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Abstract: Marine plankton abundance and dynamics in the open and interior ocean is still
an unknown field. The knowledge of gelatinous zooplankton distribution is especially challenging,
because this type of plankton has a very fragile structure and cannot be directly sampled using
traditional net based techniques. To overcome this shortcoming, Computer Vision techniques
can be successfully used for the automatic monitoring of this group.This paper presents the
GUARD1 imaging system, a low-cost stand-alone instrument for underwater image acquisition
and recognition of gelatinous zooplankton, and discusses the performance of three different
methodologies, Tikhonov Regularization, Support Vector Machines and Genetic Programming,
that have been compared in order to select the one to be run onboard the system for the automatic
recognition of gelatinous zooplankton. The performance comparison results highlight the high
accuracy of the three methods in gelatinous zooplankton identification, showing their good capability
in robustly selecting relevant features. In particular, Genetic Programming technique achieves the
same performances of the other two methods by using a smaller set of features, thus being the most
efficient in avoiding computationally consuming preprocessing stages, that is a crucial requirement
for running on an autonomous imaging system designed for long lasting deployments, like the
GUARD1. The Genetic Programming algorithm has been installed onboard the system, that has been
operationally tested in a two-months survey in the Ligurian Sea, providing satisfactory results in
terms of monitoring and recognition performances.

Keywords: content-based image recognition; feature selection; gelatinous zooplankton; autonomous
underwater imaging; GUARD1

1. Introduction

Automatic recognition of plankton is a rapid expanding field [1] and many approaches exist
for the recognition and classification of micro-zooplankton specimens [2,3]. Nevertheless, very few
literature refers to the detection and classification of macro gelatinous zooplankton.

The dynamics of marine plankton populations are still largely unknown, especially in the open
and interior ocean, even if the number of observations collected in the last decades is growing.
Marine zooplankton plays a key role in the trophic chain, due to the fact that most marine animals
have life cycles including a planktonic phase and very often feed on zooplankton for their entire life or
part of it [4].
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Gelatinous zooplankton is a crucial actor in the trophic mesopelagic communities, with implications
for the carbon cycle [5] and for fisheries, since it often competes with fish for food sources, and often is
a critical indicator and driver of ecosystem performance and change [6].

Mounting evidence suggests a rapid change in the structure of pelagic ecosystems from
one dominated by fish to a less desirable gelatinous state, bearing critical ecological, economic and
social consequences [7]. Several studies indicate that such alterations are happening in different
ecosystems [6,8–12]. In general, eutrophication, human-induced stresses, climate change, translocation
and habitat modification appear to be promoting jelly blooms to the detriment of other marine
organisms [7,13].

Invasions of gelatinous zooplankton, jellies hereafter, have been reported as possible causes of
major ecosystem changes, or regime shifts, and, in addition, some cnidarians may pose risk for tourism
because the medusae stings are considered highly offensive to summer bathers [11]. Such concerns
have promoted the start of several programs, such as the Catalan “Medusa Project” [14], the CIESM
“JellyWatch Programme” [15], and the “Spot the Jellyfish” initiative [16], aimed at monitoring jellyfishes
and at giving early warning against their invasions.

Mapping of gelatinous zooplankton (e.g., pelagic cnidarian and ctenophore) is therefore necessary
to understand their biogeographical distribution, to monitor changes in their abundance and to early
detect invasions. Classical sampling with towed plankton nets is not appropriate for these delicate
organisms, and furthermore is usually expensive. To overcome these shortcomings, imaging techniques
can be used for the automatic monitoring of this group.

In general the automatic recognition of jellies deals with several issues having different nature,
ranging from physics and biology to technology. The large number of jelly species, the non-rigid shape,
the almost transparent body, the size of organisms and their capabilities to be almost invisible to
possible predators make it difficult to identify an effective approach for the automatic recognition of
these organisms.

Moreover, the particular acquisition context, i.e., light conditions, water turbidity, deformation
typical of the underwater images, light reflection close to the surface, lack of natural light in deep
water, presence of non-relevant floating objects (e.g., fishes, litter, algae, mucilage), strongly affect the
image quality and thus the recognition performance.

On the technological side, the sensitivity of the imaging instrument, the sensor noise, the selected
field of view and the lighting system capabilities play a crucial role in the recognition quality.

Finally, the pattern recognition methods have huge influence on the detection performances,
which are highly related to the image pre-processing steps (e.g., contrast, color and contour enhancement),
to the identification of the regions of interest, to the extraction of image features and to the selection of
relevant image features.

Many different imaging systems have been developed in the last years for the automatic
monitoring and investigation of gelatinous zooplankton, but no one combines the capability of being
hosted on both fixed platforms (e.g., oceanographic moorings and submerged observatories [17,18])
and mobile platforms (e.g., Autonomous Underwater Vehicles (AUV) [19], sea gliders [20],
drifter buoys [21] and ARGO float (http://doi.org/10.17882/42182) vertical profilers [22]), with
performing onboard automatic recognition of jelly specimens over a large dimension range. Table 1
presents the main zooplankton imaging devices comparing the core features of each system.

This paper presents the GUARD1 imaging system (EU patent application EP14188810) designed
and developed for autonomous, long term and low-cost monitoring and recognition of gelatinous
macro-zooplankton in order to assess their abundance and distribution. Moreover, the performance of
three methodologies for the automatic recognition of jellies are discussed and compared in order to
select the one to be operationally run onboard the system.

http://doi.org/10.17882/42182
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Table 1. Summary of the main imaging devices developed for automatic monitoring of zooplankton.
For comparison purposes, the functionalities of the GUARD1 system, object of the present paper,
are reported.

Imaging System Hosting Platform Monitoring Target System Functionalities

LAPIS [23] Towed by vessel Gelatinous zooplankton Imaging

(size (1 cm–100 cm)) No recognition
No classification

ZOOVIS [24] Towed by vessel Gelatinous zooplankton Imaging
(size < 5 mm) Offline recognition and classification [25]

ISIT [26] Towed by vessel Bioluminescent events produced Imaging
by deep zooplankton Offline automatic recognition

ICCD [27] Fixed and mobile Bioluminescent events produced Imaging
by deep zooplankton Offline automatic recognition

VPR [28–30]

Imaging
Towed by Zooplankton Offline automatic recognition

vessel ROV (size (1 µm–10 cm)) Offline automatic classification
(Zooprocess [3,31])

UVP [32,33]

Imaging
Towed by Zooplankton Offline automatic recognition

vessel ROV (size (1 µm–10 cm)) Offline automatic classification
(Zooprocess [3,31])

ISIIS [34] Towed by vessel Zooplankton Imaging

(size (1 mm–13 cm)) Offline automatic recognition
Offline automatic classification

OPC [35] AUV Micro plankton Imaging
(Tested in lab) (not jellies) Onboard automatic particle counting

GUARD1 [36–38] Fixed and mobile Gelatinous zooplankton Imaging
(size (1 mm–100 cm)) Onboard automatic recognition

GUARD1 is the improvement of the proof of concept discussed in references [36–38], based
on more powerful software control components and cheaper electronics, in order to optimize the
acquisition strategy and have costs compatible with disposable instrumentation. It is a low-power
and stand-alone system conceived for installation on both fixed and mobile platforms for acquiring
images of objects or organisms from 1 mm to 100 cm in size. Onboard the device, the image content is
analyzed, recognized and classified, with the aim of monitoring the ocean interior at various scales
in space and time. The system is completely autonomous, uncabled and designed for long lasting
deployments. These characteristics make the GUARD1 complementary to the devices discussed in
Table 1.

