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Abstract: A maskless lithography method to realize the rapid and cost-effective fabrication of
micro-optics elements with arbitrary surface profiles is reported. A digital micro-mirror device
(DMD) is applied to flexibly modulate that the exposure dose according to the surface profile of the
structure to be fabricated. Due to the fact that not only the relationship between the grayscale levels
of the DMD and the exposure dose on the surface of the photoresist, but also the dependence of the
exposure depth on the exposure dose, deviate from a linear relationship arising from the DMD and
photoresist, respectively, and cannot be systemically eliminated, complicated fabrication art and large
fabrication error will results. A method of compensating the two nonlinear effects is proposed that
can be used to accurately design the digital grayscale mask and ensure a precise control of the surface
profile of the structure to be fabricated. To testify to the reliability of this approach, several typical
array elements with a spherical surface, aspherical surface, and conic surface have been fabricated
and tested. The root-mean-square (RMS) between the test and design value of the surface height is
about 0.1 µm. The proposed method of compensating the nonlinear effect in maskless lithography
can be directly used to control the grayscale levels of the DMD for fabricating the structure with an
arbitrary surface profile.
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1. Introduction

During past decades, much research effort has been devoted to micro-optical elements with
arbitrary surface profiles, which can usually achieve extraordinary properties far more than macro
components, and has important applications in optical communication, sensors, special illumination,
and other fields [1–5]. However, the limited fabrication methods for such micro-optical elements have
restricted its development. Electron-beam lithography [6,7] and focused-ion beam [8] can realize a
high-resolution fabrication of the structure with complicated surface profiles in principle, but require a
long-term and expensive device. The direct laser writing technique [9–11] is a promising and economic
method for the fabrication of microstructures, but the scanning mode will limit the improvement of
work efficiency. The thermal reflow method [12–14] cooperated with conventional binary lithography
is usually applied for micro lens array’s generation efficiently, but this method is difficult to control
the surface profile precisely. Grayscale lithography [15–17] using a gray-tone mask is an effective
method to obtain various exposure dose distributions on the photoresist by modulating the intensity
of ultraviolet (UV) light. However, the physical gray-tone mask is usually fabricated by a direct
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writing lithography method and each grayscale mask can only be applied for a fixed structure. This is
inconvenient for the flexible research of various structures and may lead to unnecessary cost.

Recently, maskless photolithography has been proposed for microstructure fabrication [18–22].
A digital micro-mirror device (DMD) has been adopted to replace the traditional physical mask.
A DMD is composed of an array of micro-mirrors, each of which can be independently controlled by
a computer, so a digital image acting as mask can be dynamically displayed in real-time. The great
advantages of maskless photolithography are that no expensive physical mask is necessary. The digital
image can be a flexible design according to the profile of the structure to be fabricated by computer.
Due to its capability of low cost and high flexible, maskless lithography has received significant
attention in the microfabrication field.

To date, the main approaches of fabrication art for achieving micro-optic elements based on the
maskless photolithography are as follows: The first is to transfer the CAD data of the surface function
of the structure to be fabricated into a serial slice along the direction of high, with each slice being a
binary image. These binary images are generated by the DMD under computer control in real-time,
and then are delivered by the imaging system to the surface of the photoresist where a superimposed
exposure dose proportional to the profile function is obtained. Using this approach, Totsu et al. have
fabricated the positive photoresist patterns of spherical and aspherical micro lens arrays with the
diameter of each lens being 100 µm [23]. Zhong et al. also adopted the technique for the fabrication
of continuous relief micro-optic elements [24]. Although these works can achieve the micro-optic
elements at low cost with time savings, a common point of these methods is the tedious preprocessing
of slicing for each design and multiple exposures are needed.

