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Cardiovascular diseases have been regarded as the leading cause of death around the

world, with myocardial infarction (MI) being the most severe form. MI leads to myocardial

apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, ultimately leading to

heart failure, and death. Micro RNAs (miRNAs) participate in the genesis and progression

of myocardial pathology after MI by playing an important regulatory role. This review

aims to summarize all available knowledge on the role of miRNAs in the myocardial

pathological process after MI to uncover potential major target pathways. In addition,

the main therapeutic methods and their latest progress are also reviewed. miRNAs can

regulate the main signaling pathways as well as pathological processes. Thus, they

have the potential to induce therapeutic effects. Hence, the combination of miRNAs

with recently developed exosome nanocomplexes may represent the future direction

of therapeutics.
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INTRODUCTION

Myocardial infarction (MI) is defined as the death of myocardial cells due to prolonged ischemia
and is the most serious manifestation of coronary artery disease (1). However, MI also results in
cardiac remodeling, including myocardial fibrosis and cardiac hypertrophy (2). The pathological
changes induced by MI can lead to heart failure, cardiac rupture, sudden death, and other adverse
events (3). Antithrombotic agents, percutaneous coronary intervention, and bypass surgery are
usually applied to treat patients after MI (4, 5). Nonetheless, these approaches only reduce the
severity of the coronary artery disease rather than saving the ischemic myocardium and preventing
the development of adverse tissue remodeling (6, 7). Therefore, novel therapeutic strategies to
reduce myocardial cell death, inhibit adverse remodeling, and/or stimulate heart regeneration are
highly needed.

Micro RNAs (miRNAs) are also involved in differential gene expression in the pathophysiology
of MI (5, 8). miRNAs originating from DNA sequences are transcribed by RNA polymerase II
in the nucleus to form primary products: primary miRNA (pri-miRNA). Pri-miRNA is generally
larger than 1000 bPs and is a double-stranded RNA, similar to a long hairpin, consisting of multiple
nucleotide fragments. In the nuclear region, endonuclease Drosha (RNAse III) and cofactor Dgcr8
constitute a unique structure-microprocessor. This complex could precisely cut pri-miRNA and
degrade it into a 65 bPs secondary product: miRNA precursor (pre-miRNA) (9). Subsequently,
these new pre-miRNAs are transported into the cytoplasm through transport complexes that are
made of export protein 5 (EXP5), RAN, GTP, and pre-miRNAs (10, 11). Once the complex passes
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FIGURE 1 | miRNAs form and function.

through the nuclear membrane, the RNAse protein (Dicer)
clefts the pre-miRNA into about 19-25 bPs miRNAs, and TAR
RNA-binding protein (TRBP or PACT) changes the product
into double-stranded miRNAs (12, 13). New double-stranded
miRNAs are loaded into a specific AGO protein to form a pre-
RNA-induced silencing complex (pre-RISC). As one strand of the
double helix in the pre-RISC degrades, it is immediately modified
to become a mature RISC (14). The complex binds to the 3’UTR
region of the target mRNA, resulting in degradation or inhibition
of the target mRNA (15) (Figure 1).

In the last century, the use of stem cells was thought
to be a promising strategy for the treatment of MI (16).
As research continues, the exact mechanism of cardiac
repair by transplanted cells remains controversial and has
yielded inconsistent results. Two main hypotheses exist: (a)

direct cardiogenesis/angiogenic differentiation, and (b) indirect
stimulation of the regenerative process through paracrine (17,
18). Leda et al. successfully reprogrammed fibroblasts directly
into functional cardiomyocytes (19). But low conversion rates
and a complex and expensive process have stalled the technology
(20). The therapeutic role of exosomes has long been thought to
be useful in the treatment of heart injury (21). In combination
with nanomaterials, cell transformation is greatly improved (22).

