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Abstract: We followed up the interplay between antibiotic use and resistance over time in a tertiary-
care hospital in Hungary. Dynamic relationships between monthly time-series of antibiotic con-
sumption data (defined daily doses per 100 bed-days) and of incidence densities of Gram-negative
bacteria (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii) resistant
to cephalosporins or carbapenems were followed using vector autoregressive models sequentially
built of time-series ending in 2015, 2016, 2017, 2018, and 2019. Relationships with Gram-negative
bacteria as a group were fairly stable across years. At species level, association of cephalosporin use
and cephalosporin resistance of E. coli was shown in 2015–2017, leading to increased carbapenem use
in these years. Association of carbapenem use and carbapenem resistance, as well as of carbapenem
resistance and colistin use in case of A. baumannii, were consistent throughout; associations in case
of Klebsiella spp. were rarely found; associations in case of P. aeruginosa varied highly across years.
This highlights the importance of temporal variations in the interplay between changes in selection
pressure and occurrence of competing resistant species.

Keywords: vector autoregressive models; antibiotic consumption; antibiotic resistance; Escherichia coli;
Klebsiella spp.; Pseudomonas aeruginosa; Acinetobacter baumannii; cephalosporin resistance; carbapenem
resistance; colistin

1. Introduction

Antibiotic resistance has been a threat to successful anti-infective therapy ever since
antibiotics were initially introduced to clinical practice. Emergence of resistance initially
inspired discovery of novel drugs active against resistant strains, but, presently, bacteria
seem to be at an advantage in this arms race. This is admittedly caused by antibiotic
overuse and misuse [1–3].

Carlet et al. [4] hypothesized prescriber concern as the most important factor in the
choice of antibiotics in empirical treatment. According to this hypothesis, this concern is
the driving force for the antibiotic resistance spiral, the process of ever switching towards
broader-spectrum drugs when resistance to presently used ones is felt to be threatening,
which leads to overuse of and, consequently, resistance to the replacement drug in a vicious
cycle until all therapeutic options are exhausted. Appearance of pandrug-resistant isolates
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among nosocomial Gram-negative bacteria furnishes this hypothesis with an alarming
actuality [5–7].

This resistance spiral was shown to involve multiple species; emerging cephalosporin
resistance in Escherichia coli induced increasing preference for carbapenem prescribing,
which led to increased carbapenem resistance in Pseudomonas aeruginosa and in Acinetobacter
baumannii. Concern about carbapenem resistance provoked an increased prescribing of
colistin as the last-resort drug [8].

This reflects that hospital ecology is characterized by a complex interplay of emergence,
ebbing, and re-emerging of various strains of nosocomial pathogens. Pathogen dynamics
are strongly interconnected with bacterial evolution; strains may acquire or lose resistance
and virulence genes through horizontal gene transfer [9]. New clones of pathogens that
develop at or are imported to healthcare institutions compete with the locally dominant
members of the microbiota; some new strains are eliminated, some become established, and
eventually may become dominant. Alarmingly, in line with the resistance spiral theory, the
newly emerging clones are frequently more resistant than former dominant clones [10–13],
thus the volume and pattern of antibiotic consumption frequently have a major impact on
local strain dynamics [14].

This work, as an extension of our abovementioned earlier study reporting a snapshot of
the resistance spiral [8], attempts to capture the evolution of the resistance spiral over time
by examining relationships among drug consumption and resistance and by comparing
the interactions between drugs and drug-resistant bacteria at four additional time points.