The pattern recognition approaches investigated hereby are binary image classifiers based on
Support Vector Machines (SVM) [39], on Elastic Net based on the Tikhonov regularization (TR) [40] and
on Genetic Programming (GP) [41]. These three methods are well established in literature, but presently
TR and GP are not commonly used for underwater image classification tasks, even if recently GP has
been applied to automatic detection of manganese nodules in sea floor images [42].

The proposed methodologies have been integrated with feature selection schemes for identifying
the most suitable image features capable to discriminate jellies from other floating objects captured
by the images (e.g., fishes, litter, algae, light reflections), in order to optimize the recognition
performances and the computational cost. The latter is a key requirement for algorithms to be run
onboard an autonomous system designed for long lasting deployments, since it affects the system
energy consumption.

This paper is organized as follows: Section 2 presents the developed imaging system, describes
the image acquisition strategy, the image processing workflow, the pattern recognition and supervised
learning framework and the three experimented methodologies. Section 3 reports the achieved results
and Section 4 analyzes them in terms of recognition performances and feature selection stability.
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Section 4 also describes the operational test performed on the system running the selected recognition
method. In Section 5 the overall system functionalities and performances are analyzed and conclusions
are given.

2. Experimental Section

2.1. GUARD1 Imaging System

The system includes a low power and low cost image acquisition device to collect time series,
coupled with on board hardware and software modules for managing the image acquisition, analysis,
recognition and content communication as discussed in reference [38]. It was tested on fixed
(coastal station and moored) and mobile platforms (drifter buoys and Argo floats) and mounted
onboard an oceanographic rosette operated by a research vessel. Figure 1 shows the instrument in
different scenarios.

Figure 1. The GUARD1 autonomous imaging system in three of its possible configurations: on the
left panel it is hosted on a mooring chain; in the middle panel it is mounted on a rosette; on the
right panel it is hosted onboard an ARVOR profiler.

The instrument is fully programmable for operating in a wide range of applications and it is
built up of three modules: (i) the acquisition component; (ii) the elaboration and storage module and
(iii) the control module.

The acquisition component (i) consists of a programmable consumer camera, housed for underwater
operations. It is equipped with a lighting system that is automatically turned on, through the use of
a light sensor, only if the natural light is not sufficient for the specific acquisition purposes.

The sampling strategy and the programming of the acquisition parameters (e.g., ISO, exposure
time, focal length, iris aperture) are designed for the automatic adaptation to the lighting conditions
thanks to a specific modification of the firmware controlling the camera. In particular, with respect
to the system release described in [38], the LUA script based on CHDK [43] running on the camera
firmware has been improved by implementing a more layered analysis of the camera light sensor
response. As a result, the acquisitions are triggered reducing the lighting system usage, thus reducing
the system power consumption.

The elaboration and storage module (ii) consists of a CPU board hosting and running algorithms
for image analysis and pattern recognition. These algorithms are responsible for the different tasks
of the image interpretation pipeline. The analysis algorithm extracts the relevant features from the
acquired images, while the pattern recognition algorithm uses the extracted features to recognize the
relevant image content (e.g., number of specimens, relevant image sub-regions) [44,45]. The recognized
image content can be stored and/or communicated outside the instrument. In order to save up the



Sensors 2016, 16, 2124 5 of 28

battery pack, the image elaboration algorithms works on groups of images (not on single images) as
they run at scheduled time intervals.

The communication module is now in the process of being developed. A high-level design has
been realized and the communication architecture and the devices to be employed have been identified.
In particular, the communication block will operate a dual configuration, based on acoustic and
electromagnetic channels.

The acoustic channel will be used for communicating with submersed fixed or mobile platforms
in the vicinity of the system. The GUARD1 will host an acoustic modem, acting as the master
in a master-slave configuration, periodically pinging the slave modems eventually located in the
surroundings. The slave acoustic modems would be installed onboard submarine mobile platforms
(e.g., AUV) patrolling the area or that are in the vicinity on their mission track, or onboard fixed
platforms (e.g., fixed submersed observatory) the GUARD1 might approach during its mission. At the
moment the software modules for the acoustic communication pipeline have been implemented and
are in their test phase, while the performances of different low-cost and small-size acoustic modems
are now being analyzed and compared.

On the other hand, a sea-surface proximity sensor will be mounted onboard the GUARD1, in order
to trigger the electromagnetic communication in case the system is surfacing. This communication
will be performed using GPRS (for coastal activities) or satellite modems equipped with adequate
antennas, and will transfer data to a central station. The first tests for this configuration will begin in
the next few months.

Since the communication module is now under investigation and it has not yet been implemented
in an operational release, at the moment the information extracted by the elaboration component can
be accessed after the instrument recovery.

The control module (iii), responsible for the management of the operational workflows of
acquisition, image elaboration, communication and lighting modules, has been redesigned with respect
to the system release presented in [38]. The new release is based on cheaper electronic components,
thus reducing the system costs and making them compatible with disposable instrumentation ones.
The control block allows for the acquisition frequency programming and the start-stop scheduling of the
elaboration component. The control component tasks can be programmed through a remote controller.

2.2. The Survey

In the period May–June 2013, a survey has been carried out in Baia Santa Teresa, in the Ligurian
Sea close to La Spezia. The monitored area is a small and closed bay adjacent to the Gulf of La Spezia.

The GUARD1 system was operated on a fixed platform in the center of the bay at a depth of 5 m.
Images were captured every 5 min with a resolution of 640× 480 pixels and a color depth equal to 8 bpp.

9282 images were acquired and then converted to gray scale. From the collected images,
14,522 Regions of Interest (RoI) were automatically extracted, based on the approach described in
Section 2.3, to be processed by the pattern recognition algorithms.

Among the identified 14,522 RoIs, 545 have been annotated by a team of marine biologists and
experts of gelatinous zooplankton, in order to identify gelatinous macro-zooplankton specimens,
suspended particulate, light reflections, fishes and floating objects like algae and litter. This dataset
was used for the training and validation of the three recognition methods.

In a second stage, after having performed the comparison among the three recognition methods,
all the remaining images have been annotated by the team of marine biologists and experts of
gelatinous zooplankton, in order to build the ground-truth dataset to be used for the evaluation
of the performances of the recognition method selected to operate onboard the GUARD1 system.
The results of this evaluation are presented in Section 4.
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2.3. Image Processing and Feature Extraction

The core characteristic of the GUARD1 system is the capability of automatically extracting and
identifying information from the acquired images. The achievement of this task is possible thanks to the
elaboration component that hosts and runs algorithms for image processing and content recognition.

The aim of the image processing task is the extraction of the image-features to be used for the
recognition of the relevant objects (jellies in this case) to be identified. An image-feature captures
a descriptive characteristics of an image: in general it is based on the analysis of colour, texture,
shape and salient points [45]. It can be defined as global when it refers to the whole image or as local
when it refers to a subset of pixels.

