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The mass migration of animals is one of the great wonders of the natural
world. Although there are multiple benefits for individuals migrating in
groups, an increasingly recognized benefit is collective navigation, whereby
social interactions improve animals’ ability to find their way. Despite sub-
stantial evidence from theory and laboratory-based experiments, empirical
evidence of collective navigation in nature remains sparse. Here we used a
unique large-scale radiotelemetry dataset to analyse the movements of
adult Pacific salmon (Oncorhynchus sp.) in the Columbia River Basin, USA.
These salmon face substantial migratory challenges approaching, entering
and transiting fishways at multiple large-scale hydroelectric mainstem
dams. We assess the potential role of collective navigation in overcoming
these challenges and show that Chinook salmon (O. tshawytscha), but not
sockeye salmon (O. nerka) locate fishways faster and pass in fewer attempts
at higher densities, consistent with collective navigation. The magnitude of
the density effects were comparable to major established drivers such as
water temperature, and model simulations predicted that major fluctuations
in population density can have substantial impacts on key quantities includ-
ing mean passage time and fraction of fish with very long passage times. The
magnitude of these effects indicates the importance of incorporating conspe-
cific density and social dynamics into models of the migration process.
Density effects on both ability to locate fishways and number of passage
attempts have the potential to enrich our understanding of migratory ener-
getics and success of migrating anadromous salmonids. More broadly, our
work reveals a potential role of collective navigation, in at least one species,
to mitigate the effects of anthropogenic barriers to animals on the move.
1. Introduction
Long-distance migration is an iconic and threatened behaviour [1]. Migratory
species navigate with incredible precision to and from highly spatially restricted
locations [2]. To solve these challenging navigational problems, species use
mechanisms ranging from an innate sun compass [3] and magnetic maps [4] to
learned olfactory cues [5,6]. However, long-distance migrations are threatened
by human influence [7]. Fences, highways and other developments block terres-
trial migration pathways [8], light pollution interferes with aerial migrations [9]
and dams and de-watering impede passage both upstream and downstream (e.g.
Norrgård et al. [10]). In light of these impacts, it is essential to understand the
mechanisms of navigation in order to predict and mitigate human impacts on
migratory populations.
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Many species migrate in groups, and this is thought to aid
navigation [11]. Theory suggests that such collective navigation
may be the result of a number of mechanisms. For example,
groups can increase accuracy by averaging over error-prone
individual directional estimates—known as the ‘many
wrongs’ principle [12]. Evenwithout individual directional esti-
mates, accurate directional responses can emerge through social
interactions—known as ‘emergent sensing’ [13]. We direct
interested readers to box 1 of Berdahl et al. [11] for an overview
of these and other mechanisms including leadership [14], and
social and collective learning [15,16]. A growingbodyof empiri-
cal literature lends compelling support to these hypothesized
mechanisms, but evidence from wild populations is rare [11].

One iconic example of amigratory species is salmon, which
home in large numbers back to their natal spawning grounds.
Salmon navigation is not fully understood but is known to
include an inherited magnetic map [4] and olfactory recog-
nition of natal water [5]. Berdahl et al. [17] hypothesized that
salmon use collective navigation, based on seven independent
studies reporting positive associations between homing
accuracy and run size. However, like many migratory species,
salmon face an anthropogenic barrier: dams. For example, the
impassable Swan Falls Dam on the Snake River in Idaho ren-
dered approximately 25% of mainstem riverine habitat
inaccessible to Snake River Chinook salmon (Oncorhynchus
tshawytscha). A study of fall-run Chinook spawning habitat
on the Columbia River found that between impassable dams
and altered flow regimes, less than 20% of historical spawning
habitat for fall-run Chinook remained available [18]. Many
dams have fishways, which allow salmon to pass by these
barriers. However, locating a fishway entrance is non-trivial,
since salmon use rheotaxis to move upstream, and the main
source of flow at most dams is the spillway or turbines.
Adult salmon migrations are often delayed in dam tailraces,
and this delay may bear important costs, including increased
exposure to predation (e.g. Keefer et al. [19]) and increased
energy output which can lead to greater mortality (e.g. Burnett
et al. [20]). Thus, if collective navigation eases the dam
passage process, it may have an important effect on salmon
survival and reproductive success, and therefore important
implications for population conservation.

