
Research article
High childhood serum triglyceride concentrations associate with
hepatocellular adenoma development in patients with glycogen
storage disease type Ia
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Background & Aims: Glycogen storage disease type Ia (GSDIa) is an inborn error of carbohydrate metabolism caused by
pathogenic variants in the glucose-6-phosphatase catalytic subunit 1 (G6PC1) gene and is associated with hepatocellular
adenoma (HCA) formation. Data on risk factors for HCA occurrence in GSDIa are scarce. We investigated HCA development in
relation to sex, G6PC1 genotype, and serum triglyceride concentration (TG).
Methods: An observational study of patients with genetically confirmed GSDIa >−12 years was performed. Patients were
categorised for sex; presence of 2, 1, or 0 predicted severe G6PC1 variant (PSV); and median TG during childhood (<12 years;
stratified for above/below 5.65 mmol/L, i.e. 500 mg/dl).
Results: Fifty-three patients (23 females) were included, of which 26 patients developed HCA at a median (IQR) age of 21
(17–25) years. At the age of 25 years, 48% of females and 30% of males had developed HCA (log-rank p = 0.045). Two-thirds of
patients with GSDIa carried 2 PSVs, 20% carried 1, and 13% carried none. Neither the number of PSVs nor any specific G6PC1
variants were associated with HCA occurrence. Childhood TG was 3.4 (3.0–4.2) mmol/L in males vs. 5.6 (4.0–7.9) mmol/L in
females (p = 0.026). Childhood TG >5.65 mmol/L was associated with HCA development at younger age, compared with
patients with childhood TG <5.65 mmol/L (18 vs. 33 years; log-rank p = 0.001). Cox regression analysis including TG, sex, and
TG–sex interaction correction revealed childhood TG >5.65 mmol/L as an independent risk factor for HCA development
(hazard ratio [HR] 6.0; 95% CI 1.2–29.8; p = 0.028).
Conclusions: In patients with GSDIa, high childhood TG was associated with an increased risk of HCA, and earlier onset of
HCA development, independent of sex-associated hypertriglyceridaemia, and G6PC1 genotype.
Lay summary: Glycogen storage disease type Ia (GSDIa) is a rare, inherited metabolic disease that can be complicated by liver
tumours (hepatocellular adenomas), which in turn may cause bleeding or progress to liver cancer. Risk factors associated with
hepatocellular adenoma formation in patients with GSDIa are largely unknown. In our study, we found that high serum
triglyceride concentrations during childhood, but not specific genetic variants, were associated with increased risk of he-
patocellular adenoma diagnosis later in life.
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Introduction
Glycogen storage disease type Ia (GSDIa; OMIM #232200) is a
rare, inborn error of carbohydrate metabolism caused by path-
ogenic variants in the glucose-6-phosphatase catalytic subunit 1
(G6PC1) gene.1,2 The GSDIa phenotype is characterised clinically
with fasting intolerance, hepatomegaly, and failure to thrive and
biochemically with non-ketotic hypoglycaemia, and hyper-
triglyceridaemia. Evolving dietary strategies have greatly
improved the life expectancy of patients with GSDIa, shifting the
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GSDIa paradigm from an acute and lethal disease to a chronic
disorder. Long-term complications include hepatocellular ade-
noma (HCA) formation.3–5

HCAs are rare, benign liver tumours, with size (>5 cm)-
dependent associated complications consisting of hepatic hae-
morrhage, or transformation to hepatocellular carcinoma.6–9

Outside the context of GSDIa, HCA formation is strongly associ-
ated with female sex, as >90% of HCAs occur in females, and with
circulating oestrogen or androgen (e.g. oral contraceptives or
anabolic steroids).9–11 In GSDIa, however, about 30% of patients
with HCA are male. HCA incidence in GSDIa increases with age,
with a median age of diagnosis at around 15 years and an inci-
dence of 70–80% over the age of 25 years.3,12–15

G6PC1 is a single-copy gene, with 5 exons coding for 357
amino acids.2 G6PC1 expression is restricted to the liver, kidney,
and intestine.2 Genetic variants within the G6PC1 catalytic
domain (amino acids 83, 119, 170, and 176) have shown to
completely abolish glucose-6-phosphatase (G6Pase) function,
whereas truncating (nonsense) variants either abolish or greatly
impair G6Pase function.2 G6Pase dysfunction impairs hydrolysis
of glucose-6-phosphate to glucose and phosphate, which disrupts
the final and common step of glycogenolysis and gluconeogen-
esis.5,16 Although the G6PC1 genotype has been linked to the
severity of the metabolic phenotype of GSDIa, no specific G6PC1
variants have definitively been associated with HCA formation.

