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Abstract
Objectives Multidrug-resistant tuberculosis (MDR-TB) is a major challenge to global health security. Early identification of
MDR-TB patients increases the likelihood of treatment success and interrupts transmission. We aimed to develop a predictive
model for MDR to cavitary pulmonary TB using CT radiomics features.
Methods This retrospective study included 257 consecutive patients with proven active cavitary TB (training cohort: 187 patients
from Beijing Chest Hospital; testing cohort: 70 patients from Infectious Disease Hospital of Heilongjiang Province). Radiomics
features were extracted from the segmented cavitation. A radiomics model was constructed to predict MDR using a random forest
classifier. Meaningful clinical characteristics and subjective CT findings comprised the clinical model. The radiomics and clinical
models were combined to create a combinedmodel. ROC curves were used to validate the capability of the models in the training
and testing cohorts.
Results Twenty-one radiomics features were selected as optimal predictors to build the model for predicting MDR-TB. The
AUCs of the radiomics model were significantly higher than those of the clinical model in either the training cohort (0.844 versus
0.589, p < 0.05) or the testing cohort (0.829 versus 0.500, p < 0.05). The AUCs of the radiomics model were slightly lower than
those of the combined model in the training cohort (0.844 versus 0.881, p > 0.05) and testing cohort (0.829 versus 0.834, p >
0.05), but there was no significant difference.
Conclusions The radiomics model has the potential to predict MDR in cavitary TB patients and thus has the potential to be a
diagnostic tool.
Key Points
• This is the first study to build and validate models that distinguish MDR-TB from DS-TB with clinical and radiomics features
based on cavitation.

• The radiomics model demonstrated good performance and might potentially aid in prior TB characterisation treatment.
• This noninvasive and convenient technique can be used as a diagnosis tool into routine clinical practice.
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Abbreviations
AUC Area under the ROC curve
CT Computed tomography
DST Drug-sensitive test
DS-TB Drug-sensitive TB

GLCM Grey-level co-occurrence matrix features
GLDM Grey-level dependence matrix
GLRLM Grey-level run-length matrix
GLSZM Grey-level size-zone matrix
MDR-TB Multidrug-resistant TB
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MIC Maximal information coefficient
MINE Maximal information–based

nonparametric exploration
NGTDM Neighbouring grey-tone difference matrix
RFC Random forest classifier
ROC Receiver operator characteristic
ROIs Regions of interest
TB Tuberculosis

Introduction

Pulmonary tuberculosis (TB) is one of the leading causes of
death worldwide and the top cause of death from a single
infectious disease globally until the coronavirus (COVID-
19) pandemic, ranking above HIV/AIDS [1]. The presence
of multidrug-resistant TB (MDR-TB) is a major challenge to
global health security, and it is the only major airborne drug-
resistant epidemic. The number of confirmed MDR-TB cases
over the past 5 years has almost doubled globally [2]. MDR-
TB refers to TB infection resistant to at least two of the most
powerful anti-TB drugs, isoniazid and rifampicin [3].
Microbiologic culture and sputum smear microscopy after
Ziehl-Neelsen staining are necessary for diagnosing TB [4].
Currently, there are many genotypic and phenotypic tests to
detect MDR-TB strains and determine whether they are resis-
tant to drugs used [5]. However, using sputum instead of a
culture isolate as a sample to detect MDR-TB has poor sensi-
tivity. The results from the culture isolate are generally only
available after 4–8 weeks [1]. Hence, the early identification
of patients with MDR-TB increases the likelihood of treat-
ment success and interrupts transmission.

Chest computed tomography (CT) has shown good perfor-
mance as a triage tool, in monitoring imaging changes, and in
evaluating the severity of pulmonary TB. Several studies have
demonstrated that multiple cavities, masses, bronchiectasis,
and lymph nodes are more commonly observed in MDR-TB
[6]. Cavitation in the lung parenchyma is an important imag-
ing feature for diagnosing TB, and it can be easily detected
using CT [7]. A cavity is defined as a pathological, gas-filled
space within a pulmonary consolidation in the lung parenchy-
ma produced by the expulsion of the necrotic part of the lesion
via the bronchial tree [8]. In addition, cavitation may also be
seen in primary bronchogenic carcinoma, pulmonary metas-
tasis and pneumonia. The variation in the cavity is an essential
sign for measuring the response to TB treatment [9]. The
existence of cavitation is common in TB, especially in
MDR-TB. The presence of cavities is strongly associated with
a high TB mycobacterial load, representing an advanced state
of the disease [10]. However, most imaging features in prior
studies were heterogeneous and nonquantitative, and few
quantitative studies have focused on cavitary TB.

