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ABSTRACT: Measuring the physicochemical properties of molecules is an iterative but integral process in the drug development
process. A strategy to overcome the challenges in maximizing assay throughput relies on the usage of in silico machine learning (ML)
prediction models trained on experimental data. Consequently, the performance of these in silico models are dependent on the
quality of the utilized experimental data. To improve the data quality, we have designed and implemented an automated robotic
system to prepare and run physicochemical property assays (Automated Robotic Interface for Assays, ARIA) with an increase in
sample throughput of 6 to10-fold. Through this process, we overcame major challenges and achieved consistent reproducible assay
data compared to semiautomated assay preparation.

■ INTRODUCTION
In most drug development pipelines, measuring physicochem-
ical properties such as lipophilicity (LogP/LogD7.4) and kinetic
solubility of drug molecules is crucial to improve their drug like
properties. Measuring LogD7.4 and kinetic solubility has not
changed much in the last 20 years.1−7 The gold standard for
measuring LogD7.4 remains the shake-flask method.8,9 Sim-
ilarly, for kinetic solubility, high-throughput assays in micro-
plates with concentration measurements at early time points
(≤24 h) have been commonly used.7 Additionally, it is
important to validate synthesized drug molecules by perform-
ing quality control assays, such as those for determining purity
and stock concentrations. Acquiring this data quickly and as
accurately as possible is paramount in progressing project
portfolios. To that end, many programs rely heavily on utilizing
in silico models to predict these physicochemical properties to
design and advance new drug candidates.10−12

Training machine learning (ML) models to predict LogD7.4
and kinetic solubility is especially important early in the
process when medicinal chemists rely on predicted phys-
icochemical properties to design the next set of molecules for

synthesis.13,14 Additionally, these predicted properties are used
to prioritize molecules in order to triage for downstream
resource demanding biochemical assays (Figure 1). To make
sure the machine learning models are performing well, the
models are routinely updated with new experimental data.
Therefore, it is important to make sure that the experimental
assay conditions, and assay execution are consistent.
Inconsistency in the data generated when there is a change
in assay conditions (different technicians, locations, etc.) will
lead to variability and directly affects ML models trained on
this data.15 To reduce variability and improve the data quality
for training and updating ML models, we have automated all of
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our physicochemical assays utilizing an automated robotic
interface for assays (ARIA, Figure 2).
Designing and building robotic systems to automate

different types of lab work is not a novel concept, as scientists
and engineers have been improving these type of systems for
the last 40 years.16−21 Robotic systems are now able to
automate different types of chemistry from analytical to total
synthesis.22−26 Additionally, automation in the pharmaceutical
industry has been a necessity, especially for high-throughput
screens.27,28 Major advantages associated with robotics are the
increase in throughput, consistency, and the reproducibility of
the data generated. With the ever-growing and -evolving
hardware and software options, having a modular and
reconfigurable system is essential not only for long-term
adoption but also for sustainability.21 Alongside technological
progress in hardware, recent advancements in software have
changed the way robotic systems could be designed to be more
accessible and open to collaboration.23,29,30

Even with the advantages that automation brings, there
remains a need for validation steps to ensure that the data
generated is accurate. Being able to identify and correct
systematic errors is of utmost importance when migrating to an
automated system. In this paper, we will discuss these
validation steps which were engineered into the ARIA system
to generate reliable and highly reproducible data for ML in-
house models. Fundamentally, ARIA is a platform that brings
together a multitude of assay modules, which facilitates the
running of many relevant assay types (Figure 2). Careful
workflow considerations were taken to address the space
utilization and temporal optimization of the robot in order to
minimize labware movements, maximizing system throughput.
Additionally, we will also discuss software design and how we
developed the digital workflow assembly line.