Improved dietary management in GSDIa has resulted in
improved metabolic control, which is commonly evaluated
through serum triglyceride concentration (TG). Prolonged sub-
optimal metabolic control (hypertriglyceridaemia >5.65 mmol/L
or 500 mg/dl) has been associated with HCA development.15

Recent studies on patients with GSDIa demonstrate better clin-
ical outcomes, including lower TG and lower HCA prevalence
compared with historical cohorts, which at least in part may be
attributed to optimised dietary treatment strategies.12

Because longitudinal data on HCA incidence in GSDIa patients
are scarce, the association and potential interaction of sex, G6PC1
genotype, and metabolic control on HCA development is as yet
unknown. The aim of this study was to assess the association
between sex, type of G6PC1 variants, TG in childhood, and HCA
formation in a nationwide cohort of patients with genetically
confirmed GSDIa.
Patients and methods
Study design
A nationwide, retrospective, observational, multicentre cohort
study of patients with GSDIa was performed between 1969 and
September 2021. The metabolic expert centres of 7 Dutch uni-
versity medical centres provided information on patients
followed-up. Inclusion criteria were as follows: current age >−12
years, availability of diagnostic imaging, and GSDIa diagnosis
based on G6PC1 genetic analysis by traditional Sanger
sequencing or next-generation sequencing. Strengthening the
Reporting of Observational Studies in Epidemiology guidelines
were adhered to for study design and manuscript preparation.17

The study protocol conformed to the ethical guidelines of the
1975 Declaration of Helsinki. The Law on Medical Scientific
Research involving human beings (WMO) did not apply in an a
priori approval by the Medical Ethical Committee of the Uni-
versity Medical Center Groningen (UMCG-MEC 2019-119). The
study was registered before initiation in the UMCG research
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registry (UMCG-RR #202000465). All patient data were collected
and processed in accordance with Dutch privacy laws.

Data collection and definitions
HCAwas diagnosed by either magnetic resonance imaging (MRI),
histopathology, or both. The date of the first HCA diagnosis was
retrospectively adjusted to the first tumour observation on ul-
trasound, in case of later diagnosis on MRI or histopathology. The
largest HCA diameter was measured by ultrasound and/or MRI
according to Response Evaluation Criteria in Solid Tumors
version 1.1 (RECISTv1.1) criteria.18

G6PC1 variants were categorised according to both the molec-
ular characteristics of the genetic variants and the G6Pase location.
All G6PC1 missense variants in the active site (i.e. amino acids 83,
119, 170, and 176) and all G6PC1 nonsense variants (regardless of
location) were categorised as predicted severe variants (PSVs). Pa-
tients’ G6PC1 genotypes were categorised as 0, 1, or 2 PSVs. G6PC1
variants accounting for 50% or more of observed variants in the
cohort (i.e. p.Arg83Cys, p.Gln347X, and p.Gln27ArgfsX9) were
grouped and compared with all other variants.

Birth cohorts were defined as the older or current treatment
era as previously reported.12 The current treatment was defined
as treatment that started in 1986, the year when large-scale
clinical use of uncooked cornstarch therapy commenced.12

TGs were measured at the local laboratories according to
standard practice. TG data were expressed in mmol/L. Longitu-
dinal childhood TGs were calculated as the median of mea-
surements per 6 months per patient. Of included patients, a
single childhood TG was calculated per patient as the median of
all measurements obtained and available before the age of 12
years. Childhood TGs were categorised into low and high child-
hood TGs, defined as those patients with median childhood TG
above or below 5.65 mmol/L (500 mg/dl), according to the pre-
vious definition.15 To correct for patients with metabolic dysre-
gulation, and thereby with more frequent TG measurements,
sensitivity analyses on childhood TG were performed by prior
calculation of the median TG per 6 months and then calculating a
single median TG on those values. Sensitivity analyses on
childhood TG stratification were also performed through cate-
gorisation of childhood TG above or below 6.0 mmol/L, as rec-
ommended by the European Study on GSDIa management
guideline.3,4 A sensitivity analysis on childhood TG and devel-
opment of HCA was performed for use of lipid-lowering drugs
(including fibrates, statins, omega-3 fatty acid supplements, or
ursodeoxycholic acid) at any given time before HCA diagnosis.

