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Background and Objective: Identifying biomarkers for predicting progression

to dementia in patients with mild cognitive impairment (MCI) is crucial. To this

end, the comprehensive visual rating scale (CVRS), which is based onmagnetic

resonance imaging (MRI), was developed for the assessment of structural

changes in the brains of patients with MCI. This study aimed to investigate

the use of the CVRS score for predicting dementia in patients with MCI over a

2-year follow-up period using various machine learning (ML) algorithms.

Methods: We included 197 patients with MCI who were followed up

more than once. The data used for this study were obtained from the

Japanese-Alzheimer’s Disease Neuroimaging Initiative study. We assessed all

the patients using their CVRS scores, cortical thickness data, and clinical data

to determine their progression to dementia during a follow-up period of over 2

years. ML algorithms, such as logistic regression, random forest (RF), XGBoost,

and LightGBM, were applied to the combination of the dataset. Further, feature

importance that contributed to the progression from MCI to dementia was

analyzed to confirm the risk predictors among the various variables evaluated.

Results: Of the 197 patients, 108 (54.8%) showed progression from MCI to

dementia. Tree-based classifiers, such as XGBoost, LightGBM, and RF, achieved

relatively high performance. In addition, the prediction models showed better
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performance when clinical data and CVRS score (accuracy 0.701–0.711) were

used than when clinical data and cortical thickness (accuracy 0.650–0.685)

were used. The features related to CVRS helped predict progression to

dementia using the tree-based models compared to logistic regression.

Conclusions: Tree-based ML algorithms can predict progression from MCI to

dementia using baseline CVRS scores combined with clinical data.

KEYWORDS

mild cognition impairment, Alzheimer’s Disease, brain MRI, machine learning, visual

rating scale

Introduction

Mild cognitive impairment (MCI) indicates the transitional

stage between a normal cognitive state andAlzheimer’s dementia

(AD) (1). The annual rate of progression fromMCI to dementia

reported in community-based studies is ∼6% (2, 3), whereas it

was as high as 15% in a clinical study (4). MCI is recognized as

a very important public health problem with regard to the risk

of dementia. However, MCI comprises a heterogeneous group

of conditions and not all of them progress to dementia (4).

Therefore, it is necessary to assess the risk of progression from

MCI to dementia using biomarkers to identify patients with a

high risk of progression to dementia (5).

Brain magnetic resonance imaging (MRI) is commonly used

to identify structural changes related to dementia. The National

Institute on Aging-Alzheimer’s Association has included

structural atrophy on MRI scans as a neurodegenerative

marker of AD (6–8). An AD-like atrophy pattern primarily

observed in the hippocampus is the well-established biomarker

of AD (9). However, there is growing evidence that atrophy

of other parts of the brain, such as the parietal lobe, provides

additional prognostic information (10, 11). Additionally,

non-AD conditions, such as cerebrovascular lesions, are also

common pathologic findings (12). Considering the multiple

pathologies frequently observed in cases of MCI, it is necessary

to identify neuroimaging markers that simultaneously reflect

neurodegeneration and vascular injury (13).

A quantified comprehensive visual rating scale (CVRS)

based on brain MRI has been developed to enable a complete

understanding of structural cerebral changes, such as atrophy

and cerebrovascular lesions (14). The CVRS integrates the

preexisting visual rating scales (hippocampal atrophy, cortical

atrophy, ventricular enlargement, and small vessel disease)

without losing the value of the subscales (14). Compared

to quantitative volumetric measures, visual rating scales are

advantageous in that they can be directly applied to clinically-

acquired images in less time (15). CVRS has been validated

for predicting the progression from MCI to dementia in

a longitudinal follow-up study using a dataset from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (16).

These suggested that the CVRS scores for MCI could help

identify subjects who are likely to be referred for confirmatory

studies that are more invasive or expensive, such as CSF analysis

or positron emission tomography (PET) scanning. The CVRS

scores could also be used in clinical settings without additional

advanced biomarkers except for brain MRI. However, whether

this scale is also effective for predicting disease progression using

other datasets and/or methodologies, such as machine learning

(ML), is still unclear. Thus, this study aimed to investigate the

use of the CVRS for predicting the progression from MCI to

dementia over a 2-year follow-up period using ML algorithms.

