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Abstract This study analyzed the differences in karyotype

and genetic variation between a mutant and wild-type Si-

raitia grosvenorii. Genetic variation included changes in

genome and gene expression by SRAP molecular markers.

Results showed that wild-type S. grosvenorii was diploid,

with a chromosome number of 2n = 2x = 28, whereas the

mutant was tetraploid with a chromosome number of

2n = 4x = 56. 4573 DNA bands were obtained using 189

different primer combinations, 577 of which were poly-

morphic, averaging 3.1 bands for each primer pair, while

1998 pairs were identical. There were no apparent differ-

ences on bands amplified by most primer pairs. After com-

paring the diploid and tetraploid strains, the data generally

indicated that the polymorphism would be quite low.

2917 cDNA bands were generated using 133 primer com-

binations, and stable and clearly differential fragments

were sorted out, cloned and sequenced. Ninety-two differ-

entially expressed fragments were successfully sequenced.

Sequence analysis showed that most fragments had signifi-

cant homologous nucleotide sequences with resistant to

stress and photosynthesis genes, including ribulose-1,5-

bisphosphate carboxylase/oxygenase, phosphoenolpyruvate

carboxykinase, pyruvate kinase, peroxisomal membrane

transporter, NBS-LRR type resistance protein, protein

phosphatase and others. The results revealed that the tetra-

ploid strain has more resistant and photosynthesis ability

than its diploid relatives, which providing reference infor-

mation and resources for molecular breeding and seedless

Luohanguo.

Keywords Gene expression � Tetraploid � Triploid �
Seedless � SRAP

Introduction

Siraitia grosvenorii (Swingle) C. Jeffrey, belonging to the

genus Siraitia Merr under the family Cucurbitaceae, is a

precious and economically important species endemic to

southern China that and has been cultivated for several

centuries. The fruits of S. grosvenorii, called Luohanguo,

are used for food, beverages and traditional Chinese

medicine. The fruit has evident effects on dry cough, sore

throat, extreme thirst and constipation [1]. The major

components of Luohanguo are mogrosides, a group of

terpene glycosides, estimated to be about 300 times as

sweet as sucrose [2]. One of the mogroside, mogroside V,

is 400 times sweeter than sucrose [3]. Moreover, Luohan-

guo extracts have chemopreventive and antioxidant prop-

erties. Its non-caloric properties and effects on the cancer

chemopreventive and antioxidant, being used as sweeten-

ing are being used as sweetening agents for the patients

with diabetes mellitus, adiposis, hypertension, heart disease

and so on. Luohanguo products have been approved as

dietary supplements in Japan, the United States, New

Zealand and Australia [4]. With the rapid rise in market

demand, Luohanguo extracts have increased rapidly from

two tons in 2002 to 60 tons in 2007, becoming one of the

fastest growing traditional Chinese medicine extracts.
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Our group isolated a novel male mutant plant (M038)

from hybrids (M036) of ‘Bolin’ and ‘PinzhongND’. The

mutant exhibited growth vigor, larger body and increased

organ size compared to wild type. We then used pollen of

M038 to pollinate ‘Nongyuan’(a main cultivar), and the

following year fruits of female hybrids (F050) were seed-

less (Fig. 1). Mogrosides only exist in flesh, occupying

15% of the dry weigh, whereas seeds constitute 70% of the

weight but contain no mogrosides. Thus, seedless Luoh-

anguo will no doubt increase the utilization and extraction

rate of mogrosides. Therefore, mutant M038 and hybrid

seedless Luohanguo are of great research value. M038 and

F050 possesses distinct differences compared with wild

type based on biological characters identified through our

investigation: (1) M038 phenotypes include their strong

growth potential. They are larger, have a thicker stem,

wider and longer leaves, increased leaf area, bigger flowers

and enhanced biomass. Both M038 and hybrid F050 have

strong growth advantages as their flowering time, growing

time and maturing time are all delayed. (2) The flower

organ of M038 is particularly wider, while pollen is seri-

ously aborted. Additionally, pollen quantity is less, while

the germination rate of pollen is low. Most pollen is

irregular and abnormal, shriveled and hollow. (3) Soluble

sugar, glucose, mogroside, vitamin C and protein contents

of F050 seedless fruits are all higher than in other main

cultivars.

In this study, we carried out preliminary studies on

karyotype analysis and the molecular mechanism of mutant

M038. The results will provide reference information and

resources for molecular breeding of seedless Luohanguo.

Materials and methods

Mutant M038, wild-type M036 and hybrid F050 were

obtained from the Guangxi Branch Institute, Institute of

Medicinal Plant Development, Chinese Academy of

Medical Sciences & Peking Union Medical College.