Radiomics is based on the conversion of medical images to
high-dimensional quantitative information, which provides
important insights into pathophysiology. Radiomics can ex-
tract multiple types of quantitative data from radiological im-
ages, such as shape, distribution of attenuation or intensity,
and spatial information [11]. Radiomics has been primarily
applied to a variety of tumours, including brain, nasopharynx,
and lung cancers [12]. However, to the best of our knowledge,
few studies have published radiomics analyses of cavitary TB
for MDR-TB prediction.

We hypothesised that the radiomics features of cavitary TB
patients may be useful for predicting MDR-TB because of the
detailed quantitative information that can be obtained from a
segmented cavity. The aim of this study was to evaluate
whether CT-based radiomics features from cavitation could
distinguish MDR-TB from drug-sensitive TB (DS-TB) and
predict MDR-TB successfully.

Materials and methods

Participants

This retrospective study was approved by the ethics commit-
tees of Beijing Chest Hospital, Capital Medical University
(No. 36, 2021) and Infectious Disease Hospital of
Heilongjiang Province, and the requirement for informed con-
sent was waived.

In the study, all patients with cavitary TB were enrolled
according to the inclusion and exclusion criteria. The inclu-
sion criteria were as follows: (a) patients were confirmed to
have active TB with the use of sputummicroscopy, culture, or
polymerase chain reaction test; (b) the drug-sensitive test
(DST) ofMycobacterium tuberculosis isolates was performed
to distinguish DS-TB from MDR-TB and quality control was
routinely performed during the DST; (c) there was a clearly
visible cavity on lung CT; and (d) all CT scans were perform-
ed within 30 days of TB diagnosis to exclude the confounding
effects of medications on the measurements. The exclusion
criteria included the following: (a) a history of thoracoabdom-
inal trauma or other pulmonary diseases such as lung cancer,
silicosis, or COPD; (b) diabetes or HIV seropositivity; and (c)
image artefacts or incomplete clinical information.

According to the above criteria, we recruited a total of 257
patients who were diagnosed with cavitary TB. Finally, a total
of 187 patients, which included 115 DS-TB and 72 MDR-TB
patients from Beijing Chest Hospital, were enrolled as the
training cohort fromDecember 2016 to July 2019. In addition,
a testing cohort from Infectious Disease Hospital of
Heilongjiang Province was subsequently enrolled, including
35 patients with DS-TB and 35 patients with MDR-TB, from
August 2018 to May 2020. The patient recruitment flowchart
is shown in Fig. 1.
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CT image acquisition

All CT scans were performed with an Optima CT 680 system
and Light Speed VCT (GE Healthcare). The scanning param-
eters were as follows: tube voltage, 120 kV; automatic tube
current modulation; detector collimation, 64 × 0.625 mm; ro-
tation time, 500 ms; and pitch, 1.375. The image reconstruc-
tion parameters were as follows: slice thickness, 1.25 mm;
increment, 1.25 mm; field of view, 15 cm; and matrix, 512 ×
512. Reconstructed images were transferred from the hospital’s
picture archiving and communication system to 3D Slicer
(http://www.slicer.org) for radiomics analysis.

Evaluation of subjective CT findings

CT images were independently reviewed by two radiologists
with at least 10 years of experience in analysing chest images
who were blinded to the final clinical diagnosis based on the
DST. The primary signs assessed in the CT images (Fig. 2)
were as follows: (a) tree-in-bud and small centrilobular nod-
ules [13]; (b) single large nodule and surrounding satellite
lesions; (c) consolidation (lobular or subsegmental, segmental
or lobar); (d) fibro stripe; and (e) calcified nodules. A consen-
sus was reached through discussion in cases of disagreement.

