WTSI, we have found instances where phenotype calls that

were significant according to either the RR and MM criteria were

not reproducible. These cases often occurred when the 14

knockout mice were phenotyped across only four or fewer batches

(low-batch/traditional workflow), The knockout Expitm1a(KOMP)Wtsi

is a typical example. Two clinical chemistry variables (sodium and

Figure 3. Example temporal variation in control data. Shown are box and whisker plots as function of batch (x-axis) A: Fat mass readings for
Institut Clinique de la Souris IMPC pipeline control C57BL/6NTac male mice B: Platelet readings for the German Mouse clinic IMPC pipeline control
C57BL/6NTac(USA) male mice.
doi:10.1371/journal.pone.0111239.g003
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chloride) appeared to be highly significant for the female mice

both by the MM and the more conservative reference range (RR)

methodology (Example shown in Figure 1). However these

phenotype calls were not replicated during secondary phenotyp-

ing, despite the apparently large phenotypic effect which gave the

secondary experiment high sensitivity (power = 0.957)(data not

shown). Further investigation showed that all the knockout females

were phenotyped on a single day without concurrent controls, and

all data collected on that day were low compared to other days,

but still within instrument quality control checks (Figure 2).

This problem is not specific to the WTSI, as it is found in

control data from two other independent high throughput

programs at the German Mouse Clinic (GMC) and Institut

Clinique de la Souris (ICS). Similar to WTSI control data, analysis

of variance showed that on average batch accounted for a quarter

of the variation (WTSI: 22.361.5%, GMC: 27.762.0%, ICS:

27.362.2% (mean 6 standard error of the mean)), whilst sex

accounted for around 10% (WTSI: 11.961.8%, GMC:

8.261.9%, ICS: 12.162.0% (mean 6 standard error of the

mean)). The contribution of weight depended on the assay (data

not shown). An example of temporal batch variation is plotted in

Figure 3.

Using control data to mimic various workflows
To understand the variation to be expected under the null

hypothesis that there is no phenotypic effect due to the knockout

allele, we simulated a variety of different workflows, the details of

which are described in Table 1 and Figure S1. We sampled

phenotype data from control animals on different days to mimic a

given workflow. Workflows can be grouped into three main

categories based on how many batches of knockout animals are

tested per line, which we call traditional, multi-batch, and low-
batch workflows. The traditional workflow is a one batch design

where all phenotype data for a given knockout and procedure are

collected on one day, and typically with concurrent controls. In a

multi-batch workflow, the knockout mice are phenotyped over a

minimum of 5 days. In a low-batch workflow, the knockout mice

are phenotyped over between one to four days. This includes a

Figure 4. Variation in distribution of p-values with workflow. Example empirical distribution profiles for the resampling of the seven traits
measured in the Dual-energy X-ray absorptiometry control data. A and B: Multi-Group workflow where A shows the test of genotype effect and B the
test of genotype-by-sex effect. C and D: One batch per colony workflow where C shows the test of genotype effect and D the test of genotype-by-sex
effect.
doi:10.1371/journal.pone.0111239.g004
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workflow where mice are phenotyped in two batches, one for each

sex. In our simulations control mice were selected at random from

the corresponding number of batches using real data from the

WTSI MGP Select pipeline. We then assigned the sampled

animals to knockout and control groups in order to mimic the

given workflow. Thus, if our mixed-model statistical analysis is

valid then we should expect to call p% of the simulations as

significant at the p% level.

For some workflows we found the empirical distribution was

close to the ideal, whilst others have an inflated FPR with a spike

of low p-values (Figure 4 and Table S2). This workflow effect was

independent of assay, trait or whether weight was included as a

covariate (data not shown). It was also independent of the

significance thresholds selected (Figure S2).

As would be expected if there were large fluctuations between

batches, low-batch and traditional workflows with the MM

methodology showed elevated false positive rates for both the

genotype and the genotype-by-sex effects (Figure 5). We observed

similar behaviour when we resampled control data from other

institutes (Figure 6). However, in contrast to the WTSI data, the

multi-batch workflow with ICS dataset also had an inflated FPR.