Small non-coding micro RNAs (miRNAs) participate in the
pathogenesis and development of myocardial pathology after
MI and play an important regulatory role. This study provides
a comprehensive overview of miRNAs affecting the pathology
after MI and acting on potential targets and access mechanisms.
Furthermore, the present therapeutic methods of saving infarct
myocardium and latest research progress are summarized.
In particular, the challenges and clinical prospects of using
miRNA targets for myocardial regenerative therapy are discussed
(Table 1 and Figure 2).

CARDIOMYOCYTE APOPTOSIS

Apoptosis is a type of programmed cell death promoted by
extrinsic and intrinsic pathways through the activation of
death receptors and mitochondria, respectively (23–25). The
transduction of apoptosis signals is mediated by several pro-
and anti-apoptotic factors, including the caspase family, the B
cell lymphoma 2 (Bcl-2) family, cytochrome c, and inhibitor
of apoptosis proteins (IAP) (26). miRNAs play an important
role in myocardial cell apoptosis and heart protection after
MI (27–30). Two studies indicated that upregulation of miR-
195 and miR-15 in ischemic cardiomyocytes of rats promotes
ischemic apoptosis by targeting Bcl-2 (31, 32). In turn, miR-17
can support apoptosis via apoptotic protease activating factor
1 (Apaf-1) which facilitates the formation of apoptosomes
containing cytochrome c and deoxyadenosine triphosphate
(dATP) (33). However, a previous study suggested that miR-
327 inhibits cardiomyocyte apoptosis in vitro and in vivo
in rats by targeting the apoptosis repressor with the caspase
recruitment domain (ARC) (34). In addition, miR-378 was
reported to inhibit caspase-3 expression and attenuate ischemic
injury in cardiomyocytes (35), whereas miR-155 did not (36).
Overexpression of miRNA-488-3p markedly downregulated the
levels of caspase-3 in MI (37). Furthermore, a study revealed that
autophagy-related 3 (ATG13) interacts with the fas-associated
protein with the death domain to promote the activation of
caspase-8 and cell apoptosis (38). ATG13 is also a target
of miR-206 and activates the apoptotic factor forkhead box
protein 1 (FOXP1) (39, 40). Upregulation of miR-133 can
inhibit cardiomyocyte apoptosis, inflammation, and oxidative
stress through a mechanism that may be related to the
regulation of the SIRT3/AMPK pathway (41). miR-133 is a
heart- and muscle-enriched miRNA (42). Sirtuin 1 (Sirt1) also
has anti-apoptotic effects that are associated with a reduction
in the levels of reactive oxygen species (ROS) (43). In turn,
silencing of Sirt1 abolishes the protective effects of miR-22 on
hypoxia/reoxygenation-induced mitochondrial dysfunction and
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TABLE 1 | Micro RNAs targets and functions in cardiomyocyte apoptosis.