Cavity segmentation

Regions of interest (ROIs) were manually contoured along
the whole surface of the cavity layer by layer, including

circumambient satellite lesions in reference to images in lung
windows (Fig. 3). Segmentation was manually contoured in
3D Slicer software, strictly performed by an experienced
chest radiologist and confirmed by another chest radiologist
with 10 years of experience in lung CT to exclude irrelevant
components. Both radiologists were blinded to the diagnosis
of TB.

Radiomics feature extraction

The radiomics features were extracted from each ROI.
Detailed information about the radiomics features is provided
in Supplementary Material 1 and PyRadiomics official docu-
mentation (https://pyradiomics.readthedocs.io/en/latest/
features.html).

Feature selection

Not all features contribute to the positive performance of clas-
sification, and some features might add noise to it. The max-
imal information coefficient (MIC) is a measure of two-
variable dependence designed specifically for the rapid explo-
ration of many-dimensional data sets [14]. MIC is part of a
larger family of maximal information-based nonparametric
exploration (MINE) statistics, which can be used not only to
identify important relationships in data sets but also to char-
acterise them. According to the MIC values, we selected the
top 300 relevant features in the training cohort after data split-
ting. The random forest classifier (RFC) method was used to

Fig. 1 Flowchart of patient selection
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construct the prediction model because of its high variance-
bias trade-off capability [15]. RFC can give estimates of what
variables are important in the classification. Then we used the
embedded feature selection to choose predictable features
based on the top 300 relevant features (Supplementary
Material 2). Tenfold cross validation was implemented to
avoid overfitting. The two steps of feature selection were car-
ried out by the Python scikit-learn package (version 3.8,
Scikit-learn Version 0. 21, http://scikit-learn.org/).

Model construction

In the training cohort, the clinical characteristics and subjec-
tive CT findings were selected to build a clinical model by
multivariate logistic regression. The radiomics model to pre-
dict MDR-TB based on the selected radiomics features was
trained using the RFC method. Additionally, the combined
model was the combination of the radiomics model and clin-
ical model by the RFC method, which included the selected
radiomics features and clinical variables (clinical characteris-
tics and subjective CT findings) with significant differences.
These three models were all trained and validated on the train-
ing cohort which were randomly divided into two parts by the
ratio of 7:3 using tenfold cross validation. Finally, the best

model which was separately selected from all three models
was tested on the external testing cohort.

Statistics

Statistical analysis was performed with SPSS software (ver-
sion 21) and the Python Scikit-learn package. Cohen’s kappa
test was used to analyse interreader agreements of subjective
findings (κ values of poor, fair, moderate, substantial, and
near-perfect agreement were < 0.00, 0.21–0.40, 0.41–0.60,
0.61–0.80, and 0.81–1.00, respectively). Qualitative variables
(sex and subjective CT findings) were presented as frequen-
cies. Differences between qualitative variables were compared
with the chi-square test. Then the age was compared by the
Mann-Whitney U test. Variables with significant differences
were used to develop the clinical model by logistic regression.
The performance of all three models in both cohorts was eval-
uated with receiver operator characteristic (ROC) curves,
which were used to calculate the area under the ROC curve
(AUC). Thereafter, we used the DeLong test to separately
analyse the AUCs of the clinical model, radiomics model
and combined model. We individually calculated accuracy,
precision (positive predictive value), recall (sensitivity) and
F1 score. F1 score is the harmonic average of the precision

Fig. 2 Axial lung CT images of subjective CT findings for TB patients. a Tree-in-bud and small centrilobular nodules; b single large nodule and
surrounding satellite lesions; c consolidation (lobular or subsegmental, segmental or lobar); d fibro stripe; e nodules with calcification

Fig. 3 Work flow of cavity segmentation. a Axial lung CT image shows the cavity. b Cavity segmentation and ROI delineation. c 3D volume
construction based on the ROI
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and recall, ranging from 0 to 1. Statistical tests were conducted
with p < 0.05 as an indicator of statistical significance.