Several researchers have investigated the use of ML methods

for predicting the progression of AD (17). To be specific,

various ML algorithms, including deep learning models, have

been studied extensively using different types of data. In

this study, we compared the prediction performance of four

representative ML algorithms, logistic regression, random forest

(RF) (18), XGBoost (19), and LightGBM (20), using a structural

table dataset obtained from the Japanese-Alzheimer’s Disease

Neuroimaging Initiative (J-ADNI) project (21, 22). We also

analyzed the most important features and the usefulness of

the CVRS score for predicting the progression from MCI

to dementia.

Methods

Subjects

The data used in this study were obtained from the J-

ADNI project (21, 22). This project was approved by the ethics

committee of each site where the J-ADNI data were acquired

from. All subjects were native Japanese speakers aged from 60

to 84 years. Data used in this study were downloaded from the

J-ADNI database on 1 May 2017. We included patients with

MCI who underwent a baseline MRI scan and were followed up

at least once after the initial assessment. The primary objective

of this study was to predict the progression from MCI to

dementia during the follow-up period of up to 2 years. A total

of 197 patients from the J-ADNI cohort were finally included in

this study.
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The diagnosis of MCI was made based on the presence of

objective memory impairment that did not meet the criteria for

dementia. All the subjects had a Mini Mental State Examination

(MMSE) score of 24 or higher, a global Clinical Dementia

Rating (CDR) score of 0.5, a CDR memory score of 0.5 or

higher, and a score indicating impairment in the delayed recall

of Story IIA of the Wechsler Memory Scale-Revised (≥16

years of education: ≤8; 10–15 years of education: ≤4; 0–

9 years of education: ≤2) (23). The diagnosis of dementia

during the follow-up year was made based on the presence

of memory complaints, a CDR score ≥0.5, and significant

impairments in objective cognitive measures and activities of

daily living. The individuals with AD met the National Institute

of Neurological and Communicative Disorders and Stroke-

Alzheimer’s Disease and Related Disorders Association criteria

for probable AD (24). At baseline, the following cognitive

and functional measures based on the National Alzheimer’s

Coordinating Center Uniform Data Set, as used in ADNI,

were examined: Digit Span, Category Fluency, Trail Making A

and B, Digit Symbol Substitution Test of the Wechsler Adult

Intelligence Scale III, Boston Naming Test, Clock Drawing

Test, Neuropsychiatric Inventory-Q, AD Assessment Scale-

Cognitive Subscale (ADAS-Cog), and Functional Assessment

Questionnaire (FAQ). The participants withMCI were evaluated

every 6 or 12 months. Then, clinical progression from MCI to

dementia was diagnosed by a clinical site investigator at each

follow-up visit and verified by an adjudication committee (25).

Acquisition of magnetic resonance
images

All subjects underwent MRI, which was performed using

a 1.5-T MRI scanner. Data were collected at multiple ADNI

sites as per a standardized MRI protocol, which was developed

by comparing and evaluating 3D T1-weighted sequences for

morphometric analyses (26). MRI acquisition and processing

were performed per the standard protocol. Preprocessed T1-

weighted MPRAGE MR images, a fluid-attenuated inversion

recovery image, and a T2 star weighted image were downloaded

from the J-ADNI database.

Comprehensive visual rating scale

The CVRS includes scales of hippocampal atrophy, cortical

atrophy, ventricular enlargement (subcortical atrophy), and

small vessel disease, which summarize degenerative or vascular

injury in the aged brain (Table 1). The details of each scale

are described elsewhere (14) and in Supplementary file 1. These

existing scales were combined in the CVRS to quantify the

effects of multiple brain deficits, thus yielding a scale with scores

ranging from 0 to 30 (a higher score represents more deficits).

TABLE 1 Construction of a comprehensive visual rating scale (CVRS).