The scientific literature on Computer Vision is rich of approaches for extracting and combining
features in the context of image recognition, classification and retrieval [44–47], also in marine science
applications, where several techniques have been investigated for the extraction of even complex
features [3,25,48].

Since the GUARD1 system is a stand-alone device designed for long lasting deployments, it has
a limited computational capabilities of the elaboration component due to the essential requirement of
limiting the power consumption as much as possible. Thus, the algorithms developed for the feature
extraction have been designed to identify the simplest (i.e., requiring the lowest computational load)
possible features in the collected images. As shown in Section 3, an appropriate use of these simple
image-features provides good results.

The proposed image processing workflow reflects a typical bottom-up image processing
sequence of operations, whose steps are briefly outlined in the following paragraphs, in the order of
their application.

2.3.1. Image Enhancement

The Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm [49,50] is
used to improve the foreground/background contrast of potentially interesting image subjects.
CLAHE calculates histograms of small adjacent regions of pixels that are equalized separately.
The overall equalized image is obtained as a bilinear combination of the equalized neighbour regions.
Dealing with images of the water column (i.e., uniform and low-textured background), CLAHE has
proved to provide a very natural enhancement, avoiding artifacts due to excessive gain in low-textured
areas, as shown in Figure 2. This step has a low computational impact in the image preprocessing
activities since it is linear in the number of image pixels.

Figure 2. An example of the image processing steps. From left to right: original image, CLAHE
enhancement of the original image, background/foreground segmentation, contours extracted from
the original image by the Sobel operator, Region of Interest (RoI) identification.

2.3.2. Background-Foreground Segmentation

Like in many computer vision applications, the foreground must be segmented from the
background, in order to detect objects inside the images. In this work it is supposed that the
background can be modelled as a slowly varying 2D function. Many approaches are available for
defining segmenting filters based on this assumption, either linear (moving average) and non linear
(morphological) [51]. The GUARD1 system uses a simple box-shaped moving average filter [52],
with a box area of a size comparable with the size of expected objects (order of 20 pixels). This filter
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transforms the original image into a binary image that discriminates the image foreground from
the image background. After this step, the foreground image regions (blobs) can be defined as
the set of pixels with intensity value higher than the background and exceeding a given global
threshold. This filter has been efficiently implemented linearly in the number of pixels through the
use of the integral image approach [53]. The information about the radiometric nature of the jellies,
that appear brighter than the surround when illuminated, is used to tune the background/foreground
segmenting filter.

2.3.3. Region of Interest (RoI) Identification

This step operates on the blobs obtained by the background/foreground segmentation and
identifies all the connected foreground regions that are candidate to be interesting objects (RoIs).
Dealing with underwater images, blobs representing light reflections or suspended particulate
should be avoided as soon as possible. Differently from the relevant subjects (i.e., jelly specimens),
these kind of blobs are characterized by a blurred contour that can be easily identified by analysing the
internal/external contour gradient. The gradient analysis is performed by a filtering process based
on the Sobel operator [54] applied to the original image (i.e., not binarized). The contours obtained
by the Sobel operator are then compared with the blob contours extracted by the binary image. If the
number of pixels of the Sobel contour is less then the 50% of the pixels’ number of the morphological
contour obtained by the binary image, then the blob region is not considered relevant. In fact blurred
parts of the subject contour are not identified by the Sobel operator implemented with a small size
kernel (e.g., 3× 3); on the contrary, foreground subjects are characterized by contour pixels that have
a strong gradient (i.e., identified by the Sobel operator) and an evident morphological characterization
(i.e., binary image). The computational cost of running the Sobel operator is linear in the number of
image pixels.

2.3.4. Feature Extraction

Finally, the validated RoIs must be processed in order to extract a feature vector to be used in the
recognition task discussed in Section 2.4. The extracted features belong to two groups: the geometric
one, based on the shape of the RoI, and the texture one, based on the distribution of the grey levels
inside (and outside) the RoI, as summarized in Table 2.

The length of the minor semi-axis (semiAxm) and the length of the minor (axm) and major (axM)
axes of the RoI oriented bounding box describe the size of the relevant subject.

The eccentricity (ecc) describes how much the RoI differs from a circle and it is defined as the ratio
of the foci distance and the major axis of the RoI surrounding ellipse. The eccentricity varies between 0
(i.e., no eccentricity, the RoI is a circle) and 1 (i.e., maximum eccentricity, the RoI is a straight line).

The solidity (solidity) is the ratio between the area of the RoI and the area of the corresponding
convex hull. The more the solidity tends to 0, the more the RoI border is jagged; on the contrary,
the more the solidity tends to 1, the more the RoI border is smooth.

The area and the perimeter of the RoI (areap, perimeter) correspond to the number of pixels
contained inside and on the border of the RoI, respectively.

The histogram shape index (histIndex) captures the overall pixel intensity variance inside the
RoI. It is obtained by transforming the RoI into a grey level image and extracting the histogram h of
the pixel intensities. Then the histIndex is defined as the standard deviation of h after the histogram
normalization

(
h

∑ h

)
.

Similarly the standard deviation of the mean grey level (stdg) captures the variation of the pixel
intensity with respect to the RoI mean grey µ.

The entropy (ent) of h captures the information stored in the RoI, and finally, the normalized
contrast index (contrast) is defined as the ratio between the difference in the mean grey level inside
the RoI (mean(gInt)) and outside the RoI but within the oriented bounding box (mean(gExt)), and the
mean grey level inside the whole bounding box.
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Table 2. Features extracted from each single image Region of Interest (RoI), where h is the histogram of
the RoI grey level pixel intensities.

Feature Code Feature Meaning Feature Computation

geometric

semiAxm minor semi-axis

axm minor axis

axM major axis

ecc eccentricity
√

axM2−axm2

axM

solidity solidity area(RoI)
area(hull(RoI))

areap area expressed in pixels

perimeter perimeter

texture

histIndex histogram shape index std
(

h
∑ h

)
stdg normalized grey

√
∑255

i=0 x(i− µ)2,

standard deviation µ = ∑255
i=0 xi, x ∈

(
h

∑ h

)
ent entropy −∑ x log(x), x ∈

(
h

∑ h

)
contrast normalized interior/ |mean(gInt)−mean(gExt)|

mean(gInt)+mean(gExt)exterior contrast

All the previously discussed image features were chosen such that they have a linear
computational cost with respect to the number of pixels. Moreover, though a single image feature can
appear not relevant with respect to the objective of jelly recognition, it can become relevant if combined
with other image features. This point is crucial and it is discussed in the following sections within the
presentation of the methodologies for the jelly recognition and the discussion of the obtained results.

Figure 2 shows an example of the image processing steps according to the proposed workflow.

2.4. Image Recognition

The recognition problem faced in this work corresponds to the detection of one or more jelly
specimens within the analysed images. To achieve this task, a binary classifier is defined on the RoIs
identified in the input images, where the returned output assumes the value 1 if the RoI, as defined
in Section 2.3.4, contains a jelly specimen, and 0 if the RoI does not contain any jelly specimen [37].
Information on the specimen location inside the analysed image is provided by the coordinates of the
calssified RoI within the image.