In this paper, we present a new fabrication art approach on the basis of maskless photolithography.
By generating a grayscale map under an appropriate exposure time, a one-step exposure control for
arbitrary surface profiles can be achieved, so both the slicing process and multiple exposures are
avoided. The grayscale level is generated by the multiple reflection technique which adopts the
means of pulse width modulation of the DMD. Although similar grayscale lithography based on DMD
has been adopted by Wang et al. for the fabrication of diffractive optics [25,26], they do not describe
the detailed experiment processing for the nonlinear effect existing in the fabrication procedure.
In the digital grayscale lithography, a serious problem caused by DMD is that the exposure dose
will not linearly change with respect to grayscale levels under a constant exposure time. Accurate
general theoretical formulae for describing such nonlinear relationships are lacking. Additionally,
the relationship between the exposure depth and exposure dose is also nonlinear due to the property of
the photoresist. To compensate the two nonlinear effects and then to generate the appropriate grayscale
map, we adopt the approach of calibrating the relationship between the exposure depth and grayscale
levels under an appropriate exposure time that requires no specific knowledge about the nonlinear
effects of the DMD and photoresist. During this procedure, a reasonable grayscale level range which
maintains a smooth-slow increment and stable intensity distribution needs to be considered to ensure a
well-controlled surface profile and suitable surface roughness. After generating the grayscale mask on
the basis of the adjustment curve, a one-step exposure fabrication art has been built to obtain desired
exposure depth. This method can ensure a precise control of the surface profile of the micro-optics
element to be fabricated, and the process of slicing and multiple exposures are not needed.

To verify the reliability of this method, several typical array elements with a spherical surface,
aspheric surface, and conic surface have been fabricated and tested, whose diameter is 200 µm and
height is 6 µm. The photoresist molds were reversely replicated in polydimethysiloxane (PDMS)
elastomer, which was widely used in micro-optics elements because of its excellent optical properties.
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2. Experiment Setup and Methods

2.1. Maskless Photolithography System

Figure 1a shows the maskless photolithography experimental setup in our laboratory, which
consists of a uniform illumination system at 365 nm wavelength, a high-speed optical projection system
for dynamic UV-light patterning, and a three-axis computer-controlled stage for X-Y location and focus
control. The light from a mercury lamp is filtered to obtain the UV light at a wavelength of 365 nm,
which is introduced into the collimating lens device to provide uniform illumination. The DMD chip
(Wintech DLP 4100 0.7” XGA, Wintech Digital Systems Technology Corp., Carlsbad, CA, USA) from
Texas Instruments plays the role of a mask that reflect the uniform incident UV light pixel-by-pixel to
generate image frames. This image will be transferred by the projection objective to a photoresist-coated
substrate. The DMD consists of a 1024 × 768 micromirror array with a cell size of 13.68 µm,
the demagnification of the projection objective is 6.84. Thus, the theoretical resolution of the
UV-light pattern projected on the photoresist surface is 2 µm. The XYZ stage has a travel range
of 100 mm × 100 mm in the X-Y plane and 10 mm in the vertical direction with a resolution of 50 nm,
which enables us to achieve a large exposure area at the substrate and a precise control of focus.
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Figure 1. (a) Schematic view of the digital micro-mirror device (DMD)-based maskless
photolithography system; (b) pulse width modulation based on 8-bit planes; and (c) the fabrication
procedure based on grayscale mask exposure.

Figure 1b illustrates the grayscale control based on the pulse width modulation of 8-bit planes,
which enable 256 grayscale levels. The single-frame time T0 of a grayscale image is divided into eight
different time intervals controlled by an 8-bit binary sequence. Each micro-mirror unit of the DMD can
be individually controlled by a computer in the direction of ±12◦ (“1” or “0”) to determine whether
its working state is ON or OFF in each bit plane. By rapidly (typically 20 µs) changing the rotation
direction of the micromirror based on the pulse width modulation technique, we obtain a finely-tuned
grayscale level which is in proportion to the time duty cycle of the ON states.