■ RESULTS AND DISCUSSION
ARIA: Platform for Modular Assembly. To automate all

of the physicochemical assays (LogD7.4, kinetic solubility, QC/
DMSO stock concentration determination), ARIA was
designed and engineered as a platform to execute assays by
assembling combinations of modules unique to each assay
(Figure S1). With automated robotic platforms, a major
challenge has been establishing software simple enough to
develop new assay workflows as well as engaging collaborations
with other robotic systems or external groups. Groups have
already developed automation programming software to
simplify and make their automation workflow development
more robust.23,29,30 In particular, inspired by the Cronin
group’s work on the “chemputation framework”, which focuses
on creating a universal machine controlled by a common
software package for the execution of chemical processes, we
have adopted a similar concept to develop and refine digital
workflows for the ARIA system.31

A challenge in the development of systems like ARIA is the
translation of devices used in manual assay execution to
devices that can be incorporated into an automated system.
Devices such as the LabRam II mixer (Resodyne) are very
well-suited for manual human operation but lack automation
ability off the shelf. Early decisions in the project to develop
custom automation allowing for the incorporation of fit-for-
purpose devices such as the Labram were instrumental in the
success of ARIA.
Leveraging existing technologies, we integrated scheduling

software (Revolution, UK Robotics ltd) with liquid handling
controls (FluentControl, Tecan) to streamline our processes.
This integration mirrors the principles of the Gibson assembly
process, a method we adapted as a conceptual model for
developing assays on the ARIA system.32 Just as the Gibson
assembly combines DNA fragments to construct genes, ARIA
combines assay modules to construct digital workflows (Figure

Figure 1. Drug development pipeline assisted by ML/AI models, built from high-throughput physicochemical properties experimental data,
generated by analytical chemists and the ARIA system.
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2). By engineering the assay programming in this assembly
process, developing new assays becomes trivial and allows
more time spent on assay validation.
System Validation. To validate the ARIA system as a

viable platform for running various physicochemical properties
assays, we conducted a direct comparison between assay data
from samples prepared semiautomated and those prepared by
the ARIA system. Samples measured were received from our
compound management team and prepared to be around 10

mM in DMSO (QC assay). Measuring DMSO stock
concentrations for these samples confirms the actual stock
concentrations for any downstream assays. Additionally,
measuring the concentration of sample in DMSO is
quantitative with only one dilution step before analysis,
making this assay a good litmus test for comparing results
between the two methods.
Taking a closer look at the QC data, the average DMSO

stock concentration prepared by ARIA (9.7 ± 2.5 mM) was

Figure 2. Overview of the ARIA workflow for physicochemical property assays. (Step 1) Gray: users prompt ARIA to scan samples from compound
management and retrieve metadata for all the samples (ID, molecular weight, etc.). Specific assays are selected (option to modify assay parameters)
and the necessary ARIA modules are assembled together. (Step 2) Selected assays are loaded with user defined parameters and initiated. (Step 3)
ARIA prepares the sample plates and is optimized to run in parallel when possible to increase throughput. (Step 4) After completion the assays
plates are analyzed by LCMS. (Step 5) Analyzed data is uploaded onto a central database or the samples are rerun dependent on the results from
step 4.
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closer to the expected 10 mM compared to the observed
average DMSO stock concentration from semiautomated
preparation (7.1 ± 1.6 mM) (Figure 3a). After careful
examination, the difference in the results was due to inaccurate
liquid aspiration during the semiautomated preparation which
uses a semiautomated pipettor (Sorenson Bioscience Inc.).
When properly calibrated, the semiautomated pipetter
performs very well; however, with extensive usage the
equipment required more frequent calibrations to maintain
optimal performance. Although we employ calibration stand-
ards for every sample batch to ensure accuracy, there are still
occasions when calibration errors elude detection. In the ARIA
system, each liquid handling step is recorded as part of an
extensive audit trail and monitored through volume verification
(ultrasonic, and gravimetric), facilitating the identification of
errors vital for downstream troubleshooting. This tracking