Here, we use radiotelemetry data on adult Chinook and
sockeye salmon (Oncorhynchus nerka) navigating upstream
past dams on the Columbia River, combined with daily fish
counts at the dams, to evaluate the hypothesis that collective
navigation helps salmon overcome the navigational challenges
posed by fishways. We find strong evidence that Chinook
salmon find and commit to fishways more rapidly on higher-
density days. Evidence for density effects in sockeye salmon,
and for Chinook salmon navigating within fishways, was
weak. Although some prior evidence exists for negative
density effects in similar contexts (e.g. Goerig & Castro-
Santos [21]), we did not find any prior evidence of negative
density effects in either sockeye or Chinook salmon.
2. System and methods
(a) Study system
The Columbia River drains greater than 600 000 km2 of seven
western US states and two Canadian provinces and historically
supported some of themost abundant Pacific salmon and steel-
head runs in theworld [22]. The basin has been transformed by
hydroelectric development, with 14 large dams on the main
stem Columbia River and 20 dams on the main stem Snake
River, the Columbia’s largest tributary by area. The dams,
along with overharvest, habitat loss and artificial propagation,
contributed to steep declines in Columbia River salmon popu-
lations [23] and subsequent threatened or endangered status
under the US Endangered Species Act [24].

Upstream-migrating adult salmonids can pass many of the
Columbia basin dams via pool-and-weir fishways [25] that rise
� 17–56m per dam. To navigate past the dams, adults first
pass through turbulent, high-velocity tailraces that are several
kilometres long and greater than 1 km wide. Fish must then
locate low-volume fishway openings sited near powerhouses
or adjacent to spillways, move through a series of collection
channels and junction pools, ascend a fish ladder, and then
exit into the upstream reservoir (figure 1). The spatial scale
and hydraulic complexity of dam tailraces and fishways present
several navigational and physiological challenges. The combi-
nation of searching for passage routes and fishway exit and
re-entry behaviours, for example, is energetically demanding,
particularly when fish make multiple passage attempts
[26,27]. Typical upstreammigration rates for Chinook and sock-
eye salmon in undammed sections of the Columbia basin range
from � 18:5–52:7 km/day [28]. By contrast, adult salmonids
take � 1–3 days to pass each main stem dam along their
Columbia River migration route [29]. These tailrace and dam
reaches range in length from0.5 to 3.2 km, such that, on average,
the fish are travelling 0:17–3:2 km/day during dam passage
(a � 10–100-fold reduction in up-stream passage speed),
potentially delaying timely arrival at spawning sites.
(b) Data collection
Data used in this study were from salmon collected and
radio-tagged at Bonneville Dam in 2013 and 2014 using pre-
viously described methods [29,30]. Bonneville Dam is at
Columbia River kilometre (rkm) 235.1 and is the first dam
returning adult salmon encounter during their upstream
migration. Telemetered fish were monitored at multiple dams
and in tributaries, but analyses focused on data collected as
fish entered tailraces and passed through fishways at The
Dalles Dam (TD; rkm 308.1) and John Day Dam (JD; rkm
346.9), the second and third dams from the Pacific. Monitoring
arrays at the two projects included aerial nine-element Yagi
antennas sited on tailrace shorelines 1.8–3.2 rkm downstream
from the dams and underwater coaxial cable antennas at fish-
way openings, inside fishway collection channels and junction
pools, and in fish ladders [29,31]. Detection ranges for the
aerial antennas ranged from hundreds of metres to greater
than 1 km, depending on fish depth [32]. Ranges for the under-
water antennas were 5–15m. The raw telemetry data from all
antennas were assembled, filtered and coded using established
methods [29,30]; files of coded records were then used to ident-
ify when salmon entered and exited tailraces and fishways.