Functions miRNA Up/down Targets Reference

Cardiomyocyte apoptosis Pro-apoptosis 195 Up SIRT1 PMID:21622680

195 Up Bcl2 PMID:27489501

22 Up SIRT1 PMID:27174562

15 Up Bcl2 PMID:28814571

155 Up Capase3 PMID:31191799

665 Up AKT/Cnr2 PMID:31026731

206 Down ATG3 PMID:29880830

206 Down ATG3 PMID:30551524

17 Down Apaf-1 PMID:26265044

762 Down ND2 PMID:31235686

340 Down Act1 PMID:30989715

124 Down CircHipk3 PMID:31799682

498 Down PAWR PMID:32767028

Anti-apoptosis 133 Up SIRT3 PMID:32575874

378 Up Capase3 PMID:22119805

488 Up Capase3 PMID:31210328

206 Up FoXP1 PMID:26333362

21 Up PDCD4 PMID:29674977

325 Up RIPK3 PMID:31248365

24 Up – PMID:25352422

210 Up AIFM3 PMID:32513270

410-3p Up TRAF5 PMID:31696495

182 Up Nogo-C PMID:27763637

24-3p Up Nrf2 PMID:30622671

486 Up PI3k/AKT PMID:30844685

7a-5p Up BTG2 PMID:32945347

323-3p Up TGF-β2 PMID:32633390

125-b Up p53/BAK1 PMID:30613290

146a Up EGR PMID:30362610

let-7d Up HMGA PMID:30934671

23a/92a Down – PMID:28662151

145 Down Dusp6 PMID:30883744

489 Down IGF1 PMID:32880387

7a-5p Down – PMID:33029099

363 Down Notch PMID:28402919

429 Down Notch PMID:27082497

200-c Down GATA-4 PMID:28440427

327 Down ARC PMID:31587299

miRNAs are divided into pro-apoptosis and anti-apoptosis according to functions. The pro-apoptosis of main targets include SIRT, Bcl, caspase, and ATG3 and the anti-apoptosis of

main targets include SIRT, caspase, and AKT.

cell injury in cardiomyocytes (44). miRNAs also directly suppress
the expression of the programmed cell death (PDCD) family,
active IAPs, and accelerates cell transcription to inhibit cell
apoptosis afterMI (45–47). Recently, receptor interacting protein
kinase 3 (RIPK3), apoptosis-inducing factor 3 (AIFM3), and
tumor necrosis factor receptor-associated factor 5 (TRAF5) were
confirmed to be suppressed by miRNAs (48, 49).

Myocardial cells suffer hypoxic damage when MI occurs (50).
Two studies confirmed that the activation of protein kinase
B (AKT) (51), as well as the ectopic expression of Notch1

(52), inhibited hypoxia-induced apoptosis in culturing human
cardiomyocytes under hypoxic conditions (53). Nogo-C is
an endoplasmic reticulum protein ubiquitously expressed in
tissues including in the heart, which is upregulated in mouse
hearts after MI and in cardiomyocytes upon hypoxic treatments
(54). Furthermore, knock-down of endogenous NADH
dehydrogenase 2 (ND2) significantly decreases intracellular
ATP levels and mitochondrial complex-I enzyme activity,
whereas it increases ROS levels and apoptotic cell death in
cardiomyocytes (55). A study used a H9C2 cardiomyocyte
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FIGURE 2 | miRNAs target myocardium in pathological process after MI. miRNAs are involved in myocardial cell apoptosis, myocardial fibrosis, and myocardial

hypertrophy acting on myocardial targets after MI. Upregulation of red miRNAs promoted the development of pathology, while upregulation of green miRNAs inhibited

or even reversed the pathological process.

cell line to perform in vitro stimulated ischemia/reperfusion
(SI/R) and found a novel function of miR-24-3p in protecting
cardiomyocytes from oxidative injury by the activation of the
Nrf2/Keap1 pathway (56). Moreover, overexpression of miR-
323-3p was also found to reduce oxidative stress and apoptosis of
cardiomyocytes via the regulation of the TGF-β2/JNK pathway
(57). Additionally, there are still conflicting results regarding
miR-7a-5p’s protective role on cardiomyocytes upon hypoxic
injury (50, 58).

Moreover, upregulation of miR-340-5p suppresses apoptosis
and oxidative stress induced by hypoxia/reoxygenation in
H9C2 cells by inhibiting the NF-κB activator 1 (Act1) (59).
Lastly, a study suggested that bone marrow mesenchymal
stem cell (BM-MSC)-derived vascular endothelial growth
factor attenuates cardiac apoptosis via regulation of cardiac
miRNA-23a and miRNA-92a in a rat model of multiple
sclerosis (60). miRNAs from BM-MSCs can interact with
myocardial cells through exosomes (61). Interestingly,
exosomes originating from adipose-derived stem cells
can also attenuate myocardial damage triggered by acute
MI via downregulation of early growth response factor 1
(Egr1) (62).

In summary, to date, more miRNAs with anti-
apoptotic activity have been reported than those with
pro-apoptotic effects, most of which act on classical
pathways such as Bcl-2, caspase, AKT, SIRT, and
apoptotic factors.