capability, along with ensuring continual calibration of every
instrument, effectively addresses the issues noted with the
semiautomated pipettor. As evident from the coefficient of
variation (CV) where we observed twice the amount of
samples with a %CV > 10% from the semiautomated workflow
(Figure 3b,c). These results were promising and helped us
realize the potential of the ARIA system, especially as we
moved forward with more complex assays.
Building upon our previous success with the QC assay, data

from the kinetic solubility assay further supported the ARIA
system’s efficacy. A direct comparison of the kinetic solubility
data between the two methods demonstrated a strong
correlation (R2 = 0.91, as shown in Figure 4a), underscoring
the consistency of the ARIA system. However, there were
significantly larger standard deviation observed in the kinetic
solubility data from samples prepared using a semiautomated

Figure 3. QC DMSO stock concentration data compared between experimental samples from semiautomated workflow and the ARIA system. (a)
Histogram of measured DMSO stock concentrations determined by semiautomated methods (light blue) and by the ARIA system (dark blue) with
the dotted lines representing the average concentration for their respective methods. (b) The CV calculated at every measured DMSO stock
concentration for both semiautomated (light blue) and the ARIA system (dark blue) with the red dotted line at 10% CV. (c) Number of
experimental DMSO concentrations above 10% CV for both methods and the statistical significance with p-value < 0.01.

Figure 4. Experimental kinetic solubility between samples prepared using a semiautomated method (light blue) vs ARIA (dark blue). Buffer
evaporation was taken into account for the kinetic solubility data prepared by the semiautomated method. (a) Error bars correspond to the
standard deviation for the specific methods (x-axis: semiautomated, y-axis: ARIA). (b) Standard deviation of measured kinetic solubility for both
methods with the average standard deviation (gray line) and mean of standard deviation (dotted red line). (c) Heat map representing a 96-well
plate with the rate of evaporation (μL/hour) for each well position.
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workflow with standard deviations above 25 μM (Figure 4b).
This variance was attributed to the more complex kinetic
solubility assay, which involves numerous liquid transfers and
filtering steps, increasing the likelihood for errors. Further-
more, after an extensive investigation into each assay step, we
discovered buffer evaporation was a major contributor to the
variability in the assay results (Figure 4c). Depending on the
specific well location, we observed a consistent evaporation

rate no lower than 3.1 μL/hour and up to 8.0 μL/hour. To
account for buffer evaporation, careful steps were taken to
ensure assays plates were sealed in between liquid handling
steps to reduce volume loss. Importantly, buffer evaporation
was not as significant with samples prepared by ARIA resulting
in a lower standard deviation. In contrast to the LogD7.4 assay,
the ratio of sample intensity in PBS and octanol, the kinetic
solubility assay is quantitatively similar to the QC assay. This

Figure 5. Parallel programming to optimize the liquid transfers for all three assays. (a) Schematic for 2 multidispensing steps, (y) to prepare the
kinetic solubility plate (4 μL) and 1 mM stock dilution plate. (z) Another multidispense for the pooling LogD7.4 samples and plate stamping into a
384-well plate for the QC assay. (b) Correlation between pooled LogD7.4 and LogD7.4 measured as single samples for a set of standards at varying
concentrations (12.5 to 100 μM). (c) Correlation between pooled LogD7.4 and LogD7.4 measured as single samples for a set of Genentech
compounds (n = 1309 molecules).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02003
ACS Omega 2024, 9, 24948−24958

24952

https://pubs.acs.org/doi/10.1021/acsomega.4c02003?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02003?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02003?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02003?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


methodological difference leads to greater variance and
measurement inaccuracies in the semiautomated preparations.
The ARIA system addresses these validation challenges
effectively and also provides additional opportunities to
optimize current workflows.
Increasing Throughput and Optimizing Workflow.