We obtained daily counts of salmon from the Columbia
Basin Research Data Access in Real Time (DART) database
[33] and environmental data including water temperature
and spillway discharge from the US Geological Survey’s
(USGS) National Water Inventory System (NWIS) database
(https://waterdata.usgs.gov/nwis). This synthesis of several
different sources of data was crucial for our analysis. Daily
counts are collected by human observers and are able to cap-
ture a large fraction of passing fish. These data are therefore
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Figure 1. Schematic of John Day Dam. Layout of The Dalles Dam is qualitatively similar. The John Day facility is 2327-m long and 56-m high and has two adult
fishways: one on each shoreline. The tailrace antennas were 1.8 km downstream from the dam (3.2 km at The Dalles Dam). Multiple underwater antennas were used
to monitor fish passage into and through the fishways. Components of this schematic are not to scale. We modelled three processes: the ‘finding’ time from when a
fish enters a tailrace (blue) to when it first enters a fishway (red); the ‘fishway’ time from when a fish last enters a fishway to when it exits into the upstream
reservoir; and the ‘commit’ probability that a fish passes all the way through a fishway on its first attempt. (Online version in colour.)
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suited to measuring density, but not to modelling individual
passage rates. On the other hand, telemetry arrays are more
expensive and technical, capturing only a small fraction of
fish, but allow much more detailed observations of those
fish which are tagged. These data allowed us to model
passage rates for individual fish. Although the synthesis of
these datasets was of great benefit, it also introduced several
challenges, discussed in the following section. Most notably,
counts were not a direct measurement of fish density.
(c) Modeling approach
We split the process of passing a dam into a sequence of three
distinct stages: (i) the ‘finding’ process which starts at a fish’s
first detection in a tailrace and continues until its first detec-
tion at a fishway opening; (ii) the ‘commiting’ process which
models the probability that a fish actually passes all the way
through a fishway to the upstream exit on its first attempt,
rather than exiting back into the tailrace; and (iii) the ‘fish-
way’ process which starts when a fish enters a fishway and
commits (i.e. the last fishway entrance) and continues until
the fish exits from the top of the ladder.

We modelled the ‘finding’ and ‘fishway’ processes using a
time-to-event analysis (also known as ‘survival’ analysis in
the medical literature) framework (for a general introduction,
see Kleinbaum & Klein [34]). We modelled the ‘committing’
process using a logistic regression. A detailed technical
description of our models and diagnostics can be found in
the electronic supplementary materials [35–40].

A time-to-event dataset consists of a series of observations
through time of an individual along with a set of covariates for
that individual. Wewere interested in two events—that of enter-
ing a fishway, and that of exiting a fishway into the upstream
reservoir—and we wished to understand how long it took for
these events to occur. For each event, wemust also define a start-
ing time: respectively, the entrance to the tailrace and the last
entrance to the fishway. In other words, our first model answers
the question: ‘how quickly does a fish find and enter a fishway
afterenteringatailrace?’Oursecondmodel answers thequestion:
‘howquicklydoes a fishnavigate andexit a fishwayafterentering
it and committing to passage?’ More complex ‘multi-state’
models tie events together into a sequence [41], but to simplify
our analysis we used more tractable single-process models.

We used a common time-to-event model known as the
proportional hazards (PH) model. A hazards model assumes
that the time-to-event process is essentially an exponential
decay, with an event rate λ(t|X) (the ‘hazard function’) which
changes depending on both how long it has been since the
fish entered the system, t, and with a set of covariates X.
The PH model assumes that this rate depends on covariates
according to the equation

l(tjX) ¼ l0(t) exp (Xb):

The function λ0(t) is known as the baseline hazard function.
In our case, covariates such as temperature, spillway discharge
and fish density were time-varying and the rate at which
fish passed through the dam was assumed to also vary in
time proportionately.