MYOCARDIAL FIBROSIS

Myocardial fibrosis is an important feature of most cardiac
pathological conditions (63), characterized by alteration of the
extracellular matrix (64). Currently, five types of collagen are
known to be expressed in the myocardium, among which fibrillar
collagen type I (85%) and type III (11%) are commonly expressed
in the cardiac extracellular matrix. And, the basement membrane
of myocytes and the pericellular space are rarely composed of
collagen type IV and V (65). Additionally, fibrillar collagen type
VI is related to the adhesion of cellular fibers (66). An MI
model was established in SD rats using the LAD ligation method
and the study found transforming growth factor-β 1 (TGF-
β1) induces the upregulation of miR-21 and downregulation
of Jagged1 in cardiac fibroblasts (CFs), which are activated
by MI, thereby inducing myofibroblast transformation (67).
Additionally, decreased levels of antizyme inhibitor (AZIN1)
activate TGF-β1. Furthermore, downregulation of c-Jun N-
terminal kinase 1 (JNK1) results in the activation of the
extracellular signal-regulated kinase and p38 kinase, leading
to Smad3 activation and ultimately cardiac fibrosis (68). miR-
133a expression in the infarct border zone of myocardial tissue
was found to be significantly decreased after MI. And, the
upregulation of miRNA-133a in the myocardial tissue of rats with
MI remarkably improved cardiac function and reduced collagen
volume fraction (69). Furthermore, the mRNA and protein
levels of TGF-β1, connective tissue growth factor, collagen I and
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TABLE 2 | Micro RNAs targets and functions in myocardial fibrosis.

Functions miRNA Up/down Targets Reference

Myocardial fibrosis Pro-fibrosis 199b Up Dyrk1a PMID:21102440

154 Up – PMID:26928825

21 Up TGFβR1 PMID:29808534

223 Up RASA1 PMID:29689569

181 Down – PMID:32538237

30 Down – PMID:32418505

30 Down PTAFR PMID:32329883

154 Down GSK-3β PMID:29687862

433 Down TGFβR1 PMID:27698941

378 Down TGFβR1 PMID:25104350

378 Down MKK6/p38 PMID:29721099

22 Down TGFβR1 PMID:27997889

Anti-fibrosis 206 Up TiMP3 PMID:21731608

132 Up PTEN PMID:30216493

146 Up EGR1 PMID:30362610

133 Up TGFβR1 PMID:31646592

9-5p Down Fstl1 PMID:30101604

miRNAs are divided into pro-fibrosis and anti-fibrosis according to functions. The pro-fibrosis of main targets include TGFβR1 and the anti-fibrosis of main targets include TGFβR1

and PTEN.

III, and α-smooth muscle actin (α-SMA) in myocardial tissue
were obviously decreased after miRNA-133a upregulation (70).
A study also suggested that miR-223 mimics could enhance
cell proliferation and migration, collagen I and III, and α-
SMA expression in CFs, which could be mediated via mitogen-
activated protein kinase kinase (MEK) 1/2, ERK1/2, and AKT
phosphorylation (71). miR-154 has similar functions via glycogen
synthase kinase 3 beta (GSK-3β) including reducing the heart
and cardiomyocyte size, cardiac fibrosis, lowering the expression
of atrial (ANP) and B-type natriuretic peptides (BNP), and of
profibrotic markers (72), whereas it increases the expression of
p15 (a miR-154 target and cell cycle inhibitor) (73). Furthermore,
miR-378 and miR-181a are secreted by cardiomyocytes to
act as inhibitors of excessive cardiac fibrosis through a
paracrine mechanism (74, 75). Upregulation of miR-132 or
phosphatase and tensin homolog (PTEN) silencing activate the
PI3K/Akt pathway, thereby repressing cardiomyocyte apoptosis
and cardiac fibrosis (76). An earlier study showed that an
injection of high mobility group box 1 (HMGB1) into the heart
of mice, immediately after MI, had the potential to improve
cardiac regeneration and prevent remodeling (77). Recently, a
study on CFs isolated from mice hearts upon angiotensin II
(Ang II)-induced cardiac fibrosis post-MI revealed that miR-
30b-5p and miR-22-3p were downregulated, whereas the platelet
activating factor receptor (PTAFR) was upregulated [X. S. (78)].
In addition, miRNAs can directly inhibit myocardial fibrosis and
even reverse ventricular remodeling (79, 80). Cardiac CITED4
(CBP/p300-interacting transactivators with E [glutamic acid]/D
[aspartic acid]-rich-carboxylterminal domain 4) is sufficient to
cause physiological hypertrophy and mitigate adverse ventricular
remodeling after MI (81). Although few studies specifically
investigated myocardial fibrosis, TGF-β1 is clearly a direct or