2. Results

The relationship between cumulated resistance and antibiotic consumption was stable
across the study years. Cephalosporin consumption was associated with resistance to
third generation cephalosporins, cephalosporin resistance was linked to increasing car-
bapenem use, and increased carbapenem use was associated with carbapenem resistance.
Carbapenem resistance was linked to colistin consumption, but this was not related to
colistin resistance. These associations were found consistently in all model systems, i.e., in
data series ending in 2015, 2016, 2017, 2018, and 2019 (Figure 1, Supplementary Table S1).
The only relationship showing changes over time was the reciprocal association, i.e., in data
series ending in the last four years, not only was carbapenem use associated with increased
colistin use, but the increasing colistin use was linked to decreased carbapenem consumption.
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Figure 1. Relationships between antibiotic use and resistance in case of all Gram-negative bacteria together. Filled arrows:
positive relationship (effect on response is directly proportionate to the impulse), open arrows: negative relationship (effect
on response is inversely proportionate to the impulse), directions of arrows show the direction of the relationship, i.e.,
arrows pointing right show that the left variable is the impulse and the right variable is the response, arrows pointing left
mark the opposite. In this manner, the black-left-white-right arrows mark that carbapenem resistance is associated with
increased colistin use, and, at the same time, increasing colistin use is associated with decreasing carbapenem resistance.

This uniformity disappeared when considering species separately (Figure 2, Supple-
mentary Table S2). In case of E. coli, the link between cephalosporin use and resistance
to third generation cephalosporins was consistent across years, except for dataset 2019,
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but the association between cephalosporin resistance and carbapenem use disappeared
in 2017, 2018, and 2019. Curiously, cephalosporin resistance was also associated with
increasing cephalosporin use in some years. Testing the resistance spiral further in E. coli
was precluded by absence of carbapenem resistance in E. coli throughout the tested period.
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Figure 2. Relationships between antibiotic use and resistance in case of different species analyzed separately. X symbol: no
significant relationship; filled arrows: positive relationship (effect on response is directly proportionate to the impulse),
open arrows: negative relationship (effect on response is inversely proportionate to the impulse), directions of arrows show
the direction of the relationship, i.e., arrows pointing right show that the left variable is the impulse and the right variable is
the response, arrows pointing left mark the opposite.

In the case of Klebsiella spp. (Figure 2, Supplementary Table S2), the link between
cephalosporin use and third generation cephalosporin resistance found in series ending in
2015 disappeared and then reappeared in 2019. The association between cephalosporin
resistance of Klebsiella spp. and increasing carbapenem use was absent in 2015–2017,
appeared as a weak link in 2018, then was absent again in 2019. Carbapenem consumption
was consistently unlinked to carbapenem resistance of Klebsiella spp. in all five datasets.
The link between carbapenem resistance of Klebsiella spp. and colistin use was present in
earlier series, but not in the 2018 or 2019 datasets; in the latter datasets, colistin use was
inversely associated with carbapenem resistance.

The relationships in case of P. aeruginosa were significant only in the earlier datasets
(Figure 2, Supplementary Table S2). The only consistent relationship was the absence of
association between cephalosporin consumption and ceftazidime resistance of P. aerug-
inosa. The association between ceftazidime resistance of P. aeruginosa and carbapenem
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use, between carbapenem use and carbapenem resistance of P. aeruginosa, and between
carbapenem resistance and colistin use was only found in the 2015 and 2016 models, but
totally absent in other models ( Figure 2; Figure 3, Supplementary Table S2). Moreover,
in 2015 and 2016 colistin consumption was also associated with decreasing occurrence of
carbapenem-resistant P. aeruginosa ( Figure 2; Figure 3, Supplementary Table S2).

Antibiotics 2021, 10, x FOR PEER REVIEW 4 of 10 
 

The relationships in case of P. aeruginosa were significant only in the earlier datasets 
(Figure 2, Supplementary Table S2). The only consistent relationship was the absence of 
association between cephalosporin consumption and ceftazidime resistance of P. aeru-
ginosa. The association between ceftazidime resistance of P. aeruginosa and carbapenem 
use, between carbapenem use and carbapenem resistance of P. aeruginosa, and between 
carbapenem resistance and colistin use was only found in the 2015 and 2016 models, but 
totally absent in other models ( Figure 2; Figure 3, Supplementary Table S2). Moreover, in 
2015 and 2016 colistin consumption was also associated with decreasing occurrence of 
carbapenem-resistant P. aeruginosa ( Figure 2; Figure 3, Supplementary Table S2). 