Figure 1c shows the fabrication procedure based on grayscale mask exposure. This procedure
consists of two steps: exposure and development. In the first step, the high grayscale level will result
in a greater exposure dose distribution on the photoresist surface due to its larger duty cycle time of
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the ON states. Then, in the second step, the photoresist pattern whose exposure depth is in proportion
to the exposure dose will be obtained after development. By using the one-step maskless grayscale
lithography, one can flexibly control the grayscale level to modulate the exposure dose required for the
fabrication of micro-optic elements with an arbitrary surface.

2.2. Nonlinear Effects

Essentially, the aim of generating the grayscale is to control the exposure depth of the photoresist.
If the grayscale is of a linear dependence relationship on the exposure depth, then only one scale factor
is needed to be calibrated. However, due to the two reasons discussed below, an adjustment curve
instead of one scale factor must be determined.

Usually, the exposure dose is defined as the product of the intensity of the incidence light I(x, y)
and exposure time T:

E(x, y) = I(x, y)× T (1)

In the maskless lithography system, the exposure dose E(x, y) is proportional to the intensity I(x, y)
under a pre-setting exposure time. In general, the dependence of the intensity on the grayscale level
deviates from the linear relationship due to the peculiarity of the DMD that cannot be systemically
eliminated. To estimate the relationship between intensity and grayscale, the intensity data tested
by a UV radiation illuminometer (UIT-250, Ushio America, Inc., Cypress, CA, USA) is presented in
Table 1, which just gives the data for grayscales over 30 because the intensity below 30 is basically zero.
Figure 2a shows an intuitive presentation about this nonlinear relationship. We note that the intensity
of a lower grayscale increases slowly at a stable state. In contrast, the intensity of a higher grayscale
increases rapidly at an unstable energy level, which is disadvantageous for the control of the surface
roughness. There are few specific expressions to describe this nonlinear relationship, but it does exist
in the DMD [27]. We assume that this phenomenon may be caused by the nonlinear control of pulse
width modulation in Figure 1b. The high level bit planes have larger duty cycle times and contribute a
significant intensity, but the low bit plane just has a small duty cycle time and imparts a small intensity.
Thus, the final presentation is that the intensity varies exponentially with the grayscale and is unstable
at high grayscale levels.

Table 1. The tested data between intensity and grayscale level.

Grayscale Intensity (mW/cm2) Standard Deviation (mW/cm2) Grayscale Intensity (mW/cm2) Standard Deviation (mW/cm2)

30 0 0 150 6.51 0
40 0.13 0 160 7.85 0.02
50 0.26 0 170 9.95 0.02
60 0.43 0 180 11.5 0.02
70 0.7 0 190 15.73 0.02
80 1.03 0 200 18.91 0.02
90 1.5 0 210 26.15 0.015
100 2 0 220 32.46 0.02
110 2.78 0.005 230 36.22 0.04
120 3.63 0.005 240 42.6 0.025
130 4.47 0.01 250 42.63 0.015
140 5.37 0.005 - - -

In addition, to test the dependence of the exposure depth on the exposure dose, we performed
an exposure test on the photoresist (AZ-9260, Clariant Corporation, Muttenz, Switzerland), which
is spin-coated on the substrate at 2000 rpm followed by prebaking at 100 ◦C for 10 min to obtain a
photoresist layer of about 10.5 µm. A grayscale grating of 200 level (18.91 mW/cm2) with a 400 µm
period that consists of 200 pixels in the horizontal direction is applied to perform this experiment
for a convenient measurement. The exposure time changes from 1 s to 14 s which enables a constant
exposure dose increment. After development in the developer (AZ 400K, Clariant Corporation,
1:2, 40 s) we extracted the exposure depth by the stylus profiler, as presented in Table 2. Due to the
properties of the photoresist, the relationship between the exposure depth and the exposure dose is
nonlinear, also. Some studies [28,29] have reported that the exposure depth is a logarithmic function
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of the dose and can be determined by the contrast curve, which is defined as the linear slope of the
contrast curve as follows:

γ =
1

ln Ecl − ln Eth
=

h(x, y)/H
ln E(x, y)− ln Eth

, where 0<h(x, y) < H and Eth < E(x, y) < Ecl (2)
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Table 2. The tested exposure depth data under different exposure doses.