Adopted or modified scales Scale

range

Hippocampal

atrophy

• Scheltens’ scale for coronal image [20]

• Kim and Jung’s scale for Axial scale [23]

0–8

(bilaterally)

Cortical

atrophy

• Victoroff’s scale for frontal and temporal

lobe [24]

• Koedam’s scale for parietal lobe [25]

0–9

Subcortical

atrophy

• Donovan’s scale for anterior and

posterior horn of lateral ventricle [26]

0–6

Small vessel

disease

• Modified Fazekas and Scheltens’ scale for

white matter hyperintensity [27]

0–3

• Lacunes and microbleeds: The total

number was graded

0–4

The visual rating was performed by three raters (Jae-

Won Jang, Seongheon Kim, and Yeshin Kim), who were

blind to the demographic and clinical information of the

subjects. Each rater used a template-based scoring method

(Supplementary file 2). The inter-rater and intra-rater reliability

with 20 randomly selected MRI scans were 0.943 and 0.931,

respectively (Supplementary file 3). Cross-sectional validation of

a clinical group, including individuals with normal cognition,

MCI, and dementia, was performed in a previous study (14).

Neuropsychological data

Longitudinal neuropsychological markers, such as the

MMSE score, Alzheimer’s Disease Scale-Cognitive Subscale

(ADAS-Cog) (27) score, and Clinical Dementia Rating-Sum of

Boxes (CDR-SOB) score, were evaluated at baseline and 1-year

intervals for up to 2 years.

Statistical analysis

The independent t-test and chi-square test were used to

examine the between-group differences in continuous variables

and categorical variables, respectively. The Mann-Whitney U

test was used to analyze continuous variables that were not

normally distributed. Statistical significance was set at p < 0.05.

Statistical analyses were performed using R (Version 4.1.0, The

R Foundation for Statistical Computing, 64-bit platform).

Data preprocessing

The dataset consisted of the initial diagnoses of 200 patients

and those made at 6, 12, and 24 months after baseline. Our
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TABLE 2 Baseline characteristics of the patients with MCI.

Stable

group

(n = 89)

Progressive

group

(n = 108)

Total

(n = 197)

p-value

Age, years (mean± SD) 72.9± 5.8 73.3± 5.7 73.1± 5.8 0.586

Female, n 39 (43.8%) 62 (57.4%) 101 (51.3%) 0.079

Education, years 13.5± 2.7 12.7± 2.9 13.1± 2.9 0.056

APOE ε4 carriers, n 31 (35.2%) 73 (67.6%) 104 (55.6%) <0.001

CDR-SOB 1.3± 0.9 1.7± 1.0 1.5± 0.9 0.003

ADAS-cog 11 9.0± 3.7 12.3± 4.2 10.8± 4.3 <0.001

MMSE 26.8± 1.9 26.1± 1.5 26.4± 1.7 0.004

FAQ 2.3± 2.7 4.5± 4.7 3.5± 4.1 <0.001

CVRS (total) 8.7± 3.2 9.3± 3.9 9.0± 3.7 0.223

Hippocampal atrophy 3.4± 1.6 3.9± 1.6 3.7± 1.6 0.069

Cortical atrophy 2.1± 1.5 2.5± 1.8 2.3± 1.7 0.158

Subcortical atrophy 1.6± 1.2 1.6± 1.2 1.6± 1.2 0.858

Small vessel disease 1.5± 1.0 1.3± 1.2 1.4± 1.1 0.343

AD signature 2.8± 0.2 2.6± 0.2 2.7± 0.2 <0.001

Values are presented as mean ± standard deviation or number (%) unless otherwise

stated. SD, Standard deviation; CDR-SOB, Clinical dementia rating-sum of boxes; ADAS-

Cog, Alzheimer’s Disease assessment scale-cognitive subscale; MMSE, Mini mental state

examination; FAQ, function in daily living; CVRS, Comprehensive visual rating scale.

