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Abstract 

Background:  The aberrant regulation of MALAT1 has been indicated to be involved in various carcinogenic path-
ways contributing to the tumourigenesis and progression of cancers. The current meta-analysis summarized the 
research advances of MALAT1 functions and analyzed its prognostic value among multiple types of cancers.

Methods:  Eligible studies were identified through retrieving the PubMed, Web of Science, and CNKI databases, up to 
Mar 1, 2018. 28 studies of 5436 patients and 36 studies of 3325 patients were enrolled in the meta-analysis to evaluate 
the association of MALAT1 expression with survival outcomes and clinical parameters.

Results:  The results demonstrated that over-expression of MALAT1 may predict lymph node metastasis (pooled 
OR = 2.335, 95% CI 1.606–3.395, P = 0.000) and distant metastasis (pooled OR = 2.456, 95% CI 1.407–4.286, P = 0.002). 
Moreover, MALAT1 was also related with tumour size (pooled OR = 1.875, 95% CI 1.257–2.795, P = 0.002) and TNM 
stage (pooled OR = 2.034, 95% CI 1.111–3.724, P = 0.021). Additionally, elevated MALAT1 expression could predict 
poor OS (pooled HR = 2.298, 95% CI 1.953–2.704, P = 0.000), DFS (pooled HR = 2.036, 95% CI 1.240–3.342, P = 0.005), 
RFS (pooled HR = 2.491, 95% CI 1.505–4.123, P = 0.000), DSS (pooled HR = 2.098, 95% CI 1.372–3.211, P = 0.001) and 
PFS (pooled HR = 1.842, 95% CI 1.138–2.983, P = 0.013) in multivariate model. Importantly, subgroup analyses dis-
closed that increased MALAT1 expression had a poor OS among different cancer types (Estrogen-dependent cancer: 
pooled HR = 2.656, 95% CI 1.560–4.523; urological cancer: pooled HR = 1.952, 95% CI 1.189–3.204; glioma: pooled 
HR = 2.315, 95% CI 1.643–3.263; digestive cancer: pooled HR = 2.451, 95% CI 1.862–3.227).

Conclusions:  The present findings demonstrated that MALAT1 may be a novel biomarker for predicting survival 
outcome, lymph node metastasis and distant metastasis.
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Background
Long non-coding RNAs (lncRNAs) as genomic “dark 
matters” have been disclosed to be closely related to the 
development of cancer [1–3], which lead to the altera-
tion of oncogenic phenotypes including cell proliferation, 
differentiation, metastasis, apoptosis and invasion [3–6]. 

Based on the current emerging evidence, cancer-related 
lncRNAs may be candidate biomarkers for affording pre-
cise diagnosis, appraisal of personalized prognosis, evalu-
ation of targeted therapy and prediction of lymph node 
metastasis, distant metastasis as well as tumour differen-
tiation [7–9].

The metastasis-associated lung adenocarcinoma tran-
script 1 (MAlAT1) is mapped to human chromosome 
11q13 [10, 11]. Differentiating from other members of 
lncRNAs family, MALAT1 is a broadly expressed and 
evolutionarily conserved lncRNA with length of more 
than 8000 nt. Ji et al. initially discovered that MALAT1, 
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a metastasis-associated gene, may be used to iden-
tify early-stage NSCLC patients that are at high risk to 
develop deterioration with metastasis [12]. Evidence 
for the carcinogenic roles of MALAT1 has gradually 
emerged from previous fundamental and clinical stud-
ies. For example, MALAT1 silencing might impede pro-
liferation, migration, and invasion of triple-negative 
breast cancer (TNBC) cell by reversely mediating MiR-
129-5p [13]. MALAT1 acts as a competitive endogenous 
RNA (ceRNA) to regulate ZEB1 expression by spong-
ing miR-143-3p, whereas miR-143-3p inhibitor partially 
impaired the effect of MALAT1 on hepatocellular carci-
noma  (HCC) cells, and the inhibition of MALAT1 also 
might inhabit proliferation and invasion of HCC cells 
[14]. Moreover, activation of p53 may be due to deple-
tion of MALAT1, which may result in cell cycle defects 
that are sensitive to p53 levels [15]. MALAT1 expression 
might be regulated by DNA methylation in lung can-
cer by evaluating methylation status of the CpG island 
at the MALAT1 promoter [16]. Furthermore, up-regu-
lated MALAT1 promotes cell metastasis by activating 
the Wnt/β-catenin signaling pathway to promote EMT 
of bladder cancer cells [17, 18]. Transition of oncogenic 
phenotypes caused by MALAT1 have also been observed 
in cervical cancer [19], gastric cancer [20], prostate can-
cer [21]. Taken together, emerging evidence manifested 
that dysregulated MATAT1 is closely related to the devel-
opment of various types of cancer.