Results

Clinical characteristics of the patients

The clinical characteristics and subjective CT findings of the
257 patients are listed in Table 1. As shown in Table 1, the age
of the MDR-TB patients and DS-TB patients had significant
difference in both the training and testing cohorts (p < 0.05).
There was no significant difference in gender between patients
with MDR-TB and DS-TB in either cohort. There was excel-
lent interobserver agreement with regard to tree-in-bud and
small centrilobular nodules, single large nodules and sur-
rounding satellite lesions, consolidation (lobular or
subsegmental, segmental or lobar), fibro stripes and calcified
nodules (k = 0.726, 0.743, 0.797, 0.783 and 0.843, respective-
ly). In terms of these CT findings, the MDR-TB and DS-TB
groups had significant differences in single large nodules and
calcified nodules (p < 0.05). The other remaining findings

showed no significant difference in either the training cohort
or the testing cohort. As a result, age, single large nodule and
calcified nodules were selected to establish a clinical model.

Radiomics feature selection

There were 300 radiomics features extracted from the MIC
values. Then, we identified the 21 most important MDR pre-
dictive biomarkers for model construction based on the opti-
mal threshold, which was set to 0.007 by the learning curve
(details shown in Supplementary Materials 3 and Fig. S1).
The normalised importance of the 21 features is shown in
Fig. 4. Detailed values and distributions of these features are
shown by the violin plot in Fig. 5.

Performance outcomes of the clinical, radiomics and
combined models

The ROC curves and AUCs of these three models in the train-
ing and testing cohorts are shown in Fig. 6. The radiomics
model showed a favourable discriminatory ability in the train-
ing cohort, with an AUC of 0.844 (95% CI, 0.725 to 0.949)

Table 1 Clinical characteristics and subjective CT findings from DS-TB and MDR-TB in the training cohort and testing cohort

Characteristic Training cohort (n = 187) p value Testing cohort (n = 70) p value

DS-TB MDR-TB DS-TB MDR-TB
(n = 115) (n = 72) (n = 35) (n = 35)

Gender, n (%)

Male 76 (66.09) 51 (70.83) 0.499 25 (71.43) 23 (65.71) 0.797

Female 39 (33.91) 21 (29.17) 10 (28.57) 12 (34.29)

Age (mean ± SD years) 39.59 ± 15.1 34.87 ± 11.46 0.003* 36.27 ± 13.12 30.16 ± 7.49 0.044*

Tree-in-bud and small centrilobular nodules, n (%)

Presence 84 (73.04) 47 (65.28) 0.259 22 (62.86) 20 (57.14) 0.808

Absence 31 (26.96) 25 (34.72) 13 (37.14) 15 (42.86)

Single large nodule and surrounding satellite lesions, n (%)

Presence 69 (60.00) 27 (37.50) 0.003* 25 (71.43) 12 (34.29) 0.004*

Absence 46 (40.00) 45 (62.50) 10 (28.57) 23 (65.71)

Consolidation (lobular or subsegmental, segmental or lobar), n (%)

Presence 56 (48.70) 38 (52.78) 0.587 19 (54.29) 22 (62.86) 0.628

Absence 59 (51.30) 34 (47.22) 16 (45.71) 13 (37.14)

Fibro stripe, n (%)

Presence 31 (26.96) 25 (34.72) 0.259 14 (40.00) 10 (28.57) 0.450

Absence 84 (73.04) 47 (65.28) 21 (60.00) 25 (71.43)

Calcified nodules, n (%)

Presence 25 (21.74) 5 (6.94) 0.007* 11 (31.43) 3 (8.57) 0.034*

Absence 90 (78.26) 67 (93.06) 24 (68.57) 32 (91.43)

Note: Differences were assessed by Mann-Whitney U test or chi-square test

SD standard deviation

*p < 0.05
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and F1 score of 0.827, which was confirmed in the testing
cohort AUC of 0.829 (95% CI, 0.724 to 0.916) and F1 score
of 0.809. The AUCs and F1 score of the clinical model were
0.589 (95% CI, 0.429 to 0.753) and 0.500 (95% CI, 0.366 to
0.631) and 0.483 and 0.465 in the training cohort and testing
cohort. Finally, the combined model showed the best perfor-
mance in the training cohort, with an AUC of 0.881 (95% CI,
0.780 to 0.969) and F1 score of 0.852, which was confirmed
in the testing cohort AUC of 0.834 (95% CI, 0.730 to 0.917)
and F1 score of 0.824. In addition, the AUCs of the radiomics
model (0.844 and 0.829) were much higher than those of the
clinical model (0.589 and 0.500) in both the training cohort
(p < 0.0001) and testing cohort (p = 0.003). The AUCs of the
combined model achieved the highest values (0.881 and
0.834) among all of the models in both the training and testing
cohorts. More specifically, there were significant differences
between the combined model and clinical model in both the
training (p < 0.0001) and testing (p < 0.0001) cohorts.
Meanwhile, there was no significant difference between the
combined model and the radiomics model in the training (p =
0.165) and testing (p = 0.861) cohorts. The accuracy, preci-
sion, recall and F1 score of all three models in the training and
testing cohorts are summarised in Table 2.