Three methodologies for defining the binary classifiers have been experimented in this work:
Elastic Net based on Tikhonov regularization (TR) [40], Support Vector Machines (SVM) [39],
and Genetic Programming (GP) [41]. Particular focus has been put on the capability of each method
in selecting the most suitable image features able to discriminate gelatinous zooplankton from other
floating objects present in the images. The binary classifiers are built with a supervised machine learning
approach [55]: an annotated dataset of images captured by the GUARD1 device, i.e., a representative
set of positive and negative examples (as described in Section 2.2), is the ground-truth used for
training and validating the classifiers. The ground-truth nested within a K-fold Cross-Validation (CV)
framework [56,57] provides a quantitative estimate of the recognition performance. In Section 3,
the more effective notion of accuracy will be defined and used in place of the validation error.

In order to build the positive and negative examples, from each image of the dataset, the RoIs and
the corresponding image-features are extracted according to the image processing task described in
Section 2.3. In particular, let n be the number of RoIs xi extracted from all the images of the dataset,
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let p be the number of features extracted from each RoI and let yi ∈ {1, 0} be the label of each RoI.
The set of pairs

E = {(xi, yi) | xi ∈ X ⊆ Rp, i ∈ [1, n], yi ∈ Y = {1, 0}} (1)

represents the dataset of the image-features used for the training and validation of the binary classifiers.
In the following of this section, the three methodologies used to build the binary classifiers are

briefly presented.

2.4.1. Elastic Net Based on Tikhonov Regularization

The method proposed hereby is built up on the elastic net based on Tikhonov Regularization
(TR) approach as it has been formulated by De Mol et al. [40]. This approach has been introduced in
genomics framework, in order to produce gene signatures capable to address prediction problems
from high-throughput data, like in the case of DNA microarray data. The purpose of this method is to
reduce the number of features used in the classification to solely the relevant ones. TR is a multivariate
analysis approach for pattern recognition embedding a feature selection scheme taking into account the
correlation patterns linking the features in cooperating groups. As shown in reference [58], TR is able
to select predictive models characterized by both sparsity and low bias, generating stable classifiers
even in presence of low cardinality datasets, and it selects models which are asymptotically equivalent
in terms of prediction accuracy.

Since it is formulated as a convex problem, this method has a solid mathematical foundation and
it can be implemented through simple algorithms requiring low computational resources.

According to the binary classification problem formulation and with reference to the set E defined
in Equation (1), the relation between xi and yi is modeled as yi = β · xi, where the attention is restricted
to linear functions, that means to vectors β ∈ Rp. It is also assumed that the input/output pairs (xi, yi)

are independent and identically distributed with a fixed but unknown probability density p(x, y) with
(x, y) ∈ X ·Y. Under these assumptions, the core of the method is the minimization of the objective
function defined by Zhou and Hastie [59]:

1
n
‖Y− Xβ‖2

2 + µ‖β‖2
2 + τ‖β‖1 (2)

where X is the n× p matrix such that the entry [Xij] is the j-th component xi,j of the image feature
vector xi that belongs to the training set E, Y is the n× 1 label vector with [Yi] = yi and β ∈ Rp is
the model classifier that maps the image feature vectors xi into the corresponding label yi. In this
formulation it is assumed that data are normalized to zero mean.

The first term in Equation (2) expresses the approximation error of the classifier β with respect
to the training set E. The second term in Equation (2) enforces the stability and the uniqueness of
the minimizing solution by penalizing the l2-norm. The third term reduces the number of image
features involved by the classifier by penalizing the l1-norm of the model vector β. The non-negative
parameters µ and τ are called respectively the regularization parameter and the sparsity parameter.

The TR methodology minimizes Equation (2) through a two stage strategy based on an internal
CV framework run on the training set E: in the first stage (I) TR learns a minimal set of image-features
best suited for accurately recognizing the jelly specimens. This is obtained by selecting a small value
of µ (i.e., applying a LASSO regression [60]) and by varying τ within the internal CV framework.
The outputs of this stage are: the parameter τ̃ corresponding to a minimal number of image-features,
a new input matrix X̃ and a new model vector β̃, both restricted to the selected image-features.

The second stage (II) consists of a regularized least square procedure [61,62], where µ increases
within the internal CV framework, in order to regularize as much as possible the classifier based on τ̃,
X̃ and β̃. Output of the second stage is the value µ̃ aimed at completing the instance of Equation (2).

The model selection procedure is based on a well-defined internal cross validation scheme.
The original dataset is initially splitted in training and test datasets. The two datasets are then
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normalized to zero mean. The training set is further randomly partitioned in s subsamples
X1, ...., Xs, with s depending on the training set cardinality. The method stage I, for each subset
Xi, builds a classifier using the remaining s − 1 subsets as training set, and then validates it on
Xi. The validation error is evaluated as the average error over the s subsets for each parameter τ.
The optimal parameter τopt is selected as the one minimizing the validation error.

The stage II of the method builds a family of classifiers on the entire training set with τ̃ = τopt and
for increasing values of µ. Each classifier returns a test error and a list of selected features, indexed with
the relative value of µ.

2.4.2. Support Vector Machines

Support Vector Machines (SVM) [63,64] are an effective approach for pattern classification and
feature selection. Basically, SVM belong to the category of kernel methods, which generate non-linear
decision boundaries among classes of patterns through methods designed for linear classifiers.
Because of their good performances and readiness to use, SVM have been used in several application
contexts like, for example, hand writing recognition, robotics, object recognition, intelligent vehicles
field for scene understanding and 3D model classification [65–67].

In the field of marine sciences, SVM are used into a wide range of application contexts. SVM are
used for classifying micro-zooplankton [2,3], they are used into a computer vision system aimed at
continuously monitoring the fish eating activity [68] and are also used for detecting and classifying
coral reef organisms [69,70].

According to reference [64], a classifier based on SVM is stated as the problem defined in

min
w,b,ξ
{1

2
wᵀw + C

l

∑
i=1

ξi}

subject to: yi(wᵀφ(xi) + b) ≥ 1− ξi

(3)

where ξi are the slack variables used to control the overfitting on the training set and C controls the
balance between training accuracy and the margin width between positive and negative examples.

To solve the problem defined in Equation (3) several kernel functions have been defined, as
discussed in reference [65]. The Gaussian kernel defined in Equation (4) has been used in the
experiments proposed in Section 3.

κ(xi, xj) = exp(γ||xi − xj||22). (4)

Beside the classification task, SVM can also perform feature selection through the Recursive
Feature Elimination (RFE) algorithm [64,71]. RFE iteratively removes features corresponding to the
SVM weight vector components that are smallest in absolute value; these features provide a lower
contribution to the classification and are therefore removed [71]. The RFE method operates three steps:
(i) training the classifier; (ii) computing the ranking criterion for all features; (iii) removing the features
with smallest ranking criterion.