Data presentation and statistical analysis
Patients were categorised in groups according to sex (male/fe-
male), number of PSVs (0, 1, or 2, and 0/1 or 2), childhood TG
(low/high), and birth cohort (older/current). Study data were
collected from individual patient records and managed using
REDCap electronic data capture tools (Vanderbilt University,
Nashville, TN, USA) hosted at the UMCG.19,20 Genetic variants
were presented according to Human Genome Variation Society
recommendations.21 Figures were composed using R (R Foun-
dation for Statical Computing, Vienna, Austria) and GraphPad
Prism version 9.0 for Mac (GraphPad Software, La Jolla, CA, USA;
www.graphpad.com). Dichotomous data were presented as
proportions. Continuous variables were reported as median with
IQR. Categorical variables were expressed as number (n) and
percentage (%). Statistical analysis was performed using R
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All GSDIa patients
N = 77

Study population
n = 53

HCA diagnosed
n = 26

No HCA diagnosed
n = 27

Excluded from analyses 
n = 24
•  <12 years, n = 8
•  No imaging performed, n = 6
•  No G6PC1 genetic analysis
   performed, n =10

Fig. 1. Flowchart of inclusion of the study population. G6PC1, glucose-6-
phosphatase catalytic subunit 1; GSDIa; glycogen storage disease type Ia;
HCA, hepatocellular adenoma.
version 4.1.0, including the ‘survival’ and ‘survminer’ packages.
Univariate survival analyses were performed using Kaplan–
Meier analyses and the log-rank test. Multivariate survival ana-
lyses were performed using Cox proportional hazards models.
Parameters with 2-tailed p <0.05 were considered statistically
significant.

Results
Seventy-seven patients with GSDIa from 66 families were diag-
nosed at the outpatient clinic of the 7 participating centres.
Twenty-four patients were excluded because of current age <12
years (n = 8), no imaging performed (n = 6), or no G6PC1 variant
analysis available (n = 10). Fifty-three patients from 46 families
were included for data analysis, with a median follow-up time of
32 (22–43) years (Fig. 1). Most patients (56%) were diagnosed
within their first year of life, and the median age of GSDIa
diagnosis was 10 (5–30) months (Table 1).

GSDIa and HCA formation
HCAwas diagnosed in 26 of 53 GSDIa patients (49%), at a median
age of 21 (17–25) years. The lowest age of HCA diagnosis was 13
Table 1. Baseline characteristics of patients with GSDIa.

Characteristic Total cohort (n = 53) Patient

Current age (years) 34 (24–45)
Sex, n of female patients (%) 23 (43)
Age of GSDIa diagnosis (months) 10 (5.0–30)
Birth cohort

Born before 1986, n (%) 21 (40)
Born after 1986, n (%) 32 (60)

Childhood TG (mmol/L)a 3.95 (3.18–5.79)
Type of G6PC1 variantb

No PSV, n (%) 7 (13)
1 PSV, n (%) 11 (21)
2 PSVs, n (%) 35 (66)