Discussion

The main finding of this study is that we developed a machine
learning model for differentiating DS-TB from MDR-TB
based on CT radiomics features, which achieved good accu-
racy in an independent external testing cohort. In this

retrospective study, radiomics was first used for predicting
MDR in cavitary TB. The constructed radiomics model
showed good predictive performance (AUC = 0.844 and
0.829), and the performance was much higher than that of
the clinical model and was similar to that of the combined
model.

An analysis of clinical characteristics showed that the age
of MDR-TB patients had significant differences with those of
DS-TB patients, whereas sex did not show a significant dif-
ference, similar to the results of previous studies [13]. The
year of effective anti-TB drug therapies may relate to the dif-
ference. Sedentary lifestyle and decreased immune response
were other potential factors [16]. An analysis of subjective CT
findings revealed that there were significant differences in
single large nodule and calcified nodules between the two
groups. There have been different viewpoints in this subjec-
tive finding. A previous study reported that calcification, large
nodules and calcified lymph nodes are more frequently seen in
DS-TB than in MDR-TB [13, 17], whereas other reports in-
dicated that calcified granulomas are more common in pa-
tients withMDR-TB [6, 18]. This differencemay be attributed
to the aetiology of MDR-TB (primary or acquired MDR-TB).
Tree-in-bud and small centrilobular nodules, consolidation
and fibro stripes were the most common CT signs in active
TB [19]. Hence, there were no evident differences in these
findings between MDR-TB patients and DS-TB patients.

Cavitation is not only an essential imaging characteristic
but also a key pathological feature of TB [20]. The presence of
cavitation always indicates poor treatment outcomes and risk
of drug resistance [21]. In addition, there is a great risk of
person-to-person transmission among patients with cavitary

Fig. 4 The 21 features with the highest normalised importance were selected and included
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TB [22]. The cavities of TB patients are heterogeneous in size,
morphology and wall composition [23]. Cavities are com-
monly seen in the lung upper lobe, especially in immunocom-
petent adults [24]. The walls of the cavity are associated with
the efficacy of therapy. Thinner walls are usually observed
after effective treatment, whereas thicker cavity walls present

higher concentrations of bacilli in the sputum [25]. Satellite
lesions (small nodules distant to the cavity) are also evident in
10–20% of cases [26]. The radiological manifestations of TB
cavities are heterogeneous, with some patients having single
or multiple cavities surrounded by consolidated, fibronodular
or mixed patterns [27]. It has been noted that cavities were

Fig. 5 These violin plots show the detailed values and distributions of 21 features
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more common forMDR-TB than for DS-TB [28]. Large num-
bers of mycobacteria harboured in cavities and limited drug
penetration may contribute to MDR-TB [6]. It has been re-
ported that larger cavities and more cavities can be easily
observed in MDR-TB than in DS-TB [16]. In summary, pre-
vious studies have focused on subjective CT findings, and it is
difficult to make a diagnosis of MDR-TB based on these find-
ings, especially in cavitary TB. Thus, it is necessary to explore
the specific differences in cavitation in both MDR-TB and
DS-TB by using quantitative analysis, and radiomics seems
promising in this regard.

Our study tried to explore more detailed information on
cavitation and quantify not only the common features, such
as intensity, shape, size or volume, but also the internal
texture features that are unable to be obtained by macro-
scopic observation but can be reflected by radiomics ana-
lysis. Currently, radiomics is widely used due to its poten-
tial to build predictive or prognostic models [29]. Many
previous studies have confirmed that combining CT- or
PET-CT-based radiomics features and clinical characteris-
tics could effectively differentiate solitary TB nodules from

lung adenocarcinoma [30, 31]. To our knowledge, no pub-
lished study has focused on machine learning and the CT
radiomics of cavitary TB, as was done in this study. We
attempted to differentiate MDR-TB from DS-TB, as this
is the most relevant clinical question and is oriented to-
wards a very different kind of medication.