For the recent decade, increasing studies have demon-
strated the influence of MALAT1 expression on clinico-
pathological parameters and prognostic outcomes among 
diffident types of cancer, including digestive cancers [20, 
22–26], gliomas [27, 28], estrogen-dependent cancers 
[29–31], urological cancers [32–34] and other cancers 
[12, 35]. However, these published studies have emerged 
the inconsistent and controversial conclusions [22, 32, 
34, 36]. Herein, we conducted a systematic review and 
meta-analysis to elucidate the relationship of MALAT1 
with prognosis or clinical features and generalized its 
tumorigenicity among different cancers.

Materials and methods
Literature search
Eligible records were systematically retrieved in three 
authoritative databases including PubMed, Web of Sci-
ence, and CNKI databases up to March 1, 2018 to obtain 
relevant articles regarding prognostic and clinicopatho-
logical outcomes of MALAT1 among malignant cancers, 
with the following keywords including “MALAT1 expres-
sion and (outcome or prognosis or prognostic or mortal-
ity or survival) and (cancer OR carcinoma OR tumor OR 
malignancy OR neoplasm OR lymphoma OR leukemia)”. 
Besides, the references lists of included studies were 

retrieved to guarantee that all qualified studies contained 
in the pooling analysis.

Study selection and data extraction
Data extraction of each qualified articles was as follows: 
first author, year, country, ethnicity, type of cancers, 
follow-up (months), detection method, sample size, sur-
vival outcome and the corresponding HR and 95% CI 
and other data for clinical parameters. Eligible articles 
need to meet the following criteria: (a) studies with can-
cers diagnosed by pathological and histological confir-
mation; (b) studies with the survival outcomes such as 
“overall survival, “disease-free survival”, “recurrence-free 
survival”, “disease-specific survival”, “progression-free 
survival”, recurrence and mortality, and other clini-
cal parameters such as lymph node metastasis, distant 
metastasis, differentiation/histological grade, tumor size 
and TNM stage; (c) original studies detected MALAT1 
expression in tissue or plasma; (d) studies did explicitly 
provide HR and 95% CI. However, ineligible articles were 
excluded on the basis of the following criteria: (a) stud-
ies focused on other lncRNAs, diagnosis, polymorphism, 
case reports, reviews and meta-analyses; (b) studies did 
not provide available data; (c) studies only with mecha-
nisms of MALAT1 and other genes; (d) animal studies of 
MALAT1 and other lncRNAs; (e) duplicated published 
reports, articles or data.

Quality assessment
Two investigators individually assessed the quality of all 
included studies according to the Newcastle–Ottawa 
Scale (NOS), and the scale totally comprises subject 
selection, comparability of study groups as well as ascer-
tainment of survival outcomes. Articles with NOS ≥ 6 
scores were regard as high-quality studies.

Statistical analysis
Cochran’s Q and I2 tests were applied to find the hetero-
geneity across studies. Hazard ratios (HRs), odds ratios 
(ORs) and their 95% confidence intervals (95% CIs) were 
calculated by using a random effect model when I2 > 50% 
and the corresponding P value < 0.05. Otherwise, a fixed 
effect model was used to estimate the pooled results. 
Subgroup analysis were further performed to find the 
source of heterogeneity. Each single study on the over-
all  effect of the stability of the pooled results was esti-
mated by performing sensitivity analyses. Egger’s test and 
Begg’s funnel plot were applied to identify publication 
bias. All calculated results of the meta-analysis were per-
formed by using Stata 11 software. A P value < 0.05 was 
consistently regarded as statistical significance.