Our focus was on the effect of density, which we quantified
using daily counts of individuals obtained from theDARTdata-
base [33]. This use of counts introduced two major problems.
First, our count covariate was a product of density and hazard:



Table 1. Results for the 13 models considered after model splitting. Final model was not fit due to small sample size. All p-values calculated using parametric
bootstraps from the AICc-selected null model. All 95% CIs calculated using parametric bootstrap from the full model (selected null model plus a density effect).
Sample size reflects the number of radio-tagged fish. Note that the p-values were not Bonferroni corrected; see electronic supplementary material for more
details.

species process dam subset p-value 95% CI sample size

Chinook find JD · <5 × 10−04 (0.36, 0.75) 804

TD · <5 × 10−04 (0.16, 0.49) 751

commit · · <5 × 10−04 (0.29, 1.2) 930

fishway JD spring run >0.1 (−0.088, 0.49 ) 439

summer run >0.1 (−0.59, 1.1) 345

TD spring run >0.1 (−0.17, 0.2) 415

summer run 0.061 (−0.054, 1.2) 332

sockeye find JD · >0.1 (−0.032, 0.04 ) 609

TD · >0.1 (−0.023, 0.042 ) 616

commit · · >0.1 (−0.053, 0.075) 678

fishway JD · >0.1 (−0.047, 0.028) 605

TD east fishway 0.037 (0.00067, 0.039) 553

north fishway · · 59
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when fish were passing through the fishway more quickly, a
higher proportion of them would be counted over the course
of a day. This introduced reverse causality: a high rate (the
response) causedourcounts (apredictor) tobehigher.Moreover,
since hazard varied substantially over the course of a day, the
relationship between counts and density was inconsistent.
Second, the fish observation windows are placed near the
middle of fish ladders. Thus there was an unknown amount of
time between when a fish triggered a telemetry reading and
when it was counted by the observers. A third concern, not
related to our use of counts, was that density is related to
hazard through time: when fish are passing through a fishway
more quickly, fewer of them remain behind to contribute to den-
sity. In other words, high passage rates deplete density over
time. This introduced another source of reverse causality.

These issues posed a substantial challenge. The first and
last were particularly worrisome, since reverse causality has
the potential to bias model fits and produce spurious results.
Even if there was no causal effect of density, we might observe
statistically significant density effects in our models. For
example, suppose that due to other unmeasured covariates
or random chance, some days have a higher than average
rate of fish passage into a fishway. On those days, we would
observe a higher count, and empirically the rate of passage
would positively correlate with count, despite having no
causal effect of density on passage.

We took two major steps to account for these modelling
challenges. First, although hourly count data were available,
we used daily count data to estimate density. Since a consist-
ently high proportion of radio-tagged fish in our dataset
passed within 24 h (greater than 97%), and relatively few fish
passed overnight (less than 10% entering the fishway and
less than 5% exiting to the reservoir), the daily count provided
a roughly accurate assessment of daily density while smooth-
ing out any within-day variation in passage rate. On the
other hand, hourly counts are far more dependent on
random chance and are systematically biased due to daily vari-
ations in passage rate. Moreover, hourly counts increase the
risk of other biases due to the time lag between a tagged fish
triggering a telemetry event and being counted by an observer.