goal in this study was to predict the progression from MCI to

dementia within a 24 month follow-up period. To this end, we

used several clinically important features, such as demographic

data, neuropsychological test results, genetic data, CVRS score,

and cortical thickness, obtained during the baseline examination

(Table 2) and the diagnosis made at 24 months as the target

value (y label). Of the 200 patients assessed, only 197 were finally

included for the analysis. A total of three patients were excluded

because they did not have a diagnosis at 24 months. To examine

the usefulness of the CVRS score compared to cortical thickness,

the features selected from the screening data were widely used

conventional variables, such as age, sex, duration of education,

APOE4 genotype, and the results of cognitive function tests

(CDR-SOB, ADAS-Cog11, MMSE). MRI visual rating scales,

such as the total CVRS score and the hippocampal atrophy,

cortical atrophy, subcortical atrophy, and small vessel disease

scale scores (14) were used for the analysis. Cortical thickness

was adopted as the AD signature (28), that is, the average of eight

cortical thickness values computed using the MRI FreeSurfer

(https://surfer.nmr.mgh.harvard.edu/). We used three datasets

that consisted of clinical data, clinical data with CVRS score, and

clinical data with cortical thickness to compare the prediction

performance of each feature category.

Machine learning methods

To build a predictionmodel, we used four representativeML

algorithms, namely logistic regression, RF (18), XGBoost (19),

and LightGBM (20). Since the size of the dataset was relatively

small, we used the leave-one-out cross-validation (LOOCV)

method (29) for the analysis of the 197 patients. In addition, we

used the KNN imputation method (30) to handle the missing

values of one patient who did not have the APOE4 genetic test

results and eight patients without the AD signature.

Leave-one-out cross-validation

Leave-one-out cross-validation is a method of learning in

which one data is used as a validation set and the remaining

n-1 data as a training set. The test is performed once for all

sample data (Figure 1). After a model is trained and tested

a total of n times, the average of all mean squared errors is

calculated. The LOOCV is time-consuming; however, it shows

stable performance even when the size of the dataset is small.

Thus, we adopted this method for our analysis.

Logistic regression

Logistic regression is a supervised learning algorithm

that predicts and classifies a sample to a group with a

probability value value between 0 and 1. It learns the

relationship between the independent variables x1, x2, . . . , xn

and the dependent variable y as a specific function, namely

y = σ(w1x1 + . . . + wnxn), where w1, . . . ,wn are trainable

parameters and σ is the sigmoid function, such that σ(t) =

1/(1 + e−t). In linear regression, the predicted value of the

dependent variable falls within the range [–∞, ∞]. In logistic

regression, binary classification becomes possible by applying

the sigmoid function, which always returns a probability in the

range of [0, 1].

Random forest

An RF (18) is a machine learning method widely used

to analyze structural tabular data. It is an ensemble model

based on a bagging (bootstrap aggregating) method that builds

multiple decision trees by using a subset of the training set.

Although a single decision tree can often be overfitted, RF can

prevent overfitting by using the average prediction of all the

decision trees.

Gradient boosting methods

Gradient boosting is a kind of ensemble method that

creates a strong classifier by combining weak classifiers. In

this study, we used XGBoost (19) and LightGBM (20), which

are widely used for analyzing structural tabular data. XGBoost

is an ensemble algorithm that combines multiple decision

trees and uses classification and regression trees to create

them. It expands decision trees horizontally (i.e., level-wise) to

reduce their depth. In contrast, LightGBM is a boosting-based

ensemble algorithm that expands a decision tree vertically (i.e.,
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FIGURE 1

Leave-one-out cross-validation.

leaf-wise) while continuously dividing the leaf node with the

maximum loss value without balancing the tree. Since both

methods have relative strengths and weaknesses, we compared

their performances in predicting the progression from MCI

to dementia.

Feature importance

For each ML model, we report their feature importance.