Exposure
Dose (mJ/cm2)

Exposure
Depth (µm)

Standard
Deviation (µm)

Exposure
Dose (mJ/cm2)

Exposure
Depth (µm)

Standard
Deviation (µm)

18.9 1.05 0.025 151.2 8 0.25
37.8 2.25 0.2 170.1 8.6 0.23
56.7 3.85 0.1 189 9.12 0.19
75.6 5 0.15 207.9 9.6 0.18
94.5 5.9 0.15 226.8 10 0.15
113.4 6.7 0.2 245.7 10.26 0.18
132.3 7.45 0.25 264.6 10.53 0.19

In Equation (2), the parameter Eth is the threshold dose to initiate a photoresist reaction, Ecl is the
clearing dose required for removing the photoresist layer H completely, and E(x, y) is the required dose
for target exposure depth h(x, y), which can be obtained by direct inversion of Equation (2) as follows:

h(x, y) = H × γ × ln
(

E(x, y)
Eth

)
(3)

We have calculated the theoretical curve of the exposure depth with respect to the dose. Figure 2b
shows the sampling data and theoretical curve about the exposure depth. We note that these two
curves are basically approximated. From the above, we know that both the relationship between
intensity and grayscale level of the DMD and the relationship between the exposure dose and the
exposure depth are all nonlinear.

2.3. Grayscale Mask Design

To compensate for the two types of nonlinear effects shown in Figure 2, and then generate an
accurate grayscale map, a valid method is to find a reliable calibration curve which can provide a
precise relationship between the exposure depth and the grayscale value. According to this calibration
curve, the grayscale compensation for arbitrary surface designs is achievable. There are two points that
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deserve consideration in the calibration processing: the calibration curve should maintain smooth-slow
growth and a stable intensity level because the rapid increment of the exposure depth and an unstable
intensity level will lead to inaccurate control of the surface profile and a terrible surface roughness.
Thus, an exposure test was carried out for the grayscale range of 30 to 150 which is a reasonable
increment and a stable intensity level according to the curve shown in Figure 2a. The photoresist layer
of about 8 µm was prepared at 2500 rpm, which could be flexibly adjusted according to the required
thickness. Here we adopt the grayscale maps of a grating to perform this adjustment, as shown in
Figure 3a. The period of the grating is set as 400 µm, which consists of 200 pixels in the lateral direction.
The exposure time was set as 20 s, which was estimated by the curve shown in Figure 2b to ensure
a sufficient exposure dose. The test data measured by the stylus profiler was given in Table 3 and
plotted in Figure 3b. This adjustment curve between the exposure depth and grayscale level provides
a reference which adequately considers the nonlinear effect between the exposure dose and grayscale
level, and the nonlinear effect between the exposure depth and exposure dose, simultaneously.
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Table 3. The exposure depth measurement result under a 20 s exposure time.

Grayscale Exposure Depth (µm) Grayscale Exposure Depth (µm)

30 0 100 2.86
40 0.14 110 4.06
50 0.25 120 4.98
60 0.52 130 6.1
70 0.91 140 7.12
80 1.36 150 8.08
90 2.1 - -

Since only discrete information about the relationship between the grayscale and the exposure
depth can be obtained, in a practical application, to generate a precise grayscale map for a structure
to be fabricated, a numerical fitting processing will be adopted. We assume that the exposure depth
between two adjacent sampling points is a linear correlation due to the narrow sampling step, thus a
linear interpolation method is applied to extracted suitable grayscale level. Although this processing
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may introduce some errors, it imposes little influence on the generation of the grayscale map due to
the average resolution being less than 0.1 µm, which is calculated according to the linear interpolation
in a single sample interval.