Continuous values are provided as median and IQR.
G6PC1, glucose-6-phosphatase catalytic subunit 1; GSDIa, glycogen storage disease type I
concentration.
a Median of TG up to and including 12 years of age.
b PSVs are any nonsense G6PC1 variants and all missense variants within the G6PC1 ac
* Levels of significance: p <0.05 (Mann–Whitney U test and Chi-square test).
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years (Fig. 2A). No difference was observed in age of GSDIa
diagnosis between patients who did and those who did not
develop HCA (p = 0.98; Table 1). Kaplan–Meier survival analysis
demonstrated no significant difference in time to HCA develop-
ment between birth cohorts before and after the introduction of
uncooked corn starch diet in 1986 (Fig. 2B). Eight patients were
diagnosed with hepatic adenomatosis (diagnosis of >10 HCAs).
The median number of HCAs in patients without adenomatosis
was 3 (1–6). The median diameter of all HCAs was 35 (18–65)
mm (Supplementary Materials and methods; Table S1).
HCA formation and sex
HCA formation was more common in female than in male pa-
tients with GSDIa (at age 25 years, 48% and 30%, respectively,
log-rank p = 0.045; Fig. 2C and Table 1). HCA formation also
occurred earlier in female patients; the age at which 50% of the
women had developed HCA was 23 years, compared with 30
years in males (Fig. 2C). Adenomatosis was diagnosed in 3/13
male patients and 5/10 female patients (p = 0.69). Among pa-
tients without adenomatosis, male patients had a median of 6
(2–7) HCAs, compared with 3 (1–5) for females (p = 0.22). The
largest median HCA size was 41 (15–104) mm in males and 28
(19–47) mm in females (p = 0.64).
HCA formation and G6PC1 gene variants
Two-thirds of GSDIa patients carried 2 PSVs, 20% had 1 PSV, and
13% had no PSV (Supplementary Materials and methods;
Tables S1 and S2). The number of PSVs within a patient with
GSDIa was not associated with the diagnosis of HCA (p = 0.88;
Table 1). The most frequently observed G6PC1 variants were
p.Arg83Cys (26%), p.Gln347X (17%), and p.Gln27ArgfsX9 (9%;
Table 2). No specific G6PC1 variant hotspot was associated with
HCA formation (Fig. 3). In total, 23 out of 53 (44%) patients with
GSDIa carried homozygous G6PC1 variants. Twenty-seven unique
genetic variant combinations were observed (Table 2).

The number of PSVs was not associated with time to HCA
formation (Fig. 2D), neither when comparing 0 PSV or 1 PSV, to 2
PSVs (Supplementary Materials and methods; Fig. S1A). Analyses
of the three most frequently observed variants (p.Arg83Cys,
p.Gln347X, and p.Gln27ArgfsX9) did not reveal any significant
association with HCA occurrence, for mono-allelic, bi-allelic, and
homozygous variants compared with other genetic variants in
the cohort (Supplementary Materials and Methods; Fig. S1B–D).
s with HCA (n = 26) Patients without HCA (n = 27) p value

37 (28–45) 25 (22-42) 0.07
15 (58) 8 (30) 0.039*

11 (4–48) 11 (5.0–23) 0.98

12 (46) 9 (33) 0.34
14 (54) 18 (67)

4.60 (4.03–7.84) 3.16 (2.33–3.37) <0.001*

3 (12) 4 (15) 0.88
6 (23) 5 (19)
17 (65) 18 (67)

a; HCA, hepatocellular adenoma; PSV, predicted severe variant; TG, serum triglyceride

tive site.
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HCA formation and childhood TG
Childhood TG data were available in 23 patients with GSDIa (10
females, 43%), with a median childhood TG of 3.9 (3.2–5.8)
mmol/L. In total, 14 of the 23 patients developed HCA during
follow-up. Male patients with GSDIa had a significantly lower
median childhood TG than female patients with GSDIa (3.4
[3.0–4.2] vs. 5.6 (4.0–7.9) mmol/L, respectively; p = 0.026; Fig.
4A). The median childhood TG was 3.9 (3.3–4.2) mmol/L for
Table 2. Frequency of G6PC1 variants in relation to sex and HCA formation i

Genetic variant G6PC1 variant Type o

c.247C>T
c.326C>T

p.Arg83Cys PSV

c.1039C>T p.Gln347X PSV
c.79delC p.Gln27ArgfsX9 PSV
c.189G>A p.Trp63X PSV
c.467G>T p.Trp156Leu Non-PS
c.809G>T
c.1039C>T

p.Gly270Val Non-PS

c.979_981delTTC c.980_982delTCT c.1058delTTC p.Phe327del PSV
c.248G>A p.Arg83His PSV
c.563G>C p.Gly188Arg Non-PS
c.508C>T p.Arg170X PSV
c.209G>A p.Trp70X PSV
c.797G>T p.Gly266Val Non-PS
c.IVS4+1G>A (c.562+10G>A, intron) Unknown PSV
2bp deletion exon 1 p.Ile59X PSV
c.648G>T p.Leu216Leu PSV
c.788delA p.Lys263ArgfsX38 PSV
c.866G>A p.Ser289Asn Non-PS
c.884G>A p.Arg295His Non-PS
c.1091G>T p.Val338Phe Non-PS
Unknown p.Arg380His Non-PS