Standard Python implementations of random forest, XGBoost,

and LightGBM automatically compute feature importance while

a prediction model is built. These tree-based models usually

calculate the importance of each feature using the Gini impurity

of each tree node (Other impurities such as entropy may also be

used instead). For example, a decision tree is created so that the

impurity is lowered while feature importance is maximized. The

Gini impurity G(T) of a tree node T is calculated as follows:

G(T) =

n
∑

i=1

pi(i − pi) = 1 −

n
∑

i=1

p2i

where n is the number of classes and pi is the probability

of each sample in T to belong to the corresponding class. Then,

the importance I
(

Tj
)

for a node Tj in a binary tree is calculated

as follows:

I
(

Tj
)

= wj · G
(

Tj
)

− wj_left · G
(

Tj_left

)

− wj_right · G
(

Tj_right

)

where wj is the weight of node Tj concerning the total

number of samples while Tj_left and Tj_right , respectively, denote

the left and right child nodes of Tj. Finally, the importance of

each feature fi for a decision tree is calculated as follows:

I
(

fi
)

=

∑

Tj ∈ all nodes split by fi
I
(

Tj
)

∑

Tk ∈ all nodes I
(

Tk
)

which can then be normalized as follows:

I
(

fi
)norm

=
I
(

fi
)

∑

fj ∈ all features I
(

fj
)
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FIGURE 2

Study population and overall procedure for the experiments.

The importance of a feature fi on a random forest, which

consists of many decision trees, is then computed as the average

of I
(

fi
)

’s over all the trees. The feature importance on XGBoost

and LightGBM is also calculated similarly.

Experiments

Figure 2 shows the study population and overall procedure

for our experiments, i.e., from data preparation, data

preprocessing, and development of machine learning algorithms

to performance comparison in terms of various metrics. All the

experiments were conducted on a workstation with an Intel(R)

Core(TM) i7-8700 3.20 GHz CPU, 32 GB of main memory,

and an NVIDIA GeForce RTX 2080 SUPER GPU. The host

operating system was Windows 10 (64-bit) and all prediction

models were implemented using Python 3 and the Scikit-learn

machine learning library.

Results

A total of 197 patients were included in this study.

The median age of the patients was 73.11 years and 101

(51.3%) of them were females (Table 2). A total of 104
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FIGURE 3

From the left, the average confusion matrix for each ML model when using the features of (A) clinical data, (B) clinical data with CVRS, and (C)

clinical data with cortical thickness, respectively. The x-axis and y-axis represent the predicted values and the actual ground truth values,

respectively.

(55.6%) patients had at least one APOE ε4 allele. During the

follow-up period, 108 (54.8%) patients showed progression

to dementia, whereas 89 patients did not. The demographic,

cognitive, and biomarker characteristics of the patients and

their classification in stable MCI and progressive MCI groups

based on their progression from MCI to dementia are shown

in Table 2. Patients with MCI that progressed to dementia

showed poorer cognitive performances at baseline, lower

cortical thickness in AD signature, and were more likely to

be APOE4 carriers than those that did not show progression

to dementia.

Confusion matrix

Figure 3 shows the average confusion matrixes computed

for each ML model trained using LOOCV to visualize its
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FIGURE 4

(A–C) From the left, the feature importance of each ML model with clinical data, clinical data with CVRS, and clinical data with cortical thickness,

respectively. CVRS HA, CVRS hippocampal atrophy; CVRS CA, CVRS cortical atrophy; CVRS SA, CVRS subcortical atrophy; CVRS SVD, CVRS small

vessel disease; EC.L/R, entorhinal cortex average thickness left/right; ITG.L/R, inferior temporal gyrus average thickness left/right; MTG.L/R,

middle temporal gyrus average thickness left/right; FFG.L/R, fusiform gyrus average thickness left/right.

performance with different sets of features, namely clinical data,

clinical data with CVRS score, and clinical data with cortical

thickness. A confusion matrix is used to compare the actual

ground truth values with the values predicted by the model,

where the x-axis represents the predicted values and the y-axis

represents the actual values. In the case of logistic regression,

clinical data and clinical data with CVRS showed the same

numbers, with the number of accurate predictions being 135

(89 + 46), which was 68% of the total data. For RF, XGBoost,

and LightGBM, clinical data with CVRS showed more than 70%

accuracy, which was higher than those for clinical data and

clinical data with cortical thickness. For the gradient boosting

models, such as XGBoost and LightGBM, more actual values

were correctly predicted using clinical data with CVRS score,

owing to their ability to combine different weak classifiers to

create a strong classifier.