indirect target underlying this process. Upstream targets of
PTAFR and CITED4 have recently been found to be worthy of
further exploration (Table 2).

CARDIOMYOCYTE HYPERTROPHY

Cardiac hypertrophy is an adaptive response when the
heart faces various pathological stimuli, such as energy
metabolism disorders, increased load, changes in humoral
factors, and neuroendocrine activation (82, 83). With myocardial
contractility decreasing after MI, ventricular remodeling always
occurs with compensatory hypertrophy of the myocardium
(84). Although this mechanism has an important role for
cardiac function in the early phase of MI, these changes will
eventually develop into heart failure and even death (85).
Myocardial contractility depends mainly on the expression of
two myocardial myosin heavy chain (MHC) genes α and β,
called Myh6 and Myh7, respectively (86). Thyroid hormone T3
signaling controls the expression of these two MHC genes by
stimulating the expression of Myh6 and inhibiting the expression
ofMyh7 after birth (87). miR-208 is a heart- andmuscle-enriched
miRNA (42). Transgenic overexpression of miR-208a in the
heart, which is encoded within an intron of Myh7 and regulates
the thyroid hormone-associated protein 1 (TRβ1), was shown to
be sufficient to induce hypertrophic growth of the heart in mice
(88). Another study showed that infarcted hearts have a higher
abundance of extracellular vesicular miRNA-27a compared
with normal hearts, and that miRNA-27a inhibited PDZ and
LIM domain 5 (PDLIM5) translation, leading to cardiomyocyte
hypertrophic gene expression (89). Probably, Myh7 is also
regulated by the T-box transcription factor 5 (Tbx5) (90).
Mice injected with an adeno-associated virus expressing miR-1
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TABLE 3 | Micro RNAs targets and functions in cardiomyocyte hypertrophy.

Functions miRNA Up/down Targets Reference

Cardiomyocyte hypertrophy Pro-hypertrophy 208 Up Trβ1/MYH7 PMID:19726871

27 Up Trβ1/MYH7 PMID:21149577

27 Up PDLIM5 PMID:32370947

212/132 Up Ang II PMID:23011132

22 Up SIRT PMID:23524588

22 Up PTEN PMID:21618527

206 Up FoXP1 PMID:26333362

340 Up DMD1 PMID:26084457

365 Up SKP2 PMID:28130111

195 Up MFN2 PMID:31341888

20 Up MFN2 PMID:31295012

10 Down TNX5 PMID:28100873

200 Down MLCK PMID:30680929

34 Down Ang II PMID:24728149

1 Down CDK6/NFAT PMID:26699910

133a Down RhoA PMID:17468766

Anti-hypertrophy 1 Up FbIn2 PMID:23612897

541 Up MITF PMID:24722296

let-7 Up CaM PMID:28123343

142 Up SH2B1 PMID:30372837

672 Up JUN PMID:29339068

144 Up MOTR PMID:30084039

181 Down – PMID:32538237

410/495 Down – PMID:26999812

495 Down PTEN PMID:29566365

miRNAs are divided into pro-hypertrophy and anti-hypertrophy according to functions. The pro-hypertrophy of main targets include Trβ1/MYH7, MFN2, and Ang II and the

anti-hypertrophy of main targets include MOTR, PTEN, and CaM.