Second, we used a parametric bootstrap to protect against
reverse causality. Our bootstrap analysis was justified using
the following chain of logic. First, our system violated model-
ling assumptions and our models may therefore produce
biased inference. Second, if density truly has no effect then
counts have no effect. In this case, we need not include
counts as a covariate, and our models should provide valid
unbiased fits. Therefore, simulations from models with no
count covariates produce valid null distributions. By fitting
models with count covariates to these null model simulations,
we obtained a null distribution for the count coefficient. Even
if the above problems induced reverse causality in our data-
set, our null distribution remains valid, since the null model
has no reverse causality. Due to reverse causality, the power
of our tests remains unknown, but we may nevertheless cor-
rectly calculate p-values. For a more detailed introduction to
bootstraps in general see Efron & Tibshirani [42]. Generally,
we use null model to mean a model without a count covariate.
(d) Statistical analysis
To satisfy model assumptions, we split our initial four PH
models (2 species × 2 processes) into 11 models. We did not
split our two logistic regression models. By splitting a model,
wemeanwe split the dataset for thatmodel into disjoint subsets
and fit separate but structurally identical models to each set of
subsets. We split all PH (finding; fishway) models by dam
(TD; JD). We further split our Chinook fishway models by run
(spring; summer) andour sockeye fishwayTDmodel byspecific
fishway (east; north). These submodels are referenced in table 1
and are explained in further detail in the electronic supplemen-
tary material. One PH model (sockeye fishway TD north) was
discarded due to low sample size, leaving us with 12 final
models. In each of those 12 models, we conducted one set of
null model simulations (bootstraps) to test for the presence of
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Figure 2. Predictions from our two Chinook ‘finding’ models under various fish density scenarios. Densities were chosen to be a factor (see legend) multiplied
against measured counts, to simulate a realistic scenario of higher or lower densities. Factors ranged from 0, to simulate near-extirpation up to twice current levels.
Curves at each density factor were generated by simulating from the fitted model 192 times and calculating the median probability of passage at each time point.
(Online version in colour.)
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a density effect as well as a set of secondary bootstraps to
calculate confidence intervals for the count coefficients.

After conducting model diagnostics, we added a threshold
density effect (count≤ 150) to our Chinook findingmodel. This
successfully accounted for a series of large positive residuals,
possibly modelling a strong crowding effect (i.e. negative
density effect). However, this effect was highly confounded
with fishway identity, with 88 out of 89 fish under the threshold
passing at TD’s east fishway, and because of this no strong con-
clusions can be made about this effect. We used this effect as
part of the nullmodel, prior to testing for a linear density effect.

To ensure that our fitted density effects were biologically
important as well as statistically significant, we produced simu-
lations for a variety of density scenarios ranging from zero
density (near-extirpation) to twice current density, which can
be found in figure 2. Each density scenario is obtained by mul-
tiplying observed counts by a fixed factor, and then producing
model simulations. We did this for both the PHmodels and the
logistic regression models.

For additional technical details regarding our statistical
analysis, please refer to the electronic supplementary material.
3. Results
Of our 12 tests, three detected significant (p < 0.001) density
effects. Two were Chinook PH models for finding the fish-
way, and the third was a Chinook logistic regression model
for committing to a fishway. Two other effects were signifi-
cant at the p < 0.05 or 0.1 levels (summer-run Chinook
navigating the TD fishway; and sockeye navigating the TD
east fishway). However, since these two effects were statisti-
cally weak and did not display any consistent pattern with
other models of the same species and process, we concluded
that these associations were spurious. All significant density
effects were positive, meaning that an increase in density
facilitated faster predicted completion of the modelled
process, and therefore faster overall passage.

Our simulated null distributions for the count coefficients
are shown in figure 3, compared to the actual count coefficient
fitted to our true (non-simulated) dataset. These results along
with our confidence intervals, are shown in table 1. Coefficients
are reported after standardizing all covariates so that magni-
tudes can be compared. Full model summaries are available
in the electronic supplementary material.

These results provide strong evidence for the existence of
positive density effects, particularly in Chinook salmon. No
evidence was found for negative density effects. Evidence
for sockeye salmon did not support a density effect.