Feature importance

Figure 4 shows the average feature importance of each

ML model, which was computed using the built-in feature

importance provided by the implementation of each ML

algorithm.We excluded the logistic regressionmodel because we

used it as a baseline model solely for comparing its prediction

performance with those of the tree-based prediction models

and thus did not eliminate multicollinearity between the input

features. Regarding clinical data, ADAS-Cog 11 (cognitive

function test) showed the highest importance in all models,

whereas sex showed relatively little importance (Figure 4). For

clinical data with CVRS score, ADAS-Cog 11 and the features

related to CVRS score seemed to be helpful in predicting the

progression from MCI to dementia to some extent. Regarding

clinical data with cortical thickness, the indicators measured

using the MRI FreeSurfer were also helpful in predicting the

progression to dementia.

Prediction results of the machine
learning models

Figure 5 shows the receiver operating characteristic (ROC)

curve for each ML model with each feature set (clinical data,

clinical data with CVRS score, and clinical data with cortical

thickness). Table 3 shows the comprehensive performance of

each model, including details such as the area under the ROC
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FIGURE 5

The ROC curve of each ML model for the prediction of progression to dementia within 2 years. (A) clinical Data, (B) clinical data with CVRS, and

(C) clinical data with cortical thickness.

curve (AUC), accuracy, precision, recall, and F1 score of the

model. The AUC of each prediction model was the highest when

clinical data with CVRS score were used, whereas the use of

clinical data with cortical thickness were not quite effective as

the use of clinical data only (Figure 5). For clinical data with

CVRS score, which include the CVRS features, LightGBM had

the highest AUC, which was 0.792, whereas, for clinical data and

clinical data with cortical thickness, logistic regression had the

highest AUC, which was 0.753 and 0.767, respectively (Table 3).

Each prediction model achieved the highest performance in all

evaluation metrics when clinical data with CVRS score were

used. All tree-based models achieved a better AUC value when

clinical data with cortical thickness were used than when clinical

data were used, whereas logistic regression showed the opposite

result. Overall, for clinical data with CVRS score, LightGBM

showed the best performance in all metrics with an accuracy of

0.711, precision of 0.651, recall of 0.659, and F1 score of 0.655.

In contrast, for clinical data, logistic regression showed the best

performance in all metrics except for recall.

Discussion

In this study, we have investigated the effects of baseline

structural cerebral changes estimated using the CVRS on the

progression of MCI to dementia during a 2-year follow-up

period using multiple representative ML algorithms. The key

finding of this study is that the ML dementia prediction

models showed higher accuracy when clinical data with CVRS

score were used than when clinical data alone or with cortical

thickness were used. This result is in line with that of a previous

study (16) on the use of visual rating scales for predicting the

progression of MCI to dementia.

The CVRS scores of patients with MCI could help identify

individuals who are most likely to progress to dementia

without the need for additional high-cost biomarkers. The

CVRS score reflects mixed pathological conditions, such as

cerebral atrophy and vascular injury. Although automated

image analysis of brain MRI scans has been widely used

in previous research, visual rating involving scales such as

the CVRS is simpler and faster, and more appropriate for

individual assessment in a primary clinical setting (14, 31–33).

Additionally, the CVRS is a cost-effective diagnostic tool ideally

suited for implementation in clinical practice (15). In contrast,

automated image analysis tools are more appropriate for

detailed research that includes group analyses and a longitudinal

follow-up (34). We attempted to utilize a good combination

of multi-modal and highly accessible data for the predictive

models by considering conventional demographic and cognitive

information such as clinical data, MRI features such as CVRS

score, and cortical thickness. In this study, a comparison of

the predictive accuracy of the models when CVRS score was

used and when the cortical thickness was used showed that

CVRS had higher predictive accuracy than the cortical thickness

(Table 3).