G6PC1, glucose-6-phosphatase catalytic subunit 1; GSDIa, glycogen storage disease type
a PSVs are any nonsense G6PC1 variants and all missense variants within the G6PC1 ac
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patients with GSDIa with 0 PSV, 3.7 (3.4–3.9) mmol/L for those
with 1 PSV, and 4.4 (3.2–7.8) mmol/L for those with 2 PSVs (0 vs.
1 PSV p = 0.79; 1 vs. 2 PSVs p = 0.65; 0 vs. 2 PSVs p = 0.38). Pa-
tients with GSDIa who developed HCA had a median childhood
TG of 4.6 (4.0–7.8) mmol/L, compared with 3.2 (2.3–3.4) mmol/L
for patients with GSDIa and without HCA diagnosis (p <0.001;
Fig. 4B). Seventeen patients with GSDIa (74%) had a median
childhood TG of <5.65 mmol/L (500 mg/dl).15 A sensitivity
n GSDIa patients.

f varianta Frequency, n (%) Female sex n (%) HCA formation, n (%)

28 (26) 14 (50) 14 (50)

18 (17) 11 (61) 11 (61)
9 (8.5) 4 (44) 6 (67)
8 (7.6) 4 (50) 1 (13)

V 8 (7.6) 0 (–) 2 (25)
V 6 (5.7) 1 (17) 3 (50)

5 (4.7) 2 (40) 3 (60)
4 (3.8) (50) 2 (50)

V 4 (3.8) 1 (25) 2 (09)
3 (2.8) 2 (67) 2 (67)
2 (1.9) 1 (50) 0 (–)

V 2 (1.9) 1 (50) 2 (100)
2 (1.9) 1 (50) 0 (–)
1 (0.9) 1 (100) 1 (100)
1 (0.9) 1 (100) 1 (100)
1 (0.9) 0 (–) 0 (–)

V 1 (0.9) 0 (–) 0 (–)
V 1 (0.9) 1 (100) 1 (100)
V 1 (0.9) 1 (100) 1 (100)
V 1 (0.9) 0 (–) 0 (–)

Ia; HCA, hepatocellular adenoma; PSV, predicted severe variant.
tive site.
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Fig. 3. Kaplan–Meier survival analysis for time to HCA occurrence in patients with GSDIa. (A) Total cohort. (B) Stratified by treatment era. (C) Stratified by sex.
(D) Stratified by G6PC1 variant severity. Levels of significance: p values noted (log-rank test). G6PC1; glucose-6-phosphatase catalytic subunit 1; HCA, hepato-
cellular adenoma; GSDIa, glycogen storage disease type Ia; PSV, predicted severe variant.
analysis with stratification of patients according to an alternative
cutoff value of 6.0 mmol/L (proposed by Rake et al.4) yielded
exactly the same patient distribution and similar outcome. In a
separate sensitivity analysis on the historical use of lipid-
lowering drugs or not, the median childhood TG was 3.7
(3.0–4.3) vs. 3.9 (3.2–7.3) mmol/L for patients with or those
without history of lipid-lowering drug use, respectively (p =
0.56). Kaplan–Meier survival analysis did not reveal a significant
difference in time to HCA diagnosis between patients with and
those without historical use of lipid-lowering drugs (log-rank p =
0.18).

Fiftypercent cumulativeHCA incidencewas18years forpatients
withGSDIawithamedian childhoodTGof>5.65mmol/L, compared
with 33 years for patients with GSDIa with a median childhood TG
of <5.65 mmol/L (log-rank p = 0.001; Fig. 5A). A multivariate Cox
regression model was performed, after testing the proportional
hazard assumption using Schoenfield residuals. A model 1
including sex and categorised median childhood TG (above/below
5.65 mmol/L) was constructed (Fig. 5B). Male sex was associated
with HCA formationwith a hazard ratio (HR) of 0.4 (95% CI 0.1–1.4;
p = 0.15). In this model, patients with GSDIa with a median child-
hood TG of >5.65 mmol/L had an HR of 4.6 (95% CI 1.3–16.3) for
lifetimeHCAdevelopment (p=0.018). Because femaleshadahigher
median childhood TG thanmales (Fig. 4A), an interaction termwas
included inmodel 2 (Fig. 5C). Inmodel 2, patientswithGSDIawith a
JHEP Reports 2022
median childhood TG of >5.65 mmol/L had an HR of 6.0 (95% CI
1.2–29.8) for formation of HCA (p = 0.028).
Discussion
We investigated potential risk factors for the development of HCA
in patients with GSDIa, using a retrospective, nationwide, obser-
vational cohort. During a median follow-up time of 32 years, HCA
developed in 26/53 patients. High childhood TG was observed
more frequently in female GSDIa patients and was an independent
risk factor for HCA development. We did not identify a clear G6PC1
genotype association with HCA development.