showed reduced, and even reversed, myocardial hypertrophy
(91). miR-1 is a heart- and muscle-enriched miRNA (42).
miR-1 inhibits the expression of cell division protein kinase
6 (CDK6) to inhibit phenylephrine-induced neonatal rat
ventricular cardiomyocytes hypertrophy, thereby attenuating
the inhibition of the expression of β-MHC and phosphorylated
the retinoblastoma protein (92). miR-340 is a pro-eccentric
hypertrophy miRNA that targets the cardiomyocyte structure
protein dystrophin (93). miR-22 and miR-495 have the opposite
effect, with their upregulation significantly increasing cell size
and markedly decreasing the expression of Myh6 (94). Moreover,
they negatively regulate the PTEN levels in cardiomyocytes
(95). Additionally, overexpression of let-7a was found to repress
the expression of ANP, BNP, and Myh7, as well as of CaM
levels (96). A dual-luciferase reporter assay also showed that
let-7a could bind to the 3’–UTR of CAM1 and let-7a possesses
a prominent anti-hypertrophic property by targeting CAM
genes (97).

There is a potential link between cardiac hypertrophy and
cardiac cell death (98, 99). A study suggested that intravenous
miR-144 has a potent effects on cardiac remodeling of rats with
MI, which was associated with significant changes in autophagy
signaling (100). Cy3-labeled miR-144 was localized to the infarct
and border zones and was taken up by cardiomyocytes and

macrophages (101). Similarly, knock-down of the autophagy-
related protein 9 (ATG9A), which is a direct target of miR-
34, downregulated the autophagic activity and cardiomyocyte
hypertrophy (102). Furthermore, overexpression of the S-
phase kinase-associated protein 2 (Skp2) promoted autophagy
and rescued cardiac hypertrophy induced by Ang II. And,
Skp2 knock-down further inhibited autophagy and cardiac
hypertrophy in mice with MI (103). In contrast, increased miR-
206 expression induced cardiac hypertrophy and inhibited cell
death in cultured cardiomyocytes. The Yes-associated protein
can promote cardiomyocyte growth and survival in postnatal
hearts, and increases the abundance of miR-206, which in turn
plays an essential role in mediating hypertrophy and survival by
silencing FOXP1 in cardiomyocytes (39). miR-133, 541, 200, 624,
and 181 can in turn inhibit hypertrophy and improve cardiac
function through different mechanisms (104, 105). Recently,
a study confirmed that upregulated miR-142-3p could inhibit
hypertrophy and mitochondrial SH2B1, a key factor regulating
energy metabolism (106). Moreover, miR-195-5p and miRNA-
20a-5p can promote cardiac hypertrophy via targeting mitofusin-
2 (MFN2), which is a mitochondrial outer membrane fusion
protein (107, 108). TRβ1/Myh7, Ang II, and PTEN have been the
main targets of research, and MFN2 may be a new major target
(Table 3).
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THERAPEUTIC TARGETS

The majority of patients who survive MI experience a loss
of functional cardiomyocytes as a result of the ischemic
injury, which leads to ventricular failure with significant
alteration of the quality of life and increased risk of mortality
(109). Since the proliferation and self-healing capacity of
cardiomyocytes in adults is limited, regeneration therapy
has emerged as an attractive concept for cardiac repair
(110). Compared with traditional interventional stent
reperfusion, regenerative therapy can save the myocardium
or even regenerate it by promoting angiogenesis, and
inhibit, or even avoid adverse cardiac remodeling (111).
The main directions of regenerative therapy include
stem cell therapy, cardiac fibroblast reprogramming, and
exosome therapy.