Leveraging on the ARIA system’s ability for parallel
programming, and a custom developed business logic layer
(BLL), the Tecan liquid handling transfer steps for all three
assays were combined to increase throughput and reduce the
amount of plastic tips consumed (Figure 5). The first sample
transfer from 10 mM DMSO stock was a multidispensing step

that created the kinetic solubility assay plates and the dilution
plate for the QC and LogD7.4 assays. To increase the
throughput and reduce the number of liquid handling steps,
samples were pooled into groups of 8 with each sample in the
group having a molecular weight that is different from the
other samples in the same group. By pooling samples, we were
able to quantify the mixture of samples with a triple
quadrupole mass spectrometer’s ability for multiple reactions
monitoring (MRM).33 To accomplish this with the ARIA
system, a master pick list was automatically generated by the
BLL for the Tecan to cherry pick and pool samples into 1 mM
DMSO stock solutions (Figure 5). The pooled samples were

Figure 6. Experimental LogD7.4 data at pH 7.4 measured from samples prepared by both methods, human (light blue) and by ARIA system (dark
blue). (a) Direct comparison of experimental LogD7.4 pH 7.4 between both methods (n = 590 molecules). (b) Bland−Altman plot demonstrating
the difference between experimental LogD pH 7.4 between the two methods.34 (c) Standard deviation for every sample for both methods. (d)
Comparison of experimental LogD7.4 for both methods and how they relate to the predicted LogD7.4 using an in-house prediction model built on
measured LogD7.4 at Genentech.
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then transferred to the assay microplates containing PBS/
octanol and then separated for analysis. By pooling the
samples, an entire 96-well plate was condensed into one row
(12 wells), and technical replicates would only be an additional
2 rows for triplicates. Additionally, using fewer plastic
microplates simplified the workflow and supported our aim
to reduce environmental impact in research. Careful
considerations were taken to account for possible electrostatic
interactions between samples (acid and base at pH = 7.4).
There were no significant effects on measured LogD7.4 for a
group of compounds containing both acids and bases at
varying concentrations (Figure 5b). Furthermore, measured
pooled LogD7.4 for a set of Genentech’s molecules had good
correlation (R2 = 0.93, Figure 5c) with single LogD7.4 values
for the same set of compounds.
After optimizing the LogD7.4 assay with pooling samples for

MRM analysis, we observed promising results between
observed LogD7.4 values from samples prepared by a
semiautomated method and by the ARIA system (R2 = 0.95,
Figure 6a). Furthermore, the LogD7.4 difference for both
preparation methods in relation to the mean LogD7.4 values
revealed that most of the observed LogD7.4 values fall within
the 95% confidence interval Figure 6b.34 These results suggest
that the samples prepared by the semiautomated method and
by the ARIA system were similar. Moreover, the standard
deviation for both methods were all below 0.5 log units for
observed LogD7.4 values Figure 6c. The LogD7.4 values
measured by the ARIA system demonstrated a notably higher
correlation with predicted LogD7.4 values (R2 = 0.74, in-house
model) than those obtained from the semiautomated method
(R2 = 0.68, in-house model, Figure 6d). This significant
improvement in data quality from the ARIA system under-
scores the advantages of automation in enhancing the
reliability of machine learning predictions.

Enhancing Troubleshooting with Data Transparency
and Hardware Monitoring. The ARIA system’s meticulous
recording of each step by the BLL, opens new avenues for
understanding and refining the assay methodology. This level
of detail provided invaluable insights into automating the assay
preparations with ARIA. The ARIA system’s configuration,
encompassing a web application, a custom business logic layer,
scheduling software, and the Tecan liquid handling robot,
establishes a robust framework for both data transparency and
hardware monitoring.
Central to the ARIA system is an in-house web application