Various performance measures shown in Table 3 confirmed

that for each prediction model utilized in this study, CVRS

features showed more usefulness than cortical thickness features

in all metrics (AUC, accuracy, precision, recall, and F1 score).

Every performance measure of each prediction model was

always better when clinical data and CVRS score were used

together than when clinical data were used alone. In contrast,

using clinical data together with cortical thickness was often

worse than using clinical data alone. Regarding AUC values,

the general guidelines in the book by Hosmer et al. (35)

indicate that the prediction performance of all tree-based

ensemble algorithms is sufficiently good when CVRS score is

used, whereas it is only acceptable when cortical thickness is

used. However, regarding other measures, such as accuracy,

precision, recall, and F1 score, predictive performance can

be improved further by considering more data or conducting

hyperparameter tuning.
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TABLE 3 The prediction performance of each ML model with leave-one-out cross-validation.

Dataset Model AUC Accuracy Precision Recall F1 Score

Clinical data Logistic regression 0.753

(0.686–0.820)

0.685 0.639 0.561 0.597

Random forest 0.746

(0.678–0.814)

0.670 0.608 0.585 0.596

XGBoost 0.712

(0.641–0.783)

0.660 0.590 0.598 0.594

LightGBM 0.713

(0.642–0.784)

0.655 0.597 0.524 0.558

Clinical data with CVRS Logistic regression 0.772

(0.707–0.837)

0.685 0.639 0.561 0.597

Random forest 0.782

(0.719–0.845)

0.701 0.649 0.610 0.629

XGBoost 0.762

(0.696–0.828)

0.706 0.646 0.646 0.646

LightGBM 0.792

(0.730–0.853)

0.711 0.651 0.659 0.655

Clinical data with cortical thickness Logistic regression 0.767

(0.702–0.832)

0.665 0.611 0.537 0.571

Random forest 0.735

(0.665–0.805)

0.685 0.643 0.549 0.592

XGBoost 0.704

(0.631–0.777)

0.660 0.595 0.573 0.584

LightGBM 0.705

(0.633–0.777)

0.650 0.584 0.549 0.566

For each dataset and performance metric, we denote the highest value in bold face. For each feature set and each ML model, we show the average AUC and its confidence interval, the

average accuracy, precision, recall, and F1 score. ML, machine learning; AUC, area under curve.

It is interesting to note that each ML algorithm employed

different feature importance for predicting the progression from

MCI to dementia (Figure 4). The results of the multivariate

analysis in our previous study with US-ADNI suggested that

positive amyloid PET, CDR-SOB, and CVRS are important

predictors of progression from MCI to dementia (16). In this

study, cognitivemeasures such as ADAS-Cog,MMSE, and CDR-

SOB were used in all three tree-based ensemble models, with

high importance for clinical data with multi-modal CVRS data.

In particular, RF exploited hippocampal atrophy as the third

important feature, followed by other components of CVRS. This

result is mostly in line with that of a previous study in terms

of the importance of the visual rating scale (15). Meanwhile,

regarding clinical data with multi-modal cortical thickness data,

components of cortical thickness were ranked as important

features following ADAS-Cog, and most features of cortical

thickness played important roles, especially for RF.

What is novel in this study compared to previous studies

is that it is focused on new Asian longitudinal datasets

and analytic methodologies using CVRS (Table 4). The first

study used cross-sectional data from a single center that

validation was performed just for test-retest reliability and

clinical group differentiation (14). The following study used

multisite longitudinal US-ADNI data from 63 sites in the

US that showed an association between the baseline CVRS

score and conversion to dementia using survival analysis (16).

Finally, this study applied various ML algorithms to validate

the prediction of progression to dementia using multisite

longitudinal J-ADNI data from 38 sites in Japan. On top of

that, we also showed higher performance of CVRS compared

to cortical thickness that implicated this relatively simple tool

could be used in clinical practice combined with clinical data

to identify MCI subjects with a higher risk of progression. This

is valuable for the clinician for the achievement of a more

accurate prognosis and following a treatment plan to prevent

cognitive decline.