 Figure 3. Changes in the relationships between antibiotic use and resistance over time: the example of
the relationship between carbapenem resistance in P. aeruginosa and colistin use. Left panel: impulse
response functions with incidence densities of infections by carbapenem-resistant P. aeruginosa per
1000 occupied bed-days as impulses and colistin consumption (defined daily doses per 100 occupied
bed-days) as responses. Right panel: impulse functions of the reciprocal relationships with colistin
use as impulses and incidence densities of carbapenem-resistant P. aeruginosa as responses. Response
horizon is shown in the X axis (in months following the impulse), Y axis shows the magnitude of the
response. Solid lines are the estimates, dashed lines are the 95% confidence intervals determined by
bootstrapping of 100 repetitions. Note that the scales are different. The 2019 results, being similar to
2017 and 2018 results, are not shown due to space constraints.
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In the case of A. baumannii, the associations were highly consistent (Figure 2, Supple-
mentary Table S2); the links between carbapenem use and carbapenem resistance, as well
as carbapenem resistance and colistin use both were present in all model systems across
the tested years.

When following the reconstructed resistance spiral over time, many relationships
showed changes across the different years’ models (Figure 4, Supplementary Table S3). The
initial steps in the tested spiral, the relationships between cephalosporin consumption and
cephalosporin resistance of E. coli or of Klebsiella spp. were never present in the composite
models, regardless of the dataset. The next step, i.e., the link between cephalosporin
resistance and carbapenem use in the case of E. coli was found in datasets 2015 to 2017,
but not in datasets 2018 or 2019. Carbapenem resistance was consistently independent of
carbapenem use in the case of P. aeruginosa, while in the case of A. baumannii carbapenem
use was associated with increasing carbapenem resistance in 2017 to 2019 (but not in
earlier years). A reciprocal effect, i.e., association of carbapenem resistance of A. baumannii
with decreased carbapenem use, was found in the 2016 and 2017 datasets, but not in the
other models. Association of carbapenem resistance with colistin use was variable in
the case of P. aeruginosa, i.e., the association was found in 2016, but not in other years.
However, a reciprocal effect was detected throughout all models, except 2019. In contrast,
the association between carbapenem resistance and colistin use was consistently present
and unidirectional in the case of A. baumannii.
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Figure 4. Relationships between antibiotic use and resistance in the model containing the whole resistance spiral. Shaded
cells show relationships proved to be unimportant in the species-by-species models and, therefore, not included in the
model of the spiral. X symbol: no significant relationship; filled arrows: positive relationship (effect on response is directly
proportionate to the impulse), open arrows: negative relationship (effect on response is inversely proportionate to the
impulse), directions of arrows show the direction of the relationship, i.e., arrows pointing right show that the left variable is
the impulse and the right variable is the response, arrows pointing left mark the opposite.

3. Discussion

The hospital environment provides a finite number of niches that hospital bacteria
may occupy and, consequently, bacteria compete for these. As a result, hospital ecology is
frequently characterized by emergence, receding, and re-emergence of different nosocomial
strains, creating a complicated interplay of strain dynamics [15]. In this highly competitive
environment, any selective advantage may become a major actor in shaping hospital
ecology [9,16].

The observation that a shift towards more resistant strains is common in hospitals
indicates that antibiotic consumption is a major selective force in hospital ecology and,
therefore, is a major driver of strain dynamics in hospitals [17]. This is exemplified con-



Antibiotics 2021, 10, 734 6 of 10

vincingly by the success of antibiotic restriction interventions, which lead to a decrease
of the resistant strains targeted, [18] (op. cit.) but may result in overuse of replacement
drugs and in spreading bacteria resistant to the replacement drugs, i.e., to “squeezing the
antibiotic balloon” [19–21]. Consequently, understanding how strain dynamics are shaped
by the pattern of relationships between drug use and drug resistance is a key information
for antimicrobial stewardship efforts aimed at containing antibiotic resistance.