For identifying the subset of image-features maximizing the recognition performance, the RFE
is nested within a K-fold CV framework, where the RFE is run iteratively for each CV training
set. The first RFE iteration removes the feature with the smallest rank; at the second iteration the
two features with the smallest ranks are removed and so on until just one feature is maintained and all
the other features are removed. For each RFE iteration the selected features are used for training a new
SVM based on the Gaussian kernel, where the parameters C and γ are chosen through a grid-search
strategy. The learnt SVM is then validated on the CV validation set. The best performing SVM is then
recorded together with the corresponding selected image-features and the C and γ values. After the
whole CV procedure, the image-features can be ranked according to the number of times they were
selected by the RFE.
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2.4.3. Genetic Programming

Genetic Programming (GP) is an evolutionary computation methodology that learns how to
accomplish a given task [41,72,73]. GP generates the solutions to the given task starting from
an initial population of mathematical expressions, that are randomly generated on the basis of a set of
mathematical primitives, constants and variables. The initial solutions are improved by mimicking
the selection processes that naturally occur in biological systems through the Selection, Crossover
(i.e., the genetic operation that mixes the information contained in the two parent individuals into
an offspring individual) and Mutation genetic operators [41]. In the proposed work, the binary
classifiers evolved by the GP approach are expressed as mathematical functions, whose variables
correspond to the image-features discussed in Section 2.3.4.

One of the most important characteristic of the GP approach is that no a-priori assumption
is needed on the mathematical form of the evolved classifiers. Indeed the contribution of the
image-features to the definition of the binary classifiers is not necessarily a simple linear combination.
Even if strong non-linear primitives can be used, as shown in reference [74], the mathematical
primitives used in this work are capable to capture different degrees of non-linearity ranging from
simple classifiers based on the addition, subtraction, multiplication and division to more complex
expressions based on square-root, logarithm and several trigonometric primitives.

The initial population is created with randomly computed binary classifiers and each generated
classifier c is evaluated on the set of examples E defined in Equation (1) through the fitness function
defined as

F(c) =
1
|E| ∑

(x,y)∈E
|JC(x)− y|,

Jc(x) =

{
1 if eval(c(x)) > 0
0 otherwise

,

(5)

where eval(C(x)) returns a real number obtained by instantiating the variables of the classifier C with
the image-features corresponding to the examples (x, y) ∈ E. The value of F(C) = 0 corresponds to
the best fitting classifier that produces zero classification errors during the training phase.

The classifiers which better fit the examples in E have higher probability of generating the new
classifiers, which are the next generation of functions. In the proposed experiments, the formation of
new populations of classifiers stops when a specified number of generations is reached. The following
steps summarize the GP procedure used in this work to evolve the binary classifiers:

1. Randomly generate the initial parent population based on a set of mathematical primitives,
constants and variables;

2. Evaluate the fitness of each individual;
3. Select two parent individuals for reproduction, according to their fitness: the individuals with

higher fitness have greater probability to mate;
4. Determine whether to apply the crossover to the two parents to reproduce offspring, or whether

to clone one parent to the next generation; determine whether mutation occurs on the
offspring individual;

5. Repeat the steps 3 and 4 until the predetermined population size is reached;
6. Use the offspring population as a new generation and return to step 2. This is iterated until the

stop criterion is met.

The more the GP procedure iterates through the steps 1 to 6, the higher is the probability that
some evolved classifiers better classify the set of examples E. Nevertheless, by increasing the number
of iterations, the probability that the evolved classifiers over-fit the set of examples E increases.

According to the methodology proposed in reference [75], the best classifier of the final generation
is selected and the whole procedure is repeated within a K-fold CV framework. The output of the
K-fold CV is a population-pool of classifiers that is further analysed for selecting the most relevant
image features and for identifying the most effective binary classifiers.
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An image-feature is deemed as relevant if it appears in the population-pool more often than by
chance. A statistic test is used to identify the relevant image-features. In this test the null-hypothesis
claims that all the image-features have the same probability to appear in the classifiers of the
population-pool, while the alternative hypothesis claims that at least one image-feature occurs more
often than the other image-features.

The problem of identifying whether an image-feature is relevant or not, is brought back to
a Bernoulli trial defined on the classifiers of the population-pool that involve that feature.

According to the proposed statistic test, the probability to make a mistake by rejecting the
null-hypothesis is represented by the p-value based on the Bernoulli trial. In the experiments
proposed in Section 3.3, the p-value has been selected to be equal to 0.001, as suggested in
reference [76]. The selected p-value corresponds to a specific number of image-feature occurrences th.
The image-features whose occurrence is larger than th are deemed as relevant.

Some classifiers in the population-pool are based only on relevant image-features, other classifiers
are based on both relevant and not relevant image-features. Only the former classifiers should be
considered reliable for recognizing the jelly specimens, while the latter are based on image-feature that
provide a random contribution to the classifier and thus are considered not capable to generalize the
dataset E.

The population pool contains many individuals, that can be used to build a binary classifier used
to recognize unknown RoIs. The strategy experimented in this work for building such a classifier is
an ensemble E of individuals as defined in Equation (6):

E(r) =
{

1 if ∑c∈Cens Jc(r) > 0
0 otherwise

,

Jc(x) =

{
1 if eval(c(r)) > 0
−1 otherwise

,

(6)

where r is the unknown RoI to be classified, Cens is the subset of individuals of the population pool
used in the ensemble and eval(c(r)) is the real number obtained by evaluating the classifier c as defined
in Equation (5).

3. Results

The dataset defined in Equation (1) and used for the proposed experiments is the ground-truth
set described in Section 2.2. It consists of 545 examples labelled as positive, i.e., RoIs containing jelly
specimens, and negative, i.e., RoIs containing only water, suspended particulate, litter, algae and fishes.
Each RoI is characterized by the 11 image-features discussed in Section 2.3.4.

According to the training and validation procedure described in Section 2.4, each example of the
ground truth has been labelled within two classes: 1 if the RoI contains a jelly specimen, 0 otherwise.
The ground truth consists of 211 positive examples (tagged with 1) and 334 negative examples
(tagged with 0). In order to exhaustively exploit the available dataset and, in the meanwhile, to keep
it balanced, the working dataset has been composed by keeping all the positive examples and by
randomly selecting 211 out of 334 negative examples.

The three pattern recognition methods discussed in this paper have been run within a 10-fold
stratified CV framework [57], where for each fold the 75% of the examples is further randomly
subsampled 10 times for both training and validation sets. This CV approach has been adopted in
order to enforce the generality of the obtained results.

This procedure yields to have one hundred runs of each experimented recognition method. At the
end of the runs, the recognition performances of the methods have been evaluated by computing the
average and standard deviation of Accuracy (ACC), True Positive Rate (TPR), False Positive Rate (FPR)
and False Negative Rate (FNR) defined as
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ACC =
TP + TN

TP + FP + FN + TN

TPR =
TP

TP + FN

FPR =
FP

FP + TN

FNR =
FN

FN + TP

(7)

where TP, FP, TN and FN represent True Positive, False Positive, True Negative and False Negative
recognitions respectively.

All the CV runs have been also used for tuning the specific parameters involved by the
three recognition methods and to estimate the reliability of the relevant features identified by the
three methods.

3.1. Elastic Net Based on Tikhonov Regularization

The Elastic Net based on Tikhonov Regularization method implementation used for the presented
experiments has been realized using the L1L2Py Python package [77], which performs feature selection
by means of l1l2 regularization with double optimization.

The implemented algorithm operates the two stages described in Section 2.4.1. According to the
Equation (2), the stage I aims at selecting the optimal sparsity parameter τopt within the internal cross
validation loop for a fixed and small value of the regularization parameter µ. The parameter τ mainly
controls the sparsity of the model: the bigger it is, the more sparse and less accurate is the model
and viceversa.