(ARIA’s interface) and business logic layer that plays a pivotal
role in data collection (Figure S3, a detailed description of
ARIA’s architecture). Every plate processed is tagged with a
unique barcode, which is directly linked to the specific assay it
belongs to. This meticulous tracking of metadata for each plate
ensures thorough documentation throughout the assay
process. The web application not only facilitates control over
the assay selection but also efficiently manages the sample data.
The system scans barcodes on sample tubes, retrieves essential
information like molecular weight and chemical structure, and
tracks each sample throughout the assay to ensure completion
of all designated tests. The storage of sample data in a database
is an added advantage, allowing for future reruns and
experiments.
A critical feature of the ARIA system is its ability to record

each liquid dispensing step with an extensive audit trail. The
volume of each dispensed liquid is verified, logged and
associated with the unique barcode of each plate at a well level.
This data is represented in a visually accessible format, such as
heat maps or table formats (CSV files), providing a detailed
account of the dispensing process (Figure 7a). Furthermore,
every process in the workflow is diligently tracked to ensure
comprehensive process documentation.

Figure 7. Strategies and hardware in place for assay validation. (a) Validating liquid transfer with an ultrasonic volume checker to assist in
identifying liquid transfer errors. (b) Utilize CCTV cameras to troubleshoot in real time or observe and identify when errors occurred during the
assay.
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The system’s scheduling software, Revolution (by UK
Robotics), orchestrates operations outside the Tecan environ-
ment. It plays a crucial role in identifying and responding to
errors such as idle or stuck plates, missing plates, or insufficient
plate availability and critically, it robustly handles device errors.
Upon detection of such errors, Revolution pauses the workflow
and alerts the user, allowing for timely intervention and
workflow restart. This feature is essential for preserving the
integrity of the run, avoiding the need to start over.
Additionally, the ARIA system is equipped with CCTV

cameras throughout its setup (Figure 7b). These cameras offer
an extra layer of monitoring, enabling users to visually inspect
the process and identify potential errors. An illustrative
example of this utility is the resolution of incidents like plate
collisions due to human errors or the resolution of device
errors remotely by ensuring it is in a safe, recoverable state.
The camera recordings can be reviewed to understand why the
system halted and to verify whether a plate was incorrectly
positioned, providing valuable feedback to both the software
and the user. This helps facilitate the development of robust
standard operating procedures (SOP) that further promotes
system consistency of operation.
The ARIA system’s comprehensive setup, combining a

sophisticated web application, BLL, detailed volume checking,
efficient scheduling software, and thorough security monitor-
ing, offers a robust platform for troubleshooting. This system
not only enhances data transparency but also ensures effective
monitoring and resolution of hardware-related issues, making it
a highly reliable tool in assay methodology.
ML Models Built from Data Generated with ARIA. To

evaluate the effect ARIA has in facilitating ML, a direct
comparison was made between ML models built with data
generated from ARIA. Building two comparable models based
on a similar sized training data was not possible because ARIA
has only been implemented for less than a year (4.7%, 7255
molecules measured with ARIA out of 155328 total

molecules). Furthermore, the new data generated from ARIA
will always be new molecules and covers a chemical space quite
different to the training set for the model before ARIA. With
these constraints in mind, we generated 2 ML models with
before-ARIA and after-ARIA data to predict LogD7.4 (Figure
8a). Using the same test set (4139 molecules) for both models,
we observed a R2 = 0.65 for the before-ARIA model and an
increase in performance for the after-ARIA model, R2 = 0.68. It
is not surprising we do not observe a significant increase given
the small amount of data provided by the ARIA system.
Additionally, the increase in performance we observed could
be a result of other factors like the addition of more chemically
similar compounds. Nonetheless, there is an improvement in
the after-ARIA model and we observed fewer LogD7.4
predicted greater than 0.5 log units compared to the
experimental LogD7.4 (Figure 8b). Finally, we analyzed the
performance of the after-ARIA model at the project level to
narrow the scope of chemical space. For some projects, we
observed a significant increase in predicting LogD7.4 with the
after-ARIA model (Figure 8c). These promising results was a
clear indicator for ARIA as a platform to generate higher
quality data for ML purposes.
Future Prospects of Automation in Drug Discovery