Our density scenario simulations for the ‘finding’ models
can be found in figure 2. These simulations predict a 20–30%
increase in finding times for Chinook under the extirpation
scenario compared to present conditions, and 50–115% more
fish with high finding times of greater than 24 h. Conversely,
if salmon densities were to double compared to 2013/2014
levels we predicted a 15–19% decrease in finding times and
31–46% fewer fish with high (>24 h) finding times. Our density
scenario simulations for the ‘committing’ model predicted a
linear increase in commit rates with densities, with doubling
densities bringing an increase of almost 5% commit rate from
the current level of 43% to 47.7%. However, lower density pre-
dictions from this model were unreliable, due to the threshold
density effect in our null model. Because this effect was only
evident in one model, and was confounded with fishway
identity we were not able to fully investigate this possible den-
sity effect, which has a profound effect on our predictions at
low densities.

Consistent with previous studies in the same system [29,43],
we also observed strong temperature (0.22 < |β| < 1.29;
negative in 2/4 Chinook fishway models, otherwise positive)
and very strong diel (1.22 < β < 2.96; higher passage during
the day) effects in our PHmodels. We observed a strong temp-
erature effect (β =−1.23) in our Chinook committing model.
Our significant density coefficients were of roughly the same
order of magnitude as our temperature coefficients, indicating
that density may have a substantial impact, comparable to
other established drivers. Since these other variables were not
our focus, we did not conduct any further analysis of these
environmental effects. Model summaries are available in the
electronic supplementary material.
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4. Discussion
Due to human modifications of the global landscape, animals
face increased migratory challenges [44]. Salmon returning to
spawning grounds in the Columbia River basin are confronted
with multiple main stem dams. While many dams have fish-
ways, passage remains a daunting challenge as fish need to
locate a fishway entrance and then ascend a ladder to continue
theirmigration. Here, we reveal evidence that Chinook, but not
sockeye, salmon appear to benefit from social interactions
during this challenge. We demonstrated, using a bootstrap
method to account for several sources of reverse causality, a
positive effect of density on two key quantities for Chinook
salmon: rates of locating fishway entrances, and probability
of committing to passage of a fishway. By contrast, we found
no density effect for passage rates through a fishway, or for
any aspect of dam passage for sockeye salmon.

Our results can alternatively be explained by an effect of
migratory motivation or run-timing, as other studies have
noted [30]. Fish on peak density days may be more motiv-
ated, or may have timed their migration better with respect
to unmeasured environmental conditions than earlier- or
later-migrating fish. Controlling for these effects without
directly manipulating density is difficult. Given the consist-
ency of variation between species, we feel that the most
plausible explanation is the presence of a true density effect
in Chinook salmon, rather than an effect of motivation or
timing, which we might expect to see more strongly in both
species. Generally, we see our lack of statistically ‘significant’
results for sockeye salmon as adding support to our results
for Chinook salmon. We do not expect density effects to
exist in all processes or for all species, but do expect these
effects to apply consistently.

It is nevertheless counterintuitive that the species with a
stronger tendency to school might benefit less from collective
navigation. Here, we provide two plausible, yet speculative,
explanations. First, having a strong tendency to migrate in
groups [45], sockeye salmon might form sizeable groups
regardless of population density—i.e. their local density
may not be highly dependent on global density. By contrast,
the less-social Chinook salmon’s local density might be more
governed by global density. Thus for Chinook the number of
social interactions may scale with daily fish density whereas
for sockeye social interactions may be relatively constant.
Second, casual observations by the authors suggest another
potential mechanism. In tailraces, Chinook salmon tend to
hold near fishway entrances before entering. This holding
behaviour seems to result in loose shoal-like aggregations
near fishway entrances, potentially leaving a sort of social
signpost that may draw subsequent Chinook towards an
entrance. On the other hand, sockeye salmon’s increased ten-
dency to school might inhibit their ability to take advantage
of such a social effect (as in Lemasson et al. [46]). By travelling
in large, cohesive, polarized schools, sockeye salmon may
have trouble transitioning from a large tailrace to a relatively
small fishway. The social ‘momentum’ of the school may pre-
vent individuals who do spot a fishway entrance from
stopping to explore it further. This possible mechanism also
explains why we observed no strong effects within the fish-
ways, although it does not explain the effect we observed
for commit probabilities.