Page 3 of 12Li et al. Cancer Cell Int  (2018) 18:109 

Results
Identification of the included studies
In the study, the detailed selection process of all 48 
included articles presented in Fig.  1. A total of 5436 
patients from 28 articles covering 54 cohort studies were 
included to evaluate prognostic value (presented in Addi-
tional file 1: Table S1, Additional file 2: Table S2). Of 54 
studies with survival outcomes including OS, DFS, RFS, 
PFS and DSS, 25 studies from 19 articles [20, 22–24, 27, 
29, 32, 34, 37–48] in univariate analysis, 29 studies from 
21 articles [14, 23, 27–29, 32, 34, 35, 37, 39, 41–47, 49–
52] in multivariate analysis. Additionally, 3325 patients 
from 36 articles [13, 17, 20, 23–27, 31–34, 37, 42–44, 46–
50, 53–67] with clinical parameters including age, gen-
der, lymph node metastasis (LNM), distant metastasis, 
differentiation, tumor size and TNM stage were enrolled 
in the study (data shown in Additional file  3: Table  S3). 
The study contains four cancer types including diges-
tive cancers with gastric cancer (GC), gallbladder cancer 
(GBC), esophageal cancer (EC), pancreatic duct adeno-
carcinoma (PDAC), esophageal squamous cell carcinoma 
(ESCC), hepatocellular carcinoma (HCC) and colorectal 

cancer (CRC); gliomas with glioblastoma, glioma and 
glioblastoma multiforme (GBM); estrogen-dependent 
cancers with cervical cancer (CC), epithelial ovarian can-
cer (EOC) and breast cancer (BC); and urological cancers 
with urothelial carcinoma (UC), bladder cancer and clear 
cell renal cell carcinoma (ccRCC). MALAT expression 
was detected by quantitative real time PCR (qRT-PCR) 
and in situ hybridization (ISH).

Association of MALAT1 with clinicopathological 
parameters
As presented in Table  1, the significant association of 
MALAT1 expression with patients’ age or gender did 
not existed (age: P = 0.823 and gender: P = 0.080). The 
increased expression level of MALAT1 was signifi-
cantly associated with lymph node metastasis (pooled 
OR = 2.335, 95% CI 1.606–3.395, P = 0.000), tumour size 
(pooled OR = 1.875, 95% CI 1.257–2.795, P = 0.002), dis-
tant metastasis (pooled OR = 2.456, 95% CI 1.407–4.286, 
P = 0.002) and TNM stage (pooled OR = 2.034, 95% CI 
1.111–3.724, P = 0.021). Moreover, subgroup analysis 
of cancer type presented that patients with MALAT1 

Fig. 1  Flow diagram of articles and studies selection process
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over-expression had higher risk of lymph node metastasis 
and distant metastasis (shown in Fig. 2a, b). 

Association of MALAT1 with survival outcomes
A total of 15 eligible studies with 1869 cases focused on 
evaluating the association between MALAT1 expres-
sion and overall survival in univariate model (Table  2). 
Overall, patients with  elevated expression of  MALAT1 
had a poor OS in univariate (pooled HR = 2.296, 95% 
CI 1.716–3.072, P = 0.000) analysis with heterogene-
ity (I2 = 67.6%). Unlike subgroup of univariate analysis, 
almost all analytical results of multivariate subgroup 
had no significant heterogeneity (I2 < 50%). 18 studies 
comprising 1891 patients reported the relationship of 
MALAT1 expression with OS in multivariate analysis. 
Overexpression of MALAT1 had a higher risk of poor 
OS (pooled HR = 2.298, 95% CI 1.953–2.704, P = 0.000, 
I2 = 17.2%). MALAT1 high expression was also indi-
cated to predict poor OS among different cancer types 

(Estrogen-dependent cancer: pooled HR = 2.656, 95% 
CI = 1.560–4.523; Urological cancer: pooled HR = 1.952, 
95% CI 1.189–3.204; Glioma: pooled HR = 2.315, 95% CI 
1.643–3.263; Digestive cancer: pooled HR = 2.451, 95% 
CI 1.862–3.227) (data shown in Table 2 and Fig. 3a). Sub-
group analysis of sample size presented in Fig. 3b. 

Table  3 presented that patients with MALAT1 over-
expression had shorter DFS (pooled HR = 2.036, 95% CI 
1.240–3.342, P = 0.005), RFS (pooled HR = 2.491, 95% CI 
1.505–4.123, P = 0.000), DSS (pooled HR = 2.098, 95% CI 
1.372–3.211, P = 0.001) and PFS (pooled HR = 1.842, 95% 
CI 1.138–2.983, P = 0.013) than those with low MALAT1 
expression in a fixed-effect model (shown in Table 3 and 
Fig. 4).