Scholars have focused on the development of induced
pluripotent stem cells, but such treatments have failed to
achieve significant benefits in clinical trials (112). This approach
has demonstrated limited therapeutic effect mainly due to
the risk of immune rejection, genetic instability, tumorigenic
potential, low induction efficiency (in the case of induced
pluripotent stem cells), and ethical issues (in the case of
embryonic stem cells use) (113–115). Leda et al. successfully
reprogramed mouse heart and skin fibroblasts into functional
induced cardiomyocytes (iCMs) in vitro (19). However, the
cardiac fibroblast reprogramming efficiency was extremely low
and its requirements are too draconian (116). Furthermore, the
iCMs carry other risks such as arrhythmias (117). However,
the emergence of exosomes provided an additional tool for
myocardial regeneration. Exosomes started to attract attention
in 2007, when it was discovered that they have the unique
property of transferring miRNAs between cells in vivo, acting
as miRNA nanocarriers (118). Recently, mounting evidence
has demonstrated the potential of stem cell-derived exosomes,
as well as other exosome types, in repairing damage after
MI (62, 119). A study confirmed that mesenchymal stem cell
(MSC)-derived exosomes electroporated with miR-132 mimics
could markedly enhanced the neovascularization in the peri-
infarct zone and preserve heart functions (120). Additionally,
an injection of exosomes over-expressing miR-21 directly
into the infarct zone was found to markedly inhibit cell
apoptosis and significantly improve cardiac function in mice
(121). MSC-derived exosomes were also found to protect
the heart in a porcine model of MI when administered
systemically by intravenous injection (122). However, major
hurdles remain for the use of exosomes, primarily due to low
yields from cell cultures coupled with complicated purification
processes (123). Nevertheless, a study reported the self-assembly
of a stem cell membrane-camouflaged exosome-mimicking
nanocomplex that recapitulated exosome functions, achieving
efficient miRNAs delivery and miRNA-mediated myocardial
repair (22). Furthermore, a group constructed a functionalized
single-walled carbon nanotube bound to siRNA from caspase
3 (F-CNT-siCas3) that demonstrated good water solubility and
biocompatibility, but also had a high transfection efficiency of

up to 82%, significantly downregulating the expression of the
caspase 3 gene and protein in vivo (124). A low molecular weight
heparin-encapsulated exosome nanocomplex demonstrated that
it could overcome a microvascular obstruction in the infarct,
and this structure not only makes myocardial cells uptake
miRNAs, which will promote cardiac repair, but will also prevent
myocardiocyte apoptosis and attenuate myocardial fibrosis (125).
Although the exosome nanocomplex technology is expensive
and holds uncertain side effects, it greatly improves the cell
conversion rate compared with the previous two regeneration
methods, while showing good in vivo results. Thus, an exosome
nanocomplex is conducive to further clinical research.

CONCLUSION

In particular, miRNAs play an important role in the pathology of
myocardial apoptosis, fibrosis, and hypertrophy after MI. Targets
of miRNAs have significant therapeutic potential, although there
are still some conflicting data. The majority of miRNAs and
their targets have consistent actions. In particular, SIRT, Bcl-
2, Bax, caspase, TGF-β1, TRβ1/Myh7, and MFN2 are believed
to play a more significantly prominent role than other targets.
In addition, with the development of exosome therapy in
combination with nanomaterials, some of the limitations of stem
cell therapy (such as low conversion rates and poor cardiac
absorption) can be overcome. Exosome nanocomplexes cannot
only carry myocardium-friendly miRNAs, but can also directly
deliver analogs of important targets into the myocardium in
the future. Whether exosome nanocomplexes can treat infarcted
myocardium by acting as vectors for the main targets of miRNAs,
similar to cocktail therapy, may be the next major direction of
exploration. Exosome nanocomplexes with miRNAs are more
likely to be successfully taken forward into clinical evaluation
than other experimental strategies; however, they also have
several limitations. First, the up- and down-stream relationship
with the target needs further verification and improvement.
There are still conflicting effects of miRNAs (such as miR-Let-7
andmiR-154) andmore experimental studies are needed. Second,
miRNAs act on multiple targets and are involved in several
mechanisms; thus, it is necessary to weigh the advantages and
disadvantages of their activities. Lastly, treatment withmiRNAs is
complicated and expensive, and more clinical studies are needed
to confirm their therapeutic potential. With the perfectly targeted
mechanism and the continuous improvement of exosome
therapeutic materials, we believe that mature technologies and
drugs based on miRNAs used to save the infarcted myocardium
will soon be available to all.
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