The performance of radiomics models might be substan-
tially influenced by the selection of image features. These
features are crucial to the model performance, and too many
features could easily lead to model overfitting and reduce the
performance of the model. To overcome this crucial problem,
we took many steps. First, we used the MIC to select 300
features according to the important relationships between fea-
tures and different diagnoses of TB. Then, we used the RFC to
measure the Gini importance of each feature and identified 21
features. Finally, the RFC was selected to build the radiomics
model and combinedmodel. The RFC is a model of integrated
learning that consists of a number of decision tree classifica-
tion machines. Thus, overfitting is avoided, and the prediction
accuracy is improved without significantly increasing the
computation.

Table 2 Predictive performance
of three models in the training and
testing cohorts

Index Training cohort Testing cohort

Clinical
model

Radiomics
model

Combined
model

Clinical
model

Radiomics
model

Combined
model

AUC 0.589 0.844 0.881 0.500 0.829 0.834

Accuracy 0.559 0.765 0.794 0.440 0.720 0.767

Precision 0.538 0.800 0.829 0.366 0.823 0.838

Recall 0.438 0.856 0.877 0.639 0.796 0.811

F1 score 0.483 0.827 0.852 0.465 0.809 0.824

Fig. 6 ROC curves of the clinical, radiomics, and combined model. a Training cohort. b Testing cohort
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The clinical model established in our study showed some
classification power, whereas it was not precise enough for
clinical use. In contrast, our radiomics model showed good
performance in the training cohort (AUC = 0.844) and similar
performance in the independent testing cohort. The F1 score
provides greater focus on the classification of interest, as the
score varies more when the dataset is imbalanced (the ratio of
positive and negative classifications is different). According to
the F1 score, the radiomics and combined model also showed
good predictive performance in both training cohort and test-
ing cohort. This implies that the radiomics model will show
good stability and generalizability in clinical practice. There
were no significant difference between the radiomics model
and the combined model. This indicates that radiomics fea-
tures of cavitation may be dominant factors of MDR.
According to the radiomics model, the 21 most important
radiomics features were selected and composed of 14 first-
order features, 3 GLCM features, 2 GLSZM features, 1
GLRLM feature and 1 GLDM feature. Five features were
based on LoG-sigma–transformed images, which emphasises
areas of grey-level change, with a low sigma value emphasi-
zing fine textures and a high sigma value emphasising coarse
textures. Sixteen features based on wavelet-transformed im-
ages were obtained from all possible combinations of apply-
ing either a high- or a low-pass filter in each of the three
dimensions. The first-order features mainly describe the dis-
tribution of voxel intensities within the image region defined
by the mask through commonly used and basic metrics. The
GLCM feature describes the image’s second-order joint prob-
ability function. The GLRLM feature quantifies grey-level
runs, which are defined as the length (in number of pixels)
of consecutive pixels that have the same grey-level value. The
GLDM feature quantifies the grey-level dependencies in an
image. The GLSZM feature quantifies the grey-level zones in
an image. The results indicate that cavitation in DS-TB and
MDR-TB is heterogeneous, where many texture features are
relevant to MDR.

However, several limitations in this study still exist. First,
this study was a retrospective analysis, and the number of
patients was not very large. As a result, inherent selection bias
may exist. Second, considering the smaller sample size of the
testing cohort, future research should focus on prospective
studies to increase the generalizability. Third, our study only
discussed predictive models for MDR of cavitary TB, but
models that can be applied to other types of TB should be
further studied.

In conclusion, radiomics features based on cavitation have
significant values in distinguishing MDR-TB from DS-TB.
Our study may potentially aid in early TB characterisation
by integrating the multidisciplinary approach currently based
on clinical and subjective CT findings and radiomics. Future
large-scale multicentre studies should be carried out to further
confirm the preliminary results so that this noninvasive and

convenient technique can be used as a diagnostic tool in rou-
tine clinical practice.
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