and ML. Reflecting on our journey with ARIA, we ponder on
what could be altered or implemented if we were to start anew.
If we were to reimagine ARIA from the ground up, then
identifying the core components that are indispensable and
those that could be streamlined or omitted is crucial. This
process is not just theoretical but essential for evolving ARIA
into a more efficient, user-friendly system, better suited to the
rapid technological advancements in the field.
A key immediate implementation would be the integration

of a LCMS (liquid chromatography mass spectrometry)
directly into the ARIA system. This addition would effectively
close the loop from assay execution to data analysis, creating a
seamless flow of information and significantly reducing the

Figure 8. Evaluation of ML models generated from data produced with (after-ARIA model) and without ARIA (before-ARIA model). The before-
ARIA model was trained on 148073 measured LogD7.4, and the after-ARIA model had 7255 more data points. (a) Correlation between predicted
LogD7.4 from the after-ARIA model and experimental LogD7.4 (n = 4139 molecules across multiple projects). Data points representing an improved
LogD7.4 prediction (dark blue) and no improvement relative to the experimental LogD7.4 (light blue). (b) Number of predicted LogD7.4 values
greater than 0.5 log unit in regards to the corresponding experimental LogD7.4. With the before-ARIA model containing 1960 predictions above 0.5
log units and 1810 for the after-ARIA model, the p-value was 0.174. (c) For some projects, the after-ARIA model displayed a significant increase in
performance, from R2 = 0.33 for the before-ARIA model (blue) to R2 = 0.46 for the after-ARIA model (orange).
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time between sample processing and result interpretation.
Another significant enhancement would be the implementation
of computer vision technology within the ARIA system. This
advancement would render the system “smarter” and more
autonomous. There are numerous scenarios where routine
errors, such as misaligned plates, insufficient tips on the Tecan
deck, or inaccuracies in specified locations, necessitate human
intervention. By incorporating computer vision, many of these
issues could be automatically detected and resolved by the
system itself, further reducing the need for manual oversight
and improving overall efficiency.

■ CONCLUSION
The implementation and validation of the ARIA system marks
a significant stride in the field of drug discovery. Our
comprehensive analysis throughout this paper underscores
the efficacy of ARIA in enhancing the accuracy, reproducibility,
and throughput of physicochemical assays (6 to 10-fold
increase in number of samples assayed per month). By
successfully addressing the inherent limitations of the semi-
automated sample preparation, ARIA has set a new standard in
the measurement of key drug properties like LogD7.4 and
kinetic solubility. Looking forward, the integration of
automated systems like ARIA in drug discovery will be
important to advancing the field. The high-quality data
generated by ARIA can be used to update in silico ML/AI
models and improve overall predictions. Even though the
comparison between the performances of ML models trained
on data prepared with and without ARIA was not as significant
as we hoped, the results were still promising. These models are
crucial in the early stages of drug development, and any
improvement in the data quality and the assay integrity would
assist in designing new drug candidates and optimizing lead
series. The consistent and reliable data from ARIA provides a
robust foundation for training and refining these predictive
models. Furthermore, the automation and precision of ARIA
opens new avenues in high-throughput screening in our early
discovery laboratory, to not only measure physicochemical
properties but also develop assays to interrogate downstream
questions related to chemical stability and activity.