Publication bias and sensitivity analysis
Egger’s test and Begg’s funnel plot were applied to exam-
ine publication bias. Egger’s test revealed absence of pub-
lication bias for OS in univariate (T = 1.47, P = 0.164) and 

Table 1  Association between MALAT1 and clinicopathological parameters

If I2 > 50%, the results were calculated by random model

OR odds ratio, CI confidence interval

Clinicopathological parameters Studies (n) Patient s (n) OR (95% CI) P Heterogeneity (I2, P) Model

Age (elderly vs. nonelderly) 33 3127 0.983 (0.848–1.140) 0.823 0.0%, 0.991 Fixed

Gender (female vs. male) 28 2459 0.860 (0.726–1.018) 0.080 12.6%, 0.275 Fixed

Tumor size (large size vs. small size) 19 1811 1.875 (1.257–2.795) 0.002 72.8%, 0.000 Random

Lymph node metastasis (positive vs. negative) 26 2440 2.335 (1.606–3.395) 0.000 72.7%, 0.000 Random

Distant metastasis (presence vs. absence) 16 1514 2.456 (1.407–4.286) 0.002 69.9%, 0.000 Random

Differentiation (poor vs. well, moderate) 21 1980 1.112 (0.916–1.351) 0.284 49.6%, 0.005 Fixed

TNM stage (III + IV vs. I + II) 11 1083 2.034 (1.111–3.724) 0.021 77.7%, 0.000 Random

Fig. 2  Forest plots of clinicopathological parameters stratified by cancer type. a Lymph node metastasis; b distant metastasis
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Table 2  Association between MALAT1 expression and overall survival

If I2 > 50%, the results were calculated by random model

HR hazard ratio, CI confidence interval

Survival analysis Subgroup Studies (n) Patients (n) HR (95% CI) P Heterogeneity (I2, P)

Univariate Overall 15 1869 2.296 (1.716–3.072) 0.000 67.6%, 0.000

Region

China 12 1209 2.793 (2.310–3.376) 0.000 0.0%, 0.924

Other 3 660 1.164 (0.577–2.346) 0.672 83.5%, 0.002

Cancer type

Estrogen-dependent carcinoma 2 198 3.296 (2.027–5.358) 0.000 22.9%, 0.255

Urological carcinoma 2 226 3.184 (2.072–4.892) 0.000 0.0%, 0.739

Glioma 2 258 2.750 (1.839–4.111) 0.000 0.0%, 0.553

Digestive carcinoma 6 633 1.750 (0.974–3.143) 0.061 79.7%, 0.000

Other 3 554 2.154 (1.471–3.154) 0.000 0.0%, 0.484

Sample size

Sample < 100 5 333 2.443 (1.655–3.608) 0.000 0.0%, 0.752

Sample > 100 10 1536 2.203 (1.516–3.202 0.000 77.9%, 0.000

Multivariate Overall 18 1891 2.298 (1.953–2.704) 0.000 17.2%, 0.248

Region

China 17 1817 2.327 (1.968–2.751) 0.000 20.6%, 0.213

Other 1 74 1.880 (0.957–3.695) 0.067 –

Cancer type

Estrogen-dependent carcinoma 2 198 2.656 (1.560–4.523) 0.000 0.0%, 0.457

Urological carcinoma 3 321 1.952 (1.189–3.204) 0.008 51.4%, 0.128

Glioma 4 430 2.315 (1.643–3.263) 0.000 0.0%, 0.534

Digestive carcinoma 7 706 2.451 (1.862–3.227) 0.000 45.4%, 0.089

Other 2 236 2.383 (1.449–3.920) 0.001 3.3%, 0.309

Sample size

Sample < 100 7 528 2.017 (1.520–2.677) 0.000 10.4%, 0.350

Sample > 100 11 1363 2.451 (2.009–2.990) 0.000 20.7%, 0.246

Fig. 3  Forest plots of subgroup analysis of pooled HRs of OS in multivariate model. a Cancer type; b sample size
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multivariate (T = 1.55, P = 0.141) analyses. The symmetri-
cal funnel plot of OS in multivariate model was presented 
in Fig. 5. The Egger’s tests and funnel plots of DFS, DSS 
and RFS also showed no publication bias. Furthermore, 
no significant publication bias was observed in clinico-
pathological parameters except for LNM (P = 0.041) and 

differentiation (P = 0.003). The studies of Droop et al. [36] 
significantly influenced the pooled results of OS and DFS 
according to sensitivity analysis, which indicated that the 
studies might explain the main source of heterogeneity 
across studies. Reanalyzed sensitivity analysis identified 

Table 3  Association between MALAT1 expression and RFS/DFS/DSS/PFS

If I2 > 50%, the results were calculated by random model

DFS disease-free survival, RFS recurrence-free survival, DSS disease-specific survival, PFS progression-free survival, HR hazard ratio, CI confidence interval