Karyotype analysis

Root tips 0.5–1 cm in length were collected from young

plants and pretreated with saturated aqueous solution of

p-dichlorobenzene at room temperature for 3 h before they

were fixed in Carnoy (glacial acetic acid: absolute ethanol

1:3) for 1 h. The tips were washed in distilled water,

hydrolyzed in 1 mmol/l HCL at 45�C for 45 min, stained in

phenol-fuchsin solution and squashed. The designation

used to describe the karyotypes follows Li and Chen [5].

Karyotype symmetry was classified according to Stebbins

[6].

DNA extraction

Genomic DNA was extracted from fresh leaves using the

cetyltrimethylammonium bromide procedure [7]. Extracted

DNA samples were dissolved in TE buffer and visualized

after electrophoresis on 0.8% 19 TAE agarose gels. DNA

purity and concentration was measured with a UV spec-

trophotometer and Nanodrop 8000. The DNA was adjusted

to a final concentration of 30 ng/ll and stored at -20�C

until use.

RNA extraction and cDNA synthesis

Total RNA was isolated from pooled fresh leaves using the

TRIzol reagent (Invitrogen, USA). All the RNAs were with

treated by RNA-free DNase I and purified. RNA purity and

concentration was measured with a UV spectrophotometer

and Nanodrop 8000. M-MLV (RNase H) reverse trans-

criptase was used to synthesize cDNA following the

manufacturer’s protocol. Two technical replicates were

performed.

SRAP analysis

A total of 196 different primer combinations were

employed using 14 forward primers and 14 reverse primers

(Supplementary Table 1). The primers sequences were

synthesized according to Li and Quiros [8]. The PCR

amplification for SRAP analysis were performed as follow:

94�C for 5 min, followed by 5 cycles at 94�C for 45 s,

35�C for 45 s, and 72�C for 45 s; 35 cycles at 94�C for

45 s, 50�C for 45 s, 72�C for 45 s and a final extension at

72�C for 7 min. The PCR products were analyzed using the

Fig. 1 a Flowers of S. grosvenorii mutant M038 and wild-type

M036; b Fruits of seedless Luohanguo F050; c Fruits of normal

Luohanguo
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QIAxcel capillary electrophoresis system, an automated

analyzer offering high resolution and short analysis time.

The system includes a device, cartridge, BioCalculator

Analysis software and computer, and it applies capillary

electrophoresis and fluorescence technology (Fig. 2).

Isolation and sequencing of differential fragments

The amplification products of the bands of interest were

run on a 6% polyacrylamide gel at 45 W for 1.5 h in 19

TBE buffer and silver stained, and the bands were cut from

the gel and eluted in 50 ll of sterile double distilled water.

About 5 ll of the aliquot was reamplified using the same

primer pairs and the same PCR conditions. The PCR

products were ran in a 2% agarose gel and the bands were

isolated and eluted using the gel extraction kit. Eluted

fragments were cloned into plasmid pMD19-T propagated

in E. coli DH5 cells and sent to Sangon biotechnology for

sequencing.

Sequences analysis

The resulting sequences were compared to nucleotide and

protein sequences in publicly available databases using

BLAST sequence alignments. The functions of known

genes identified by BLASTN and BLASTX searches were

classified according to their putative functions.

Results and discussion

Karyotype analysis

The karyotypes of three materials studied are presented

(Fig. 3). The chromosome numbers of M036, M038 and

F050 were 2n = 2x = 28, 2n = 4x = 56 and 2n = 3x =

42, respectively. The results showed that wild-type M036

was a diploid strain, and the chromosome numbers

2n = 2x = 28 were consistent with what has been previ-

ously been published on S. grosvenorii [9–11]. Mutant

M038 was a tetraploid, and hybrid F050 was a triploid.

Furthermore, M038 was an autopolyploid occurring within

a species, relative to allopolyploidy following interspecific

hybridization [6, 12]. To our knowledge, this is the first

report on karyotype and molecular studied of polyploids in

S. grosvenorii.

Genomic changes

Polyploidy, including autopolyploidy and allopolyploidy,

may trigger changes in genome structure and gene

expression [13]. At present, studies on polyploid plants

have mainly concentrated on polyploid Arabidopsis,

Brassica, Triticum, Gossypium, Nicotiana, Senecio, Spar-

tina, Tragopogon and Triticale [14–28]. Most studies on

polyploidization have focused on allopolyploid species

Fig. 2 QIAxcel capillary

electrophoresis image of SRAP

analysis. The top arrow
indicates a band present in both

the diploid and tertaploid

strains; The middle arrow
indicates a band present in the

diploid strain but absent in the

tetraploid one; The bottom
arrow indicates a band present

in the tetraploid strain but

absent in the diploid; The D

represents diploid M036; T

represents tetraploid M038

Fig. 3 Karyotypes of M036,

M038 and F050. a M036

(2n = 2x = 28); b M038

(2n = 4x = 56); c F050

(2n = 3x = 42)
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[17, 23, 28–31], whereas documents on autopolyploids are

less [31–35]. Only a few studies dedicated to elucidating

the consequences of autopolyploidization have been

reported [34, 36–38].