In this particular setting, the resistance spiral was well delineated when examining all
major Gram-negative pathogens as one group, but species-by-species analysis revealed
differences between them which dynamically evolved over time. These dynamics suggest
that the relative importance of a given species may fluctuate, even in the absence of
major outbreaks.

The position of A. baumannii as the major problem species was stable during the study
period, characterized by endemic occurrence of a few carbapenem-resistant clones [22,23].
It persisted as the main species with carbapenem resistance and, consequently, as the
main driver of colistin use throughout the five datasets. This is in line with the extensive
literature on carbapenem-resistant A. baumannii, frequently reported as a major emerging
threat among multiresistant nosocomial bacteria. Carbapenem resistance of A. baumannii
was also linked to extensive use of carbapenems and provoked colistin use in a number of
reports [24–26].

All other species exhibit changes in relative importance of various consumption–
resistance or reciprocal relationships. The role of P. aeruginosa seems to be confined to
the first two years (2015–2016). Though its cephalosporin was associated with increasing
carbapenem use in these two years, this was only weakly linked to carbapenem resistance.
Moreover, increasing colistin consumption was associated with decreasing carbapenem
resistance. When analyzing the complete resistance spiral, the effect of carbapenem use dis-
appeared and reciprocal associations were the more marked, suggesting that carbapenem
resistance of P. aeruginosa is less strongly linked to antibiotic consumption than that of
A. baumannii.

The population structure of P. aeruginosa is reported as multiclonal in most stud-
ies [27,28]; even when major clones were present, the population was characterized by
high diversity and by the presence of several different clones. Similarly, multiple versatile
P. aeruginosa clones may be circulating in our hospital, as reported in a previous study
with a more limited scope conducted in a ward of the same hospital [29]. Apparently, the
persistence of one or a few successful clones is unlikely, in contrast to A. baumannii [22,23].

Klebsiella spp., in contrast to situations in many European countries, were not major
players in the resistance spiral in this study. The expected effect of cephalosporin con-
sumption on cephalosporin-resistant Klebsiella spp. and its influence on carbapenem use
was only detected in the earliest 2015 and latest 2019 datasets. The decreasing importance
was foreshadowed in the findings on asymptomatic carriers in the same hospital, where
a slow receding was found in parallel with slow emergence of E. coli as the major ESBL
producing species [30]. Carbapenem resistance has not yet emerged in Klebsiella spp. as a
major problem in this setting; sporadic occurrence of resistant isolates has been detected,
but the incidence is still low. It is tempting to assume a link with the high prevalence of
carbapenem-resistant non-fermenters, which may have occupied the niches created by high
carbapenem use and may hinder the spread of Klebsiella. Increasing use of colistin, which
in the 2019 dataset was associated with decreasing carbapenem resistance in Klebsiella spp.,
may also have contributed to this.

In the case of E. coli, cephalosporin use was associated with cephalosporin resistance
in all datasets but 2019, which, in turn, was the major driver of carbapenem use in 2015
and 2016. This is in line with the emergence of ESBL-producing E. coli as one of the main
nosocomial threats in our setting [30] and worldwide [31], but, at the same time, suggests
its decreasing importance as the driver of carbapenem use. After using carbapenems in
fear of multiresistant E. coli, carbapenem prescription may have become a prescribing habit
or even practice, decoupling from the increasing prevalence of cephalosporin resistance.
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The models of the complete spiral supported the above assumption, while in later
models carbapenem use seems to be partially substituted by colistin use. This is in line with
usage of colistin, i.e., colistin is used primarily when carbapenems are, or are thought to be,
ineffective. This was driven primarily by carbapenem resistance of A. baumannii, as shown
by the steadily observable relationship between carbapenem resistance in A. baumannii
and colistin use in all datasets. This again points towards the importance of resistance as
a provoker of the use of drugs perceived as more efficacious [32]. Colistin resistance was
infrequent in the study period, similarly to another University clinic in Hungary [33], and
thus was not analyzed.