Previous studies have shown that HCA formation in GSDIa
occurs during adolescence, which is consistent with our current
results.3,15 In our cohort of patients with GSDIa, by the age of 40
years, 65% of female patients and 37% of male patients had
developed HCA, which is similar to previous reports.9,14,22 The
higher frequency of HCA in male patients with GSDIa than that of
HCA in male patients without GSDIa suggests an alternative,
additional pathway to HCA genesis in addition to the exposure to
high circulating oestrogen/androgen concentration caused by
either increased endogenous production (in overweight pa-
tients) or supplementation (oral contraceptives or anabolic ste-
roids).9,11,23,24 The lower childhood TG observed in male patients,
compared with those in female patients, suggests that there may
5vol. 4 j 100512
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be an intricate relationship between sex-associated TG meta-
bolism and HCA formation (Fig. 4a).

In our study, as well as in previous reports, HCA formation in
GSDIa has especially been reported in patients with metabolic
dysregulation (by either severe G6Pase dysfunction or therapy
incompliance), whereas HCA regression has been observed after
strict dietary management.12,25 It has been suggested that a
Warburg-like metabolic switch in hepatocytes resulting from
metabolic imbalance contributes to tumour development in
GSDIa. The consequent hyperactivation of specific pathways
inducing cell growth and mitotic activity may promote hepatic
tumourigenesis in patients with GSDIa.26 For instance, enhanced
fatty acid synthase activity in GSDIa may provide a beneficial
environment for neoplastic progression, as many malignant tu-
mours, including hepatocellular malignancies, display increased
fatty acid synthase activity, whereas fatty acid synthesis inhibi-
tion has antitumoural effects.27–29 However, whether cellular
adaptations in metabolic and/or signal transduction pathways
explain the increased risk for (advanced) HCA development in
patients with severe G6Pase dysfunction or therapy incom-
pliance remains to be established in future mechanistic studies.

There is only limited research on genotype–phenotype cor-
relations for GSDIa.1–3,15,30 A thorough investigation of G6PC1
genotype in relation to HCA development, however, has not been
reported thus far. In our study, G6PC1 variants and G6Pase
JHEP Reports 2022
impairment, indirectly quantified through the number of PSVs,
were not significantly associated with HCA development. We
also did not identify a ‘hotspot’ for pathogenic G6PC1 variants
that was associated with HCA development. No novel genetic
variations were identified in this cohort, and more than half of
patients were diagnosed with 2 PSVs.31–33 PSV load, analysed
individually (0 vs.1 vs. 2 PSVs) or grouped (0/1 vs. 2 PSVs) did not
reveal as a particular risk factor for HCA development.

Our cohort consists of 27 unique G6PC1 variant combinations
including 23 subjects with homozygous G6PC1 variants. Although
many patients in our study display unique combinations of G6PC1
variants and despite a relatively lownumber of inclusions, lessons
can be learned from patients with homozygosity for specific
G6PC1 variants. For example, themedian age of HCAdiagnosiswas
16 (15–17) years for p.Arg83Cys homozygotes (n = 10), as
compared with 27 (26–27) years for p.Gln347X homozygotes (n =
3; Supplementary Materials and methods; Tables S1 and S2). Pa-
tients with GSDIa exhibiting attenuated hypoglycaemic pheno-
types may explain clinical GSDIa diagnosis at adult ages. We
previously reported milder fasting intolerance in patients with
GSDIa homozygous for c.467G>T (p.Trp156Leu) and c.1039C>T
(p.Gln347X), G6PC1 variants that are associated with retained
G6Pase activity in vitro.34 By contrast, patients with GSDIa with
compound heterozygosity, for c.508C>T (p.Arg170X) and c.575C>T
(p.Ala192Val), homozygosity for c.1039C>T (p.Gln347X), and
compound heterozygosity for c.648G>T (p.Leu216Leu) and
c.986A>T (p.Lys329Met), resulting in reduced G6Pase activity
in vitro, have presented clinically with hepatocellular carcinoma,
HCA, or acute pancreatitis, respectively.35–37 Similarly, patients
homozygous for the common Japanese c.648G>T (p.Leu216Leu)
G6PC1 pathogenic splice variant are at increased risk of hepato-
cellular carcinoma.30,38,39 In summary, we hypothesise that the
complex human GSDIa phenotype including HCA susceptibility is
at least partially explained by the impact of the G6PC1 genotype
and the duration of the untreated, highly perturbed metabolic
state, with subsequent late diagnosis, start of dietary treatment,
and compliance.40