The algorithm first evaluates τmax, that is the value of τ for which Equation (2) has a void solution.
All solutions with τ < τmax have at least one non-null coefficient in the model vector β. In this stage
the algorithm finds the τopt value in the τ range, for which the model β is not void, minimizing the
prediction error via the internal CV scheme.

For the value of τopt, as estimated in stage I, the stage II identifies the set of relevant lists of features
for increasing values of the correlation parameter µ. As suggested in references [40,58], µ range is set
as a geometric progression and it is defined as µ ∈ [10−10, 101] with a multiplying step equal to 10.

Since the method is executed within the CV framework described above and resulting in one
hundred runs, at the end of the procedure one hundred models, i.e., one hundred τopt, were obtained.
For each τopt, the lists of relevant variables have same prediction power. The less sparse but more
regularized solution (minimum value of τ and maximum value of µ) was selected in the set of
(τ, µ) pairs.

As the focus is set on the feature selection capability of the method, ten different ranges for τ

were defined with decreasing value of τmin, in order to analyze the performances of different models
characterized by decreasing sparsity. So τ was set ranging as τ ∈ [τmin = τmax · 10−t, τmax · 10−t + 1]
where t ∈ [1, 10]. For each value of t, the method was run in the CV framework, thus generating ten
sets of one hundred models to be ranked on the basis of the performance indicators.

Figure 3a shows the behaviour of Accuracy, True Positive Rate, False Positive Rate and False
Negative Rate for each value of t, while Figure 3b presents the number of features selected more than
85% of times for each value of t. Results highlight different performances of the prediction Accuracy
connected with the number of selected features. From the evolution of the indicator curves depicted
in Figure 3a, it turns out that the performances of the method are equivalent with t ranging in [5, 10],
as with these values of t the Accuracy remains stable in the interval (0.847, 0.859), the True Positive
Rate is stable in the interval (0.814, 0.835), the False Positive Rate is stable in the interval (0.111, 0.116)
and the False Negative Rate is stable in the interval (0.165, 0.183).

As expected, Figure 3b shows that the number of the selected features is higher in the t interval
where the model is more accurate and it is lower where the model is less accurate but more sparse.
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In particular, for t assuming values in [5, 10], 8 to 11 features are selected by the method more than
85% of the times. For t assuming values in [5, 7] only 8 features are selected, and the highest Accuracy
is obtained for t = 6.

(a)

(b)

Figure 3. Elastic Net based on Tikhonov Regularization performance indicators (a) and number of
features selected more than 85% of times (b) for different values of t. 10−t is the parameter controlling
the interval where τ ranges, as τ ∈ [τmin = τmax · 10−t, τmax · 10−t + 1]. The bigger is t, the smaller are
the values assumed by τ, the less sparse is the selected model.

Table 3 summarizes the performance of the method for t in [1, 4] and in [5, 10] (average of the
indicators in the intervals are reported), and highlights the values of the performance indicators
for t = 6.

According to this fact, t = 6 minimizes the computational cost of the recognition task and
maximizes its accuracy, so it is the value chosen for the comparison aimed at selecting the method to
be run onboard the GUARD1 system.
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Table 3. Summary of average performance indicators of Elastic Net based on Tikhonov Regularization
for different intervals of the parameter t.

Indicator t ∈ [1, 4] t ∈ [5, 10] t = 6

ACC 0.765 0.852 0.855
TPR 0.682 0.822 0.825
FPR 0.154 0.117 0.115
FNR 0.318 0.178 0.175

3.2. Support Vector Machines

According to the approach described in Section 2.4.2, the training of the RFE-SVM is nested within
the K-fold Cross Validation approach described at the beginning of Section 3, with K = 10.

For each sub-sampling, SVM based on a linear kernel [71] are iteratively trained for performing
the RFE, as described in Section 2.4.2. For each iteration of the RFE, the selected features are used for
training the SVM based on the Gaussian kernel where the parameters C and γ were obtained through
a grid search in the range [0.1, 100] and in the range [10, 10000] respectively.

The obtained SVM were then evaluated in the corresponding CV sub-sampled validation set and,
for each CV sub-sampled fold, the best performing SVM were recorded. In this way at the end of the
whole CV framework, 100 SVM were generated, each of them based on a specific set of image-features
selected through the RFE approach.

The occurrences of each image-feature were then summed in order to verify their persistence.
Within the 100 classifiers obtained through the CV scheme, the one maximizing the Accuracy and
minimising the number of used features is chosen for the comparison aimed at selecting the method to
be run onboard the GUARD1 system. Figure 4 shows the accuracy values corresponding to the C and
γ grid search, for the selected classifier. This classifier utilizes C = 55, γ = 75 and uses 8 features.

Figure 4. Accuracy values corresponding to the C and γ grid search, for the selected Support Vector
Machines (SVM) classifier.

The RFE-SVM used in the described experiments were implemented using the Python scikit-learn
package [78].
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3.3. Genetic Programming

In order to evolve the GP-based classifiers described in Section 2.4.3, several parameters have to
be chosen. For example the set of mathematical primitives the individuals are based on, the number of
individuals of the initial population, the number of generations the individuals evolve through and
the specific parameters driving the crossover and the mutation among individuals, as explained in
reference [72] and summarized in Table 4.

Table 4. The Genetic Programming (GP) parameters used for the evolution of the binary classifiers for
the jelly recognition task.

Mathematical Primitives {+,−,∗, /∗, sqrt∗, log∗, sin, cos, tan, atan}
variables the image-features summarized in Table 2

constants k random numbers from the range [−10, 10],
where k is randomly selected in the range [0, 10]

initial population ramped half-and-half
individual max depth 4

population size 1000
max generations 500

raw fitness defined in the Equation (5)
scaled fitness linear scaling

selector method roulette wheel
crossover rate 0.9
mutation rate 2× 10−4

elitism true
termination criterion max generations or raw fitness = 0.00

After several experiments, the GP parameters have been selected in order to reduce the overfitting
effects on the training and validation sets and to increase the generalization capability of the
evolved classifiers.

The variables used for the generation of the initial population are the image-features described
in Table 2, and the constants correspond to k real numbers randomly selected in the range [−10, 10],
where k is a natural number randomly selected in the range [0, 10]. The initial population consists of
1000 individuals and it is evolved, at most, for 500 generations. Each individual is a mathematical
expression represented as a rooted tree whose maximum depth is 4. Greater values of depth could be
used with the risk of producing bloated mathematical expressions susceptible to over-fitting. The whole
population is generated according to the ramped half-and-half technique [41,72]. The raw fitness of
an individual is defined by the Equation (5), and the scaled fitness represents how the individual fits
relatively to the current population.

The individuals are selected for reproduction depending on their fitness, according to the roulette
wheel strategy: the probability that an individual is selected is proportional to its scaled fitness value.
In the proposed experiments, the probability that a crossover happens between two selected individuals
is 0.9. If crossover does not happens only one individual is selected and cloned to the next generation.
After the crossover or cloning, the mutation occurs with probability 2× 10−4. Although the crossover
is the most important genetic operation used for evolving effective classifiers, a crossover rate smaller
than 1 guarantees the continuity of the best individuals in successive generations. The mutation rate is
set to a small value in order to reduce the introduction of random components during the evolution of
the classifiers.