Survival 
outcome

Survival analysis Studies (n) Patients (n) HR (95% CI) P Heterogeneity 
(I2, P value)

RFS Univariate 5 397 1.355 (0.751–2.445) 0.313 70.6%, 0.009

Multivariate 3 263 2.491 (1.505–4.123) 0.000 0.0%, 0.435

DFS Univariate 1 77 1.820 (1.018–3.255) 0.044 –

Multivariate 3 329 2.036 (1.240–3.342) 0.005 32.7%, 0.226

DSS Univariate 3 2037 1.791 (1.304–2.459) 0.000 4.5%, 0.351

Multivariate 3 2037 2.098 (1.372–3.211) 0.001 0.0%, 0.578

PFS Univariate 1 100 3.03 (1.578–5.820) 0.001 –

Multivariate 2 175 1.842 (1.138–2.983) 0.013 0.0%, 0.940

Fig. 4  Forest plots of pooled HRs of DFS, RFS, DSS and PFS in multivariate model
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that the results of the study remained stability and 
robustness after getting rid of the studies of Droop et al.

Carcinogenic mechanisms of MALAT1 among various 
cancers
To further explore the association of MALAT1 with the 
development of cancer, we summarized the effects of 
MALAT1 silencing on the malignant phenotype and its 
molecular mechanisms presented in Table  4. Addition-
ally, MALAT1 possesses a variety of molecular functions 
including promotion of EMT [68], transcriptional dysreg-
ulation, pre-mRNA alternative splicing, ceRNA role [69], 
epigenetic alteration and transition of cell phenotype 
via different signaling pathways covering P13k/Akt [62], 
Wnt [18] and ERK/MAPK [70] pathways. Taken together, 
MALAT1 might promote carcinogenesis by exerting its 
molecular function to regulate the expression of related 
genes and activate the oncogenic signaling pathway [16, 
46, 52, 64, 68–83].

Discussion
MALAT1 also known as NEAT2 (nuclear-enriched abun-
dant transcript 2), is located in human chromosome 
11q13. Unlike most of lncRNAs, MALAT1 is particularly 
abundant, highly conserved and ubiquitously expressed 
in multiple types of cancer. MALAT1 was originally 
discovered to predict metastasis and survival of non-
small cell lung cancer [12]. Recently, increasing evidence 
provided that MALAT1 play a pivotal role in promot-
ing proliferation, migration, metastasis and invasion of 
tumor cell. MALAT1, a multi-functional lncRNA, might 
involve in alternative splicing of pre-mRNA, transcrip-
tional and post-transcriptional regulation via interacting 

with the relevant gene in carcinogenic pathways [84, 
85]. Firstly, MALAT1, a novel transcript, may recruit a 
set of members of SR protein (serine/arginie riched pro-
tein) family, such as SRSF1, SRSF2, and SRSF3, and act 
as a “molecular sponge” to regulate SR protein activity, 
ultimately leading to alternative splicing of pre-mRNA 
[86]. Secondly, MALAT1 involvement in transcriptional 
dysregulation was supported by previous evidence, such 
as colocalization of serine-2 phosphorylated RNA poly-
merase II in nuclear speckle compartment, the interac-
tion of unmethylated Pc2 with theTUG1, overlapping the 
histone H3K36me2 peaks and the recruitment of Sp1 on 
LTBP3 promoter. For example, MALAT1 could interact 
with unmethylated Pc2 in the nuclear speckles, and regu-
late the localization of the Pc2, together with theTUG1, 
whereas methylated Pc2 generally exists in other nuclear 
bodies [87]. MALAT1 also inclined to cooperate with 
the 3′ end of the gene body, overlapping the histone 
H3K36me2 peaks, a biomarker of active transcriptional 
elongation [10]. Thirdly, the mechanisms of the post-
transcriptional regulation of MALAT1 mainly contains 
alternative splicing, protein activities and ceRNAs. For 
example, MALAT1, as a ceRNA, could reciprocally inter-
acts with microRNAs (miR-205, miR-1297, miR-217 and 
miR-155), ultimately contributing to cell phenotypic 
changes such as invasiveness, metastasis, proliferation, 
migration and apoptosis [52, 72, 77]. Besides, MALAT1 
might influence carcinogenesis of cancers by activating 
Wnt/β-catenin, ERK/MAPK and PI3K/AKT pathways, 
which simultaneous activation of the oncogenic path-
ways might bring out highly carcinogenic effects [88]. For 
example, knockdown of MALAT1 could induce the EMT 
by regulating transcriptional factor snail and activating 
the PI3K/AKT and Wnt pathways [31, 33, 80]. Further-
more, upregulated MALAT1 could promote EMT-medi-
ated cell migration and metastasis of various malignant 
cancers since its inhibition impairs the effect of TGF-
β-induced EMT by suppressor of zeste 12 (suz12) [17]. 
Hence, emerging studies have implied that MALAT1 
could serve as a potential prognostic biomarker for can-
cer patients on the basis of the complicated mechanisms 
of MALAT1 among multiple types of cancer.