■ EXPERIMENTAL SECTION
Instrumentation. An overview of all the instruments

installed on the ARIA system in depicted in Figure S2 in the
Supporting Information: PreciseFlex 400 robotic arm (Brooks
Automation, Fremont, CA), Cytomat 2 incubator (Thermo
Scientific, Langenselbold, Germany), Fluent 1080 liquid
handler (Tecan, Ma ̈nnedorf, Switzerland), D2 Dispenser
(UK Robotics Ltd., Bolton, UK), XPeel (Azenta, Burlington,
MA), LabRAM II acoustic shaker (Resodyne, Butte, MT -
Automated by UK Robotics), HiG centrifuge (Bionex, San
Jose, CA), I.D. Decapper (Hamilton, Reno, NV), PlateLoc
(Agilent, Santa Clara, CA), and BioMicroLab VC384 volume
checker (SPT Labtech, Concord, CA).
Reagents and Materials. Standard compounds for

method validation were acquired from Sigma-Aldrich (St.
Louis, MO). DMSO was acquired from EMD Chemicals
(Philadelphia, PA). MS-grade LC solvents were purchased
from OmniSolv (Charlotte, NC). 1-Octanol was purchased
from Sigma-Aldrich (St. Louis, MO). Phosphate-buffered
solution (PBS) was prepared with concentrations of NaCl
(136 mM), KCl (2.6 mM), Na2HPO4 (7.96 mM), and

KH2PO4 (1.46 mM). The buffer pH was adjusted to 7.4. Buffer
solution was prepared with a saturated organic phase (200 mL
of 1-octanol/20 mL of PBS pH = 7.4) and saturated aqueous
phase (1 mL of 1-octanol/200 mL of PBS pH = 7.4). The 96-
well plates comprised the 900 μL vial Nunc, 96-deep well
polystyrene plates, and 300 μL vial Greiner 96-well
polypropylene plates. The 384-well plates were 100 μL vial
Greiner polypropylene plates.

Kinetic Solubility and DMSO Stock Concentration
Determination Instrument Setup. The system consist of a
UPLC (Agilent 1290 series, Agilent, Santa Clara, CA) with two
binary pumps (precolumn A/B, postcolumn C/D), an
autosampler, a column oven, a diode array detector (DAD,
G7115A, Agilent), a single quadrupole mass spectrometer
(G6160A, LC/MSD iQ, Agilent), and charged aerosol detector
(CAD, Corona Veo RS, Thermo Scientific). The stationary
phase was a reverse phase Poroshell 120 EC-C18 column
(InfinityLab, 2.1 × 50 mm2, 1.9 μm, Agilent).

LogD7.4 Instrument Setup. Liquid chromatography meas-
urements were taken with LC-MS/MS systems. The first
system involved a Shimadzu Nexera X2 HPLC with two LC-
30AD pumps, SIL-30ACMP autosampler, SPD-20AV diode
array detector (Columbia, Maryland), 6 port Valco valve
(Houston, TX), and Sciex QTRAP4000 mass spectrometer
(Foster City, CA). The latter system consisted of a Shimadzu
Nexera X2 HPLC with two LC-30AD pumps, SIL-30ACMP
autosampler, SPD-20AV diode array detector, and Sciex
API4000 mass spectrometer. Both systems utilized a Waters
Xbridge C18 (2.1 × 30 mm2, 2.5 μm, 130 Å) column under
gradient method maintained at 40 °C.

Semiautomated Sample Preparation. Solvent and liquid
sample handling was automated with a Tecan Freedom Evo
robot (Man̈nedorf, Switzerland) configured with two liquid
handling arms using 8-channel disposable tips and 8-channel
fixed tips. Samples were mixed with a Resodyn LabRAM
acoustic mixer (Butte, MT).