Besides the selection and mating, at each generation, the best individual is cloned to the next
generation (elitism) to obtain better classifiers. Finally the GP procedure ends when the maximum
number of generations is attained or when an evolved individual has raw fitness equal to 0,
corresponding to zero classification errors during the training phase as defined in Equation (5).
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According to the feature selection method proposed in Section 2.4.3, the relevant image-features
are identified by analysing their occurrences among the classifiers of the population pool. Figure 5
shows the probability distribution of the image-feature occurrences (green dotted line) according to
the Bernoulli trial. The red filled circles represent the number of occurrences of the image-features in
the population pool, while the vertical red lines represent the two-tails p-value equal to 0.001 used to
select the image-features. Actually the image-features on the right of the right vertical line are deemed
as relevant.

Figure 5. Relevance of the image-feature, according to the test statistics discussed in Section 2.4.3.
The abscissa represents the occurrences of the image-features within the population pool. The ordinate
represents the probability an image-feature occurred in the population pool is selected. The two red
vertical lines represent the two-tails p-values.

As shown in Figure 5 all the image-feature can be considered relevant but “contrast”. Nevertheless,
the image classifiers of the population pool are based only on small sub sets of relevant image-features,
varying from a minimum of 2 to a maximum of 6 image-features as shown in Figure 6.

Figure 6. Number of population pool classifiers generated by GP (y-axis) with respect to the number
of involved variables (x-axis).
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Since this work is aimed at identifying the simplest binary classifier to run on the GUARD1
imaging device, the ensemble defined in Equation (6) has been built by considering only the individuals
of the population pool involving the smallest number of image-features. The ensemble proposed in
this work is based on the most relevant variables shown in Figure 5, that is semiAxm, axm and ecc.
According to the generated population pool, only three binary classifiers involve only the previous
relevant variables. These classifiers are shown in Table 5.

Table 5. The individuals of the population pool used to build the ensemble of binary classifiers defined
in Equation (6).

C1 = log(sAxm) + atan(ecc)− 0.31 +
√

ecc
C2 = log(atan(ecc)) + cos(ecc− sAxm) + 4

√
sAxm + log(atan(sAxm))

C3 = 2 ∗
√

sAxm + tan(log(ecc)) + log(sAxm) + cos(log(sAxm))

The occurrence percentage resulting form the GP based analysis is presented in Table 6
(third column), while Table 7 (third row) summarizes the average performance of the whole
population pool.

Table 6. Occurrence percentage of the features selected by the three methods. Values highlighted in
red are the image-features used by the processing component of the GUARD1 imaging system.

TR RFE-SVM GP

sAxm 100 100 63
entg 97 100 22
stdg 79 34 28
axm 100 100 50
axM 100 100 31
ecc 100 80 50
sol 100 100 26

areap 100 100 21
per 100 100 22
hstI 26 0 28
ent 81 100 25
ctrs 62 32 -

Table 7. Average and standard deviation (in brackets) of Accuracy (ACC), True Positive Rate (TPR),
False Positive Rate (FPR) and False Negative Rate (FNR) the performance indicators for each
recognition method.

PR Method ACC TPR FPR FNR

TR 0.855 (0.055) 0.825 (0.069) 0.115 (0.081) 0.175 (0.069)
SVM 0.847 (0.061) 0.844 (0.084) 0.149 (0.090) 0.155 (0.084)
GP 0.856 (0.045) 0.846 (0.089) 0.135 (0.059) 0.154 (0.089)

The GP based approach used in the described experiments were implemented using the Python
Pyevolve package [79].

4. Discussion

As shown in in Table 7, there are no significant differences in the performances of the
three methods in terms of prediction accuracy and other performance indicators. In fact their values
lie within the standard deviation intervals of each method, making the differences among the values
not significant in terms of recognition performances.

On the contrary, differences are highly evident with respect to the selection of the relevant
features, as shown in Table 6, where the red values represent the relevant image-features selected
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by each method in its best run. Sections 3.1 and 3.2 demontrate that TR and SVM achieve their best
trade-off between recognition performance and number of selected features by using 8 image-features.

Also Section 3.3 states that the classifiers evolved by GP involve a smaller number of
image-features, in fact, the winner ensemble of classifiers utilizes just 3 image-features.

Concerning the feature selection capability of the three methods, it has to be noticed that TR is
a forward selection method that starts from an initial minimal set of relevant features (the most sparse
possible model) and then produces models of increasing cardinality by exploiting the correlation
patterns linking the features in cooperating groups.

On the other hand, the RFE based on SVM is a backward elimination method that discards
features not deemed as relevant during the construction of the classifiers.

Also the proposed GP based approach should be considered a backward elimination method
where at the beginning of the selection process all the image-features are hypothesized to be relevant
and the statistic test defined in Section 2.4.3 removes all the not relevant image-features.

In this study the GP method proved to select the minimum number of features with respect to the
other methods, while achieving the same performances. On the basis of this result, the GP technique
has been selected to be the one to be run operationally onboard the GUARD1 system, because it is the
method maximing the recognition performances while minimizing the computational load, due to its
selecting the minimum number of image-features in the classification task.

The Operational Test

The comparison among the recognition methods resulted in the choice of the GP algorithm as it is
the more efficient in terms of trade-off between recognition performances and selected image-features.
Thus, the GP based tool has been installed onboard the GUARD1 system to be operationally run
during the system missions.

In order to perform an operational test of the whole system, the GP classifier was run on the entire
dataset collected during the survey in Baia Santa Teresa described in Section 2.2. The 9282 images
were annotated by the team of marine biologists and experts of gelatinous zooplankton and build the
ground-truth dataset that has been used to quantitatively evaluate the recognition performances of the
GUARD1 system running the operational recognition algorithm, i.e., GP.

Figure 7 shows the results of the operational test, by comparing the positive detections of the GP
algorithm versus the jelly identifications of the ground-truth dataset. The test results highlight the
capability of the method in identifying jelly specimens, as the positive detections by the GP algorithm
capture in a satisfactory way the trend during time of the presence of jellies in the monitored area.
This agreement is strongly visible along the overall time series, even if two critical time intervals are
present. These criticalities refer to the period 21–24 May 2013 and to 30 May 2013.

In the days 21–24 May a massive presence of suspended particulate has been recorded in the
images, as shown in Figure 8a. This fact influenced the recognition by pushing the presence of many
False Positives caused to the mis-identification of particulate with jellies.

On 30 May 2013 a bloom of the hydrozoan Velella velella occurred, as captured by the collected
images (Figure 8b shows an example of an image acquired in that day). This organism has been
identified by the GP method as a ctenophore, thus pushing the high number of positive detections,
but it has not been annotated by the biologists since it is not a target of the research. These facts caused
the differences between ground-truth identifications and GP recognitions.

Anyway, the strong similarity in recognition trends proves how the GP algorithm captures the
temporal dynamics of the abundance of the target species and confirms the robustness of the method
for the jelly recognition. This statement is supported by the high value of the Pearson correlation
evaluated in time between the number of identified specimens from the ground-truth and the number
of positive detections by the GP algorithm: 0.79.
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Figure 7. The recognition results of the GP method applied on the whole image time series collected in
the Ligurian Sea during the bloom of gelatinous zooplankton in the period May–June 2013. The time
series has been annotated by experts and builds a ground-truth dataset. The vertical red bars represent
the number of jellies identified by the biologists in the corresponding day, and the green markers
represent the number of jelly specimens recognized by the GP method. The Pearson correlation
evaluated in time between the number of identified specimens from the ground-truth and the number
of positive detections by the GP algorithm is 0.79.