ICS has a lower throughput than WTSI and typically uses a

concurrent control design. Consequently data are collected less

frequently and the dataset available for resampling were smaller.

The proportion of variance attributable to batch was higher in the

ICS data relative to the WTSI (paired t-Test, p = 3.81e-4, df = 47,

difference: 6.361.3% (mean 6 standard error of the mean),

possibly due to larger time intervals between batches.

Resampling of artificially constructed data
To understand the source of the increased FPR of the MM

with some workflows, artificial control data were constructed

based on the current understanding of variation in the control

data. As this knowledge has been used to construct the mixed

model, this control data would met the assumptions of the mixed

model perfectly. The resampling study was repeated on this data

(Figure 7). The distribution of false positive rates became

independent of workflow, though was slightly higher than

expected, e.g. with an average rate 8% at the 5% significance

threshold. The higher FPR is due to the iterative nature of the

testing, where the model is optimised for the presence or absence

of sexual dimorphism. This introduces a slight bias towards

calling differences and hence a higher FPR. As the effect is

consistent across workflows and significance thresholds, we can

adjust the p-value threshold used to achieve the desired FPR

(Figure S3).

Power analysis
For the various workflows where we have seven males and seven

female knockout mice, we next considered situations where there

Figure 5. False Positive Rates for resampling control data for various workflows. Shown are FPRs under the null hypothesis of no
phenotypic effect, estimated by resampling controls for various workflows, for 70 traits from five assays from the WTSI Mouse Genetics Project (MGP)
Select Pipeline. The y-axis shows box-and-whisker plots of the distribution of the FPR, defined as the fraction of resampled datasets significant at the
nominal 5% level in a mixed model. A: FPR of the test of genotype effect. B: FPR of the test of sex by genotype interaction. The labels relate to the
workflows as defined in table one where MG indicates the Multi-Group, R the Random, B2 the TwoBatch, B1 the OneBatch and B3 the ThreeBatch
workflows.
doi:10.1371/journal.pone.0111239.g005
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was a genuine difference between knockouts and controls by

adding an offset (the genotype effect, scaled in units of biological

standard deviation) to the phenotypes of the simulated knockout

animals, in order to estimate power. As would be expected, as

the genotype effect increased, so did the power. This sensitivity

was independent of the extent of batch variation (Figure 8a) as

the mixed model separates the batch variation from the

genotype variation. Also as expected, with more stringent

significance thresholds (for example the IMPC analysis pipeline

currently uses 0.0001) power decreases (Figure S4). With a

random workflow and a significance threshold of 0.05, 80%

power is achieved when the genotype effect is equivalent to

0.75*standard deviation units, whilst with the significance

threshold of 0.0001, 80% power is achieved when the genotype

effect is equivalent to 1.35*standard deviation units. The

workflow had a significant impact on sensitivity (Figure 8b);

sensitivity was higher when knockout mice were phenotyped in

more batches.

Discussion

Understanding the issues surrounding in vivo high-throughput

mouse phenotyping is critical in order that we understand the

genotype-phenotype map. In particular the control of temporal

variation is a significant challenge. Its impact depends on whether

there are concurrent controls and whether mice for a knockout

line are phenotyped in single or multiple batches. This also raises

the question of how to analyse the data robustly. These issues are

not unique to high throughput phenotyping, because in small-scale

studies fertility and cost issues associated with breeding make it

difficult to obtain sufficient animals at one point in time.

Experiments run over multiple batches have greater generaliz-

ability but this means the analysis has to account for the temporal

variation appropriately.