As an example, we design a micro-lens array (MLA) with a spherical surface (Figure 4a), whose
aperture B is 200 µm and height h is 6 µm. This spherical surface can be expressed as:

z(x, y) =
√

r2 − x2 − y2 − r + h, where 0 ≤ z ≤ h and 0 ≤
√

x2 + y2 ≤ B (4)

In the above equation, the parameter r is the radius of this spherical surface and can be numerically
calculated according to the aperture and the height. According to Figure 3b, we generate the grayscale
map of a single lens which consists of 100 × 100 pixels. From the cross-section of the grayscale map
presented in Figure 4a, we note that the variation of grayscale value is stair-stepping. The small
steps may impart some influence on the surface roughness, but does not break the outline due to the
continuous surface. Finally, the grayscale mask corresponding to this spherical MLA is generated to
perform the exposure, as shown in Figure 4b.
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3. Results and Discussion

To verify the availability of our method, experiment was carried out for grayscale map shown in
Figure 4b. For the photolithography, we used positive photoresist (AZ-9260, Clariant Corporation).
The photoresist was spin coated on a glass substrate at 2500 rpm followed by a prebaking at 100 ◦C
for 10 min. Then a photoresist film about 8 µm thickness was obtained. Next, the grayscale map was
exposed on the surface of photoresist. The total time for the exposure of the grayscale map is 20 s.
After development in the alkaline developer (AZ 400K, Clariant Corporation, 1:2) for approximately
40 s, the lens-shaped profile of the photoresist, which corresponding to the reversed profile of the
designed model in Figure 4b was obtained. Figure 5a,b shows the microscope and scanning electron
microscope (SEM) images of this concave spherical MLA in photoresist.
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Figure 5. Microscope image (a) and scanning electron microscope (SEM) image (b) of a concave
spherical MLA in photoresist; (c) SEM image of a convex spherical MLA in polydimethysiloxane
(PDMS); and (d) the measured and designed cross-sections of the convex spherical MLA.

To obtain the available spherical MLA, the photoresist mold in Figure 5b was reversely transferred
in the PDMS elastomer. Here the PMDS Sylgard 184 (from Dow Corning, Midland, MI, USA) was
prepared by mixing the PDMS with diluter at a proportion of 10:1 in weight, after which it was kept
under vacuum for dehydration for 20 min. Then the PDMS solution was applied to the mold and kept
at 100 ◦C for 15 min. Figure 5c shows the SEM image of a convex spherical MLA on the top of PDMS.
To evaluate the surface profile of the PDMS MLA, a cross-section of the convex lens was profiled by
the stylus profiler, as shown in Figure 5d. It is obvious that the measurement profile (black solid line)
agrees well with the designed profile (red dash line), and the largest difference between them was
0.21 µm (3.5% of the total height). To analyze the deviation between the practical curve and the
theoretical curve, we calculated the root-mean-square (RMS) value as follows:

R =

{
1
N

N

∑
i=1

[
h(i)− hdesign(i)

]2
}1/2

(5)

The calculated RMS deviation was 0.08 µm, which was enough for the MLA application in
visible light.

To estimate the optical performance of the convex MLA in PDMS, both focusing and imaging
experiments were carried out, as shown in Figures 6 and 7. In the focusing experiment, a laser beam at
a wavelength of 532 nm was introduced to illuminate the whole PDMS MLA. A 6 × 8 light spot array
with uniform intensity was captured by a charge-coupled device (CCD) placed in the MLA’s focal
plane. Figure 6b,c presents the images of focused light spots and intensity distribution, respectively.
Figure 6d shows an image of the normalized intensity of a single typical spot. The full width at
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half maximum (FWHM) for this particular spot is about 30 µm. The focal length of the MLA was
estimated to be about 1.7 mm. Then we tested the imaging ability of the MLA on a microscopy setup.
As exhibited in Figure 7, a mask with the letter “M” was placed between the white light source and
convex MLA, and the image array was observed by using a CCD camera mounted with an objective
lens. The uniform light spots and clear “M” letters indicate that the fabricated convex spherical MLA
in PDMS has excellent optical properties, which has important applications in array illumination
and micro-imaging.
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To further demonstrate that this one-step maskless grayscale lithography is capable with the
fabrication of micro-optics with arbitrary surface, we also designed MLAs with an aspherical surface
and a conical surface. The expression of the aspheric surface is:

z(x, y) = h × exp (−α(x2 + y2)/2), where 0 ≤ z ≤ h, and 0 ≤
√

x2 + y2 ≤ B (6)

and the expression of the conical surface is:

z(x, y) = h ×
(

1 −
√

x2 + y2

B

)
, where 0 ≤ z ≤ h, and 0 ≤

√
x2 + y2 ≤ B (7)

In the above equations, the parameters h, α, and B are set as 6 µm, 0.0009, and 200 µm, respectively.
Figure 8 shows the fabricated MLAs with an aspherical surface and a conical surface in PDMS.
The cross-section of these two kinds of microlenses presented a good agreement with the designs.
The RMS deviation of the aspherical and conical microlens were calculated as 0.1 µm and 0.11 µm,
respectively, which further indicated that this method enables a precise control of the customized
surface profile and is prospective in the fabrication of micro-optics.
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4. Conclusions

This work reports a one-step maskless grayscale lithography method based on DMD for the
rapid and cost-effective fabrication of micro-optical elements with arbitrary surface. The reference
curve between the exposure depth and grayscale level effectively compensates the nonlinear effect
between intensity and the grayscale level of the DMD, as well as the nonlinear relationship between
the exposure depth and dose, and can be used to generate appropriate grayscale map and ensure a
precise control of surface profile of the structure to be fabricated. Using this method, we successfully
fabricated several typical MLA with a spherical surface, aspherical surface, and conic surface with
an aperture of 200 µm and a height of 6 µm in the photoresist. Then these photoresist models were
reversely transferred in PMDS for optical testing. The cross-section measurement results agree well
with the designed profile. The root mean square (RMS) between the test and design value of the surface
height is about 0.1 µm. Additionally, we tested the focusing and imaging ability of the replicated
convex spherical MLA in PDMS. Both the uniform focus light spots and clear image of the letter “M”
indicated that the generated MLA in PDMS could achieve excellent optical properties. These results
demonstrate that the proposed method of compensating the nonlinear effect in maskless lithography
can be directly used to control the grayscale levels of the DMD for fabricating the structure with an
arbitrary surface profile.
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7. Graells, S.; Aćimović, S.; Volpe, G.; Quidant, R. Direct growth of optical antennas using e-beam-induced
gold deposition. Plasmonics 2010, 5, 135–139. [CrossRef]

8. Henry, M.D.; Shearn, M.J.; Chhim, B.; Scherer, A. Ga(+) beam lithography for nanoscale silicon reactive ion
etching. Nanotechnology 2010, 21, 245303. [CrossRef] [PubMed]

9. Kohoutek, T.; Hughes, M.A.; Orava, J.; Mastumoto, M.; Misumi, T.; Kawashima, H.; Suzuki, T.; Ohishi, Y.
Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass. J. Opt. Soc. Am. B 2012, 29,
2779–2786. [CrossRef]

http://dx.doi.org/10.1038/nphoton.2008.132
http://dx.doi.org/10.1039/c3cp50297j
http://www.ncbi.nlm.nih.gov/pubmed/23407762
http://dx.doi.org/10.1088/0960-1317/15/12/030
http://dx.doi.org/10.1007/s11468-010-9128-9
http://dx.doi.org/10.1088/0957-4484/21/24/245303
http://www.ncbi.nlm.nih.gov/pubmed/20484788
http://dx.doi.org/10.1364/JOSAB.29.002779


Micromachines 2017, 8, 314 12 of 12

10. Malinauskas, M.; Žukauskas, A.; Purlys, V.; Gaidukevičiu, A.; Balevičius, Z.; Piskarskas, A.; Fotakis, C.;
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