(a) (b)

Figure 8. Examples of images including massive presence of particulate (a) and of the hydrozoan
Velella velella, visible in the upper part of (b), shaded in blue.
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The top frame of Figure 9 shows a detail of an acquired image, where a very transparent specimen
of ctenophore (right side) is close to a small school of fishes (left side). The framed scene shows the
typical image content of the water column application context, where the background is just water
and the foreground consists of floating subjects, like for example fishes, algae, marine litter and jellies.
The lower panel of Figure 9 shows the same detail where the ctenophore is automatically detected by
the recognition algorithm, highlighted with a red box and discriminated from the fishes.

Figure 9. Detail of an image acquired by the GUARD1 system (top panel). A very transparent specimen
of Ctenophore is visible on the right side of the panel, close to a small school of fish (on the left side
of the panel). In the lower panel the same detail is presented, where the Ctenophore is automatically
detected by the recognition algorithm: it is highlighted with the red bounding box and discriminated
from the fishes.

Figure 10 shows some examples of the image time series and the corresponding recognition
results performed by the three methods.

The first row of the figure shows three images acquired by the GUARD1 imaging system,
where the jelly specimens are highlighted by red arrows. In Figure 10a two specimens of ctenophora
are framed close to a floating organic material (probably algae); in Figure 10b a fish is close to three
ctenophores and in Figure 10c some light reflections run over a specimen of ctenophore. Panels from d
to n correspond to recognition results obtained by the three methods discussed in Section 2.4. The figure
shows how the three methods perform in a very similar way in recognizing the jelly specimens and
avoiding other floating objects.
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Figure 10. Some examples of the image time series collected during the gelatinuous zooplankton
bloom in the Ligurian Sea and the corresponding recognition results performed by the three methods.
The first row of figure show three examples of images acquired by the GUARD1 imaging system (a–c),
where the jelly specimens are highlighted by red arrows. The last three rows present the recognition
results of the three methods: TR on the second row (d–f); RFE-SVM on the third row (g–i); and GP on
the fourth row (j–l).
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5. Conclusions

The GUARD1 autonomous imaging system is described and its potential to monitor and
automatically recognize gelatinous macro-zooplankton (from 1 mm to 100 cm in size) in the ocean
interior at various scales in space and time is demonstrated.

Focus has been put on the problems and the proposed solutions for the onboard automatic
recognition of macro gelatinous zooplankton. Three different recognition methodologies, namely
Tikhonov Regularization (TR), Support Vector Machines (SVM) and Genetic Programming (GP) have
been implemented and their performances have been compared in terms of recognition performances
and computational cost, since a key requirement for algorithms to be run onboard an autonomous
system designed for long lasting deployments is the minimization of the system energy consumption.

The proposed methodologies include feature selection schemes for identifying the most suitable
image features capable to discriminate gelatinous zooplankton from other floating objects captured by
the images (e.g., fishes, litter, algae, light reflections), in order to optimize the recognition performances
and the computational cost.

The aim of the performance comparison was also the evaluation of the recognition capability of
two novel (for underwater classification applications) recognition methods (i.e., TR and GP) with SVM,
which is a more consolidated methodology for underwater recognition and classification.

The performances of the methods have been evaluated within a well-defined CV framework
based on a ground-truth dataset of annotated images of gelatinous macro-zooplankton acquired by
the GUARD1 system in the Ligurian Sea in the period May–June 2013.

The overall results indicate that the three methods provide high accuracy in the recognition
of gelatinous zooplankton, showing a good capability in robustly selecting relevant features,
thus avoiding computationally consuming preprocessing stages, as required for running on
an autonomous imaging system designed for long lasting deployments, like the GUARD1.

In particular, the three methods do not show significant performance differences in terms of
prediction accuracy and performance indicators, since the achieved Accuracies range in (0.847, 0.856),
the True Positive Rates range in (0.825, 0.846), the False Positive Rates range in (0.115, 0.149) and the
False Negative Rates range in (0.154, 0.175). The comparison proved that the three proposed methods
provide good generalization capability.

On the contrary, differences are evident in terms of selection of the relevant features. TR and
SVM methods achieve their best performances by selecting 8 out of the available 11 features, while GP
technique selects 3 features out of 11 to classify the dataset, achieving the same performances of the
other two methods.

Hence the GP algorithm turns out to be the most efficient in avoiding computationally consuming
preprocessing stages and it has been selected to be run operationally onboard the GUARD1 system,
because it is the method maximing the recognition performances while minimizing the computational
load in the classification task.

An operational assessment of the whole system has been performed by running the GP classifier on
the entire dataset collected in the Ligurian Sea in the period May-June 2013. The dataset, consisting of
14,522 RoIs extracted from 9282 images, has been previously annotated by a team of marine biologists
and gelatinous zooplankton experts in order to establish a ground-truth for the quantitative evaluation
of the recognition performances.

The test results highlighted the capability of the GP algorithm in capturing the temporal dynamics
of the abundance of the target species and confirmed the robustness of the GP method for the jelly
recognition. In fact the temporal trend of the positive detections by the classifier is very similar to the
one identified by the ground-truth, as confirmed by the high value of the Pearson correlation evaluated
in time between the number of identified specimens from the ground-truth and the number of positive
detections by the GP algorithm, i.e., 0.79.

The GUARD1 system is thus ready to operate missions for autonomous monitoring of gelatinous
zooplankton abundance in the open and interior ocean.
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Furthermore, thanks to the very general character of its hardware and software architectures,
several applications related to recognition, counting and classification of other zooplankton taxa, fishes,
or marine litter can be envisioned for GUARD1.

A multidisciplinary approach for studying the connectivity among Marine Protected Areas (MPAs)
is proposed [80]. In particular, the connectivity between MPAs can be investigated by combining direct
observations of organisms provided by GUARD1 with surface water current measurements, integrated
by Lagrangian variational analysis models of dispersion.

In the framework of regional experiments aimed at studying gelatinous zooplankton dynamics,
e.g., horizontal and vertical distribution of jellies and their mechanisms of vertical migration or
transport by currents, the GUARD1 system can operate hosted onboard autonomous mobile platforms,
including drifters for surface information, or profiling floats or gliders to investigate vertical migration
and distribution.

Once the communication module is implemented, the GUARD1 system can also be applied in
continuous patrolling activities aimed at detecting the presence of gelatinous zooplankton both in open
ocean and in coastal seas, for providing early warnings in case of jelly invasion. For these applications
the system can be hosted by remotely operated platforms, such as gliders for long term deployments,
or powered AUVs for specific, short time deployments.

The framework of global monitoring for recovering large scale and long-term information is for
sure a more challenging scenario for the application of the GUARD1 system. It could operate onboard
gliders, expendable drifters or Argo floats. For this kind of activities, the recognition algorithm could
be easily integrated in order to allow the system to not only identify known species, but also to detect
and communicate image regions whose content can be relevant, even if unknown.

The future developments of the system will be aimed at these improvements.
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