A total of 196 SRAP primer combinations were used for

DNA amplifications, nine combinations of which failed to

amplify banding patterns. 189 SRAP primer combinations

generated 4573 bands, 577(12.6%) of which were poly-

morphic while 1998 pairs (87.4%) were identical. Fragment

bands obtained were in the size range of 100–800 bp, while

the number of bands amplified by each primer combination

ranged from 6 (ME11a-OD3) to 19 (Me11-SA4), with a

mean of 12.1. Moreover, The number of polymorphic bands

for each primer combination varied from 0 (ME4-SA4) to 5

(Me9-Em18a), with a mean of 3.1. Based on the percentage

of polymorphic bands, the levels of polymorphism ranged

from 0 (Me12-Em10) to 37.6% (PM8-Me10).

When chromosome doubling, genome structure and

sequences have changed, it leads to differences and poly-

morphisms among diploid and tetraploid strains. According

to conventional theory, It is expected that changes can not

be observed during autopolyploidization. Our data also

support general predictions. Only a small range of changes

were observed in the genomes of tetraploid M038 com-

pared to diploid M036. There were no apparent differences

in the bands of M036 and M038 amplified by most primer

pairs. The results generally indicated that the genetic

diversity would be quite low between the diploid and tet-

raploid strains of S. grosvenorii.

Expression changes

Molecular results suggested that the rapid genome changes

could accelerate evolutionary processes, and this may

partly account for the appearance of many novel pheno-

types. Further studies should focus on the characterization

of the changed sequences and gene expression. Results of a

wild autopolyploid sunflower series revealed that autopo-

lyploidy does not appear to induce silencing or novel gene

expression [39]. Addtionally, microarray analysis detected

few changes associated with polyploidization [33]. The

latest analysis of the transcriptome in an inbred maize

ploidy series found frequent but low-level changes [40].

However, some articles demonstrated that autopolyploids

also display differences in gene expression relative to

diploids [17, 41].

A total of 196 SRAP primer combinations were used for

cDNA amplifications, 63 of which failed to amplify any

banding patterns. A total of 133 SRAP primer combina-

tions generated 2917 bands, 289 (9.9%) of which were

polymorphic while 1313 pairs (90.1%) were identical.

Fragment bands obtained were in the size range of

100–800 bp. Stable and clearly differentiated fragments

were sorted out, cloned and sequenced. Ninety-two differ-

entially expressed fragments were successfully sequenced,

77.2% of them were highly homologous to known genes

(Supplementary Table 2), 9.8% were hypothetical genes

and 13.0% were possible new genes as they had no signifi-

cant similarity to known genes. The sequences encoding

putative proteins were classified into 15 small groups based

on previously reported gene functions and information from

Gene Ontology (Fig. 4). These sequences provided useful

and important molecular information for following studies

on the expression changes between diploid and tetraploid of

S. grosvenorii.

Natural autopolyploids and autopolyploids developed for

agricultural purposes are often more vigorous and larger in

size than their diploid relatives, indicating a fitness advan-

tage and phenotypic superiority associated with higher

ploidy [42]. Most studies on gene expression in polyploids

have been based on phenotypic differences and related

physiological characters, however, studies at the molecular

level have not been widely carried out. Sequence analysis

revealed that most fragments had significant homologous

nucleotide sequence to photosynthesis, respiration and stress

response genes. These genes included ribulose-1,5-bis-

phosphate carboxylase/oxygenase, phosphoenolpyruvate

carboxykinase, pyruvate kinase, peroxisomal membrane

transporter, NBS-LRR type resistance protein, protein

phosphatase and others. The results, to some extent, indi-

cated that the tetraploid of S. grosvenorii has more resistance

to stress and photosynthesis ability than its diploid relatives.

It provided molecular evidences for the phenomenon of

Fig. 4 Functional classification of differentially expressed fragments

from cDNA-SRAP analysis based on gene functions and the GO

annotation
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polyploids exceeding their diploid relatives based on the

phenotypic and biological features.

Furthermore, functional analysis showed that the gene-

encoded proteins were involved in a broad range of biolog-

ical pathways, including transporters, signal transduction,

metabolism, transcription, protein synthesis, development,

energy, etc. There proteins play important roles in regulating

plant growth and development and include zinc finger pro-

tein, molecular chaperone, mitogen-activated kinase, tran-

scription factor IWS1, transducin, endomembrane protein,

porin, cellulose synthase, cytochrome P450, glycosyltrans-

ferase, oxidoreductase and other.

In summary, the interesting tetraploid mutant contains

changes in genome structure and gene expression compared

to the diploid strain. As this is the first study on tetraploid of

S. grosvenorii., which will provide solid basis for future

studies on tetraploid and hybrid triploid seedless Luohan-

guo. Future studies are planned to understand on more about

genetic mechanism of triploid seedless Luohanguo.
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