The presented results lend support to our earlier observation that different species
play different roles in the spiral. These roles were dynamic and may change over even as
short a time period as one year. Furthermore, these changes in incidence of resistance in
a species were linked to changes in antibiotic use, in line with previous findings [14,15].
The present study concentrated on Gram-negative bacteria of major importance, and an
important limitation of the study is that Gram-positive bacteria were not investigated,
though they are definitely important players in hospital ecology. However, the number
of variables which may be used in a single effective model is limited; this shortcoming
of the statistical methodology precluded a fully comprehensive analysis incorporating
Gram-positive bacteria and the drugs used against them.

We believe that differences detected across the models in this study using the con-
secutive data series are consequent to the recent changes in the time series compared to
the former year’s series, either in the antibiotic consumption or in the resistance series
or in their relation. Thus, the present study represents an attempt to track the changes
in the resistance spiral over time. The temporally stable dynamics of the Gram-negative
resistance spiral supports that antibiotic resistance is shifting towards increasing resistance
in Gram-negative bacteria continuously, as extensively documented both at local [8,34,35]
and global [36–38] scales. This spread of resistance is driven, at least partly, by the turn-
ing of the prescribers’ preference towards broader and broader spectrum antibiotics, as
concluded earlier [4,8,32].

4. Conclusions

In conclusion, the interplay between antibiotic use and resistance in different species
was dynamically changing over time. This points out that analyses targeting such relation-
ships provide insight into a momentary situation; assumptions that these relationships are
lasting may be misleading. For a more complete and firmer understanding of these rela-
tionships and, consequently, to keep stewardship efforts built on these data well-directed,
periodic reanalysis of such datasets is advisable.

5. Materials and Methods

The study was conducted in a University-affiliated tertiary teaching hospital with
1667 beds between October 2004 and December 2019. We collected monthly consumption
data (drugs drawn by wards from the clinical pharmacy) of all cephalosporins, carbapen-
ems, aminoglycosides, quinolones, and colistin in defined daily doses (DDD) per 100
occupied bed-days (OBDs) [39]. Resistance was measured in incidence density of infections
per 1000 OBDs by bacteria resistant to cephalosporins, carbapenems, and colistin among E.
coli, Klebsiella spp. (K. pneumoniae and K. oxytoca together), P. aeruginosa, and A. baumannii
isolated from inpatients. Resistance burden was calculated for all major Gram-negative
bacteria by summing up incidence densities of the studied species for each drug group,
further referred to as cumulated resistance of Gram-negative bacteria. Multiple isolates
from the same patients were included only once.

Five groups of time-series were constituted, the first from October 2004 to December
2015 (dataset 2015), the second from October 2004 to December 2016 (dataset 2016; this
dataset is the closest in time to the dataset used in our former study [8]), the third from
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October 2004 to December 2017 (dataset 2017), the fourth from October 2004 to December
2018 (dataset 2018), and the fifth from October 2004 to December 2019 (dataset 2019).

All five datasets were analyzed using the same modelling strategy as earlier; VAR
models were built with all five datasets using the same R script [8]. In unit root determina-
tion, lag selection, model building, and model diagnostic, we followed the former protocol,
including the rolling window strategy. The association was accepted as existing if it was
found in more than 6 of the 12 rolling windows. If the association was significant in only
one or two lags, it was termed weak. This rigorously identical modelling strategy allows
for robust comparison of results between the five time-series datasets. First, the cumulated
resistance of all Gram-negative bacteria was modelled, then models of a single species were
built, and, finally, a model capturing the complete resistance spiral was constructed. The
models also contained aminoglycoside and quinolone consumption variables in order to
represent their effect, but their involvement in the resistance spiral was not tested directly.
All corresponding models were compared using the five sets of time-series, i.e., between
the five endpoint years.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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