LogD7.4 Assay. The LogD7.4 assay has been reported
elsewhere, and we will briefly go over the protocol along
with some modifications to increase throughput.8 From 10
mM DMSO stock solutions, 7 μL was dispensed into 96-deep-
well plates containing saturated 1-octanol (350 μL) using a
Tecan Freedom Evo robot. Plates were sealed with aluminum
film and shaken for 5 min at 25G of acceleration (Labram
acoustic shaker). After shaking, the plates were centrifuged at
3700 rpm for 10 min. Plates were then placed into the Tecan
liquid handler to add the remaining 350 μL of saturated PBS
buffer solution (pH = 7.4). The plates were sealed, shaken, and
centrifuged one final time (25G, 5 min). Liquid separation was
achieved with the Tecan robot by first transferring 250 μL of 1-
octanol phase into a 96-well plate. Prior to aspirating the
saturated PBS phase of the mixture, the tips were first filled
with 10 μL of PBS to act as a plug to prevent contamination
with 1-octanol.36 The Tecan transferred 250 μL of the PBS
phase to a corresponding 96-well plate. Both separated
compound phases were then sorted and prepared into mixtures
of 8 compounds by mixing 20 μL of each in the well of a 96-
well plate. Mixtures were sorted based upon monoisotopic
mass such that each compound had a minimum 2 Da mass
difference within the same group to prevent overlapping signal
response during mass spectrometry quantification. The sorting
was handled by a bespoke algorithm within the BLL, while also
generating work lists operated by the Tecan liquid handler.
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Samples were then analyzed by LCMS and LogD7.4 was
calculated using eq 1.

Dlog log
octanol

PBS pH 7.410

i
k
jjjjj

y
{
zzzzz=

= (1)

Kinetic Solubility Assay. This assay has been reported
elsewhere; briefly, assay plates were prepared from compounds
as DMSO stock solutions (10 mM).9 Samples (4 μL, 10 mM)
were transferred into a 96-well microplate containing PBS
buffer (pH = 7.4, 196 μL, affording a final concentration of 200
μM for each sample). To prevent evaporation, samples were
sealed with a heat activated aluminum sheet. The sample plates
were shaken on a vibrating platform shaker for 24 h at 1000
rpm and kept at room temperature. After 24 h, sample plates
were removed from the shaker, centrifuged, and transferred
(200 μL) to 96-well filter plates (Millipore Multiscreen HTS).
A positive pressure manifold (Waters, Positive Pressure-96
Processor) was then utilized to filter precipitate and collect the
filtrate into separate 96-well microplates. After filtration, 100
μL of filtrate was diluted into 100 μL of DMSO for a final
theoretical maximum compound concentration of 100 μM.
Plates were then sealed and shaken before transferring to a
LCMS-UV-CAD for analysis.
To quantify the sample concentrations, a LCMS system

equipped with a CAD was utilized (LCMS-UV-CAD). The
injection volume was 5.00 μL for all sample and flow rate was
0.400 mL/min. Mobile phases A/C were water with 0.01%
formic acid, and mobile phases B/D were methanol with 0.01%
formic acid. The first pump (precolumn, A/B) started at 98%
A to 98% B over 2.10 min and back to 98% A at 3 min. The
second binary pump (postcolumn C/D) had a corresponding
counter gradient complementary to the first binary pump,
starting with 98% D to 98% C over 2.10 min and back to 98%
D at 3 min. By introducing a counter gradient with the second
binary pump postcolumn, a 50% methanol solvent mixture is
maintained for the CAD analysis and helps reduce baseline
noise.37 A concentration calibration curve for the CAD was
utilized to calculate the concentrations of unknown samples.
Purity and DMSO Stock Concentration. Assay plates were

prepared by transferring sample from 10 mM in DMSO stock
solutions (1 μL) into 384-well microplates containing DMSO
(99 μL). The assay plates were then mixed on a shaker for 25
min at 1000 rpm and then transferred to a LCMS-UV-CAD for
analysis. Sample purity was measured using the UV absorption
data. To measure sample concentration in DMSO, a
concentration calibration curve for the CAD generated from
a set of standards was utilized to calculate the concentrations of
unknown samples.
LogD ML Models. Both models used MoKa descriptors

(from Molecular Discovery, www.moldiscovery.com/software/
moka/), RDkit (www.rdkit.org/) molecular descriptors, and
Morgan fingerprint descriptors (also available in RDkit) as
features and were trained using the Extremely Randomized
Tree (XRT) algorithm (ExtraTreesRegressor in sklearn).38

The models were established in Python 3.9.14.
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