Previous published articles reported that lncRNAs 
including MALAT1 are effective predictors of survival 
outcomes [89, 90]. However, MALAT1 on the influence 
of prognostic outcome is still controversial. Therefore, we 
combined the published studies to evaluate the prognos-
tic and clinical value of MALAT1 among different types 
of cancer. The meta-analysis is firstly to investigate the 
relationship between MALAT1 expression and prognosis 
of glioma as well as estrogen-dependent cancer by pool-
ing eligible studies in multivariate model, which is dif-
ferent from previous meta-analyses. The pooled results 

Fig. 5  Funnel plots of OS in multivariate model
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of multivariate model may be closer to revealing the 
authentic relationship of MALAT1 expression with dif-
ferent types of cancers since the adjusted confounding 
factors involved in several clinical variables as confound-
ers including LNM, differentiation, distant metasta-
sis and other factors. This study also firstly analyzed the 
association of MALAT1 with tumour differentiation, dis-
tant metastasis, TNM stage and tumour size.

The results of the study identified that patients with 
high expression of MALAT1 have a poor OS in univari-
ate and multivariate models. Moreover, over-expression 
of MALAT1 may be an unfavorable biomarker of DFS, 
RFS, DSS and PFS. The results also  indicated that the 
adverse prognostic effect of MALAT1 over-expression 
was obtained in different types of cancer (estrogen-
dependent cancer: pooled HR = 2.656; urological cancer: 
pooled HR = 1.952; glioma: pooled HR = 2.315; digestive 
cancer: pooled HR = 2.451). The results of the study are 
consistent with most of the original studies, which sug-
gest that MALAT1 may be associated with poor progno-
sis in malignant cancers [61–63]. However, the sensitivity 
analysis identified the studies of Droop et al. [36], which 
influenced the stability of the pooled results. The possible 
reasons were as follows. First, the heterogeneity across 
studies may be attributed to the difference of genetic 
background since the subjects of the study were from 
Germany. Second, Droop et  al.’ the study involved two 
types of bladder cancer, including non-muscle-invasive 
tumours (NMIBC) and muscle-invasive bladder cancer 
(MIBC). NMIBC is essentially different from MIBC in 
tumor biology. Finally, the study is a small sample study. 
These potential confounders might account for the het-
erogeneity across studies. In addition, we need to explain 
that publication bias of LNM and differentiation may 
be due to small sample studies, which are susceptible 
to publication bias. Therefore, based on the above evi-
dence, the abnormal regulation and prognostic utility of 
MALAT1 across multiple types of tumors suggests that 
MALAT may be a candidate biomarker for applying to 
therapeutic targets for clinical practice.

There are several limitations in the study. First, the cut-
off values of high and low MALAT1 expression were dif-
ferent across studies. Second, the heterogeneity among 
studies may be due to different qRT-PCR primer sets. 
Third, significant heterogeneity may also be caused by 
confounding factors, such as cancer type, ethnicity, and 
other confounders. Fourth, several original studies did 
not provide complete data. Finally, the study might pre-
sent “small-study effects” [91, 92]. For example, the last 
meta-analysis of HOXA11-AS demonstrated that small 
sample size studies with lacking of statistical power could 
obtain higher effect size compared with large sample 

studies [93]. Therefore, larger-scale studies are author-
ized to verify these results of the study.

Conclusions
In conclusion, the study revealed that over-expression 
MALAT1 might be an adverse biomarker for prognos-
tic outcome, lymph node metastasis, distant metasta-
sis, tumour size and TNM stage for cancer patients. 
MALAT1 might play a pivotal role in the tumorigenesis 
of multiple types of cancers. However, more high-qual-
ity larger-scale studies across ethnicities are warranted 
to explore the prognostic value and carcinogenic func-
tion of MALAT1 before it is applied to the treatment and 
management of cancer.
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