Our simulations show that the mixed model methodology has

the expected FPR in workflows with many batches of mice (multi-

batch workflows) but that the FPR is inflated in low-batch and

traditional workflows. This is the case across all five assays tested,

selected to represent the breadth of phenotyping tests in different

Figure 6. False Positive Rates for other institutes for various workflows. Shown are FPRs under the null hypothesis of no phenotypic effect,
estimated by resampling controls from two independent institutes for various workflows. The y-axis’s show box-and-whisker plots of the distribution
of the FPR, defined as the fraction of resampled datasets significant at the nominal 5% level in a mixed model. A, B: Resampling results using data
from the German Mouse Clinic, where A is the FPR for genotype effect and B is the FPR for genotype-by-sex effect. C, D: Results using control data
from Institut Clinique de la Souris, where C is the FPRs for the genotype effect and D the FPRs for the genotype-by-sex effect. The labels relate to the
workflows as defined in table one where MG indicates the Multi-Group, R the Random, B2 the TwoBatch, B1 the OneBatch and B3 the ThreeBatch
workflows.
doi:10.1371/journal.pone.0111239.g006
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centres. In contrast, our simulations with artificially constructed

data showed that the FPR was independent of workflow and

similar to that with real control data in random or multi-batch
workflows, suggesting MM models real data well in these

workflows. The discrepancy between real control and simulated

data in low-batch workflows shows that phenotyping mice in only a

few batches is likely to increase the FPR. We suggest that extreme

environmental fluctuations, leading to atypical control data,

caused significant phenotype calls in low-batch/traditional work-

flows as the model assumed the difference between controls and

KO animals was entirely genotypic.

The MM is sensitive technique for a multi-batch workflow with

80% power to detect a genotype effect equivalent to 0.75–0.87

times the population standard deviation (depending on exact

multi-batch implementation) with 7 males and 7 females when

compared to a large set of controls with a 5% significance

threshold. Power was independent of the size of the batch

variance. Power was significantly lower with low-batch and

traditional workflow; indicating that in such workflows the MM

has poor control of false positives and high rate of false negatives.

Our results suggest that a single statistical analysis pipeline for

the IMPC is inappropriate unless the same workflow is used in all

centres. Where knockout mice are phenotyped in many small

batches, the MM minimises the risk of the genotype effect being

confounded by unexpected temporal variation. Alternate analysis

strategies may be more appropriate for other workflows if they can

model the over-dispersion of temporal variation better. For

example, in a workflow comprising a single batch of mice with

concurrent controls (traditional workflow), temporal effects are

avoided and traditional statistical methods (e.g. student’s t-test) are

appropriate, though the generalizability of the results are lower. In

practice, it is usual to obtain mice in small batches due to fertility

or fecundity issues, so another option would be to phenotype the

mice with concurrent controls within each batch and analyse the

data using a regression method where batch is treated as a fixed

effect. This would be a common scenario for secondary

phenotyping experiments, to follow up lines of interest. However

as the number of knockout mice are typically low for a line, we

suggest that at least two mice for each genotype in each batch are

phenotyped to obtain accurate estimates.

Our findings have implications not only for in-vivo mouse

studies, but also for general phenotyping experiments, including

cell line studies, that are subject to batch variation. The statistical

analysis of high-throughput studies is an important but relatively

neglected field. It might be thought that because the comparisons

involved are simple (case vs control) so is the analysis. However,

we have shown here that this is not the case, because it is rarely

possible to control the environment completely. High-throughput

studies that ignore the effect of environment on the experimental

design are therefore liable to produce unreliable conclusions.

Figure 7. False Positive Rates for simulated data for various workflows. Shown are FPRs under the null hypothesis of no phenotypic effect,
estimated by resampling simulated controls. The y-axis’s show box-and-whisker plots of the distribution of the FPR, defined as the fraction of
resampled datasets significant at the nominal 5% level in a mixed model. A: FPRs of the test of genotype effect. B: FPRs of the test of genotype-by-sex
effect. The labels relate to the workflows as defined in table one where MG indicates the Multi-Group, B2 the TwoBatch, B1 the OneBatch and B3 the
ThreeBatch workflows.
doi:10.1371/journal.pone.0111239.g007
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