Dietary management strategies are the cornerstone of GSDIa
treatment. Continuous glucose infusion, continuous nocturnal
drip, and uncooked cornstarch have greatly improved GSDIa
outcomes.3,4,12 TG is considered an important longitudinal
outcome parameter for biomedical control in GSDIa. The 2002
European Study on GSDIa management guideline recommends
TG <6.0 mmol/L as a biomedical target, after performing a large
multicentre observational cohort study evaluating GSDIa clinical
course and outcomes.3,4 The 2010 Association for Glycogen
Storage Disease Conference consensus panel discussion defined a
TG target at 500 mg/dl (5.65 mmol/L), and were used as a
stratification by Wang et al.15 In our study, childhood TG levels
>5.65 mmol/L were associated with increased risk of HCA
development as well as earlier HCA diagnosis. Stratification of
the cohort at 6.0 mmol/L, as defined by the European guidelines,
yielded similar results.4 Our observations confirm the results
from Wang et al.15 that high TG precedes HCA diagnosis in pa-
tients with GSDIa, which should re-emphasise the importance of
strict metabolic management to prevent (or delay) HCA forma-
tion. In the aforementioned paper, a 5-year mean TG before HCA
diagnosis or censoring was calculated. Our current results,
however, show that HCA formation may already be predicted
during childhood, although our dataset does not allow us to
differentiate between metabolic control and controllability
(because of genotype or sex) of patients. Our observation of
6vol. 4 j 100512
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comparable median childhood TGs between 0, 1, and 2 PSVs
suggests mainly female sex as a non-therapeutic risk factor for
hypertriglyceridaemia.

Several limitations may have influenced the outcomes of
this study. First, (availability of) treatment strategies,
including dietary therapy, have evolved over time. Increased
treatment efficacy influenced both metabolic control and
overall survival of patients, including those with more severe
metabolic phenotypes. However, stratification by birth cohort
did not reveal any significant differences in HCA occurrence.
JHEP Reports 2022
Second, patient-specific heterogeneity in environmental and/
or genetic factors may have resulted in residual confounding
that could not be accounted for owing to the retrospective
nature of this study. Third, TG analysis is likely more often
performed in patients with metabolic dysregulation, as this
parameter is measured frequently during hospital admissions
or outpatient department evaluations. We have mitigated this
aspect by calculating medians for all childhood TG data, and a
median per 6 months for longitudinal measurements, yielding
similar results.
7vol. 4 j 100512
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The data in this study may assist in patient-centred (dietary)
management and follow-up, as we have identified subgroups
of patients especially vulnerable for HCA development. This
study illustrates the importance of correlating the multifacto-
rial processes that define the complex human GSDIa
phenotype, including the G6PC1 genotype, parameters of
biomedical control, and sex to long-term complications. We
have analysed a subset of those traits, and more
investigations are needed on the alternate complications such
as nephropathy and biomedical outcome markers such as
lactate, uric acid, and continuous glucose monitoring
JHEP Reports 2022
parameters. These are urgently warranted to compose a set of
person-centred outcomes for patients with GSDIa, to stan-
dardise future data collections, to identify important endpoints
for clinical trials, and to evaluate novel treatments in the
future.41–43

In conclusion, in patients with GSDIa, high childhood TG was
associated with an increased risk of HCA, and earlier onset of
HCA development, independent of sex-associated hyper-
triglyceridaemia, and G6PC1 genotype. Recognition of these risk
factors may assist in further development of individual moni-
toring strategies for GSDIa.
Abbreviations
GSDIa, glycogen storage disease type Ia; G6PC1, glucose-6-phosphatase
catalytic subunit 1; HCA, hepatocellular adenoma; G6Pase, glucose-6-
phosphatase; TG, serum triglyceride concentration; MRI, magnetic reso-
nance imaging; PSV, predicted severe variant; HR, hazard ratio.
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