A recent systemic review of 116 studies on the use of ML

methods for predicting progression from MCI to AD showed

that all the studies of MRI were conducted using automated

image analysis such as cortical thickness, 3D-volumetry,

tensor-based morphometry, or functional connectivity (17).

Nevertheless, a balance is necessary between the advanced
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TABLE 4 Comparison of studies using comprehensive visual rating scale (CVRS).

Data set Study design Subjects Validation

Jang et al. (14) Data from single Korean

center

Cross-Sectional analysis NC (n= 65),

MCI (n= 101),

AD (n= 94)

• Test-retest reliability

• Clinical group differentiation according to baseline CVRS

Jang et al. (16) ADNI data from 63 sites

in U.S.

Longitudinal analysis over 3

years

MCI (n= 340) • Association between conversion to dementia and baseline

CVRS

Current study J-ADNI data from 38

sites in Japan

Longitudinal analysis over 2

years

MCI (n= 197) • Association between conversion to dementia and baseline

CVRS using various ML algorithms

• Feature importance

• Comparison between cortical thickness and CVRS

NC, Normal cognition; MCI, Mild cognitive impairment; ML, Machine learning.

imaging data and ML algorithms for higher performance and

the data and methods that could be available in clinical practice.

Therefore, the strength of our study is further validation of

the visual rating scale by adopting various ML algorithms

focusing on achieving high performance using essential and

easily obtainable data such as visually assessed structural MRI,

demographic, and cognitive measures.

This study has some limitations. First, accuracy was

relatively low compared to previously published studies. A

recent systematic review showed that most studies were

conducted using MRI and PET and the ADNI dataset (17). In

addition, conventional algorithms, such as the support vector

machine, were the most commonly used algorithms, and they

had a mean accuracy of 75.4%. The highest accuracy in this

study was 71.1%, which was achieved by LightGBM using

demographic data and CVRS score (Table 3). The relatively

low accuracy in this study may be due to the small size

of the J-ADNI dataset compared to the much larger ADNI

dataset. However, although the ADNI is a very useful public

database that includes the data of about 1,700 subjects and has

been used as a dataset in more than 3,500 publications since

2004, about 80% of the participants were Whites whereas only

2.7% of them were Asians (36). Therefore, to achieve partial

generalizability of our findings for the Asian subjects, we chose

the J-ADNI dataset, even though it is much smaller than the

ADNI dataset. In addition, the main objective of our study

was not just to achieve high accuracy using brain MRI but

to compare the effectiveness of the CVRS score and that of

cortical thickness for predicting progression to dementia when

combined with demographic data. Second, the conversion rate

(54.8% in 2 years) in this study was much higher than those

reported in other studies (from 10 to 15% per year) (37, 38).

A previous study speculated that this higher conversion rate

of MCI in J-ADNI might happen because J-ADNI clinicians

defined the clinical cutoff for AD more sensitively (25). Third,

we included subjects with MCI who performed MRI at baseline

without pathologic confirmation by either molecular imaging

or CSF. Although J-ADNI included these data, they were

not used for the analysis because these methods are either

expensive or invasive. Considering the importance of cost-

effective biomarker identification that is readily obtainable in a

less invasive manner, CVRS of brain MRI was used for clinical

implementation. Lastly, there was a decreased score of small

vessel disease in the progressive group compared to the stable

group although it was not statistically significant (Table 2). This

was already a suggested issue that ADNI excluded subjects

with a high burden of small vessel disease (16); hence, the

effect of small vessel disease needs to be further validated using

other datasets.

In conclusion, this study showed that for patients with

MCI, a baseline CVRS score combined with clinical data are

effective for predicting progression to dementia over a 2-year

follow-up period. Moreover, tree-based ensemble ML models

demonstrated better performances than the logistic regression

model, which implies that the utility of the CVRS score can be

enhanced by using appropriate ML algorithms.
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