The effect of density on fishway passage rates was first
studied over 60 years ago, but has largely focused on the effects
of overcrowding (i.e. deleterious effects of density). The possi-
bility of a positive effect of density on fishway passage rates
was discussed by Lander [47] in the context of a model for
overcrowding, and saw experimental work in a study of
alewives (Alosa pseudoharengus), also in the context of over-
crowding [48]. Unfortunately, although Dominy [48] reported
a positive density effect, they analysed their data in a way
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that was inconsistent with our analysis.1 More recent work in
the context of culvert passage has found negative [21], and
no [49] density effects for brook trout (Salvelinus fontinalis)
and coho salmon (O. kisutch), respectively. These study systems
were most similar to our ‘fishway’ system, involving little dif-
ficulty in finding the entrance to the culvert (e.g. in both studies
fish were confined at the downstream extremity, as opposed to
our open system). Thus our null results for ‘fishway’ are con-
sistent with Johnson et al. [49], while our positive result for
‘finding’ involves a fundamentally different, relatively unstu-
died system. A study by Caudill et al. [30] on Chinook
salmon and steelhead (sea-runO.mykiss) reported several posi-
tive associations with density, but density effects were not the
focus of their analysis, and their model encompassed the
entire dam passage process from tailrace entry to fishway
exit. A study of juvenile palmetto bass (Morone saxatilis × chry-
sops), Lemasson et al. [46] found that fish in schools took much
longer than lone individuals to pass an artificial barrier when
moving downstream and thus showed a negative effect of
density on passage rate.

Given the diversity of findings in this literature, and in
our own results, there is scope for additional work in this
area. Ourmethods can be applied to other systems and species,
where ‘finding’ and ‘committing’ behaviours have rarely been
isolated for analysis. For example, controlled navigation exper-
iments investigating these behaviours, where density can be
manipulated systematically, are a promising avenue. Emerging
technologies including sonic tags, acoustic cameras, and com-
puter vision will make more detailed analysis of individual
and collective movement around dams possible and also
yield local (i.e. actual group size, rather than estimated fish
density in tailraces) measures of conspecific density [50].
Such studies could also shed light on the specific mechanisms
driving any collective navigation. Revealing individual and
collective search algorithms may contribute general principles
to the fields of animal movement and bioinspired engineering,
but may also contribute insights for dam management of fish
passage. For example, mechanisms such as the ‘social signpost’
hypothesis for Chinook salmon might motivate management
interventions designed to promote more efficient salmon
migration past fishways. One simple hypothetical intervention
might simulate a holding pattern of fish about fishway
entrances using model fish. These decoys could provide a
social signpost, attempting to activate our hypothesized
social behaviours even at low densities.

When conducting our analysis we added an additional
threshold density effect to our Chinook ‘commit’ model,
possibly modelling a strong crowding effect. However, we
did not conduct an in-depth analysis of this variable, since
it was confounded with use of the TD east fishway. One poss-
ible explanation for this effect is as a density effect associated
with overcrowding in the fishway—however, it is unclear
why overcrowding would be represented by a threshold
effect rather than a more gradual decline in commit probabil-
ities. Furthermore, even if this density effect were associated
with overcrowding in one particular fishway, we would
expect such an effect to vary among fishways, making it dif-
ficult to generalize this effect to make predictions elsewhere.
We recommend this as an avenue for further research.

Our analysis faced three substantial challenges: counts were
confoundedwithhazard, countswere a time-delayed estimate of
density, and density was confounded with hazard across time.
We addressed these challenges using our bootstrap approach
to circumvent concerns about reverse causality, and by using
smoother daily counts rather than hourly counts which are
more subject to concerns about time-delay and inconsistent
relationships with density. These were the more unique road-
blocks we encountered, but like any statistical analysis, there
are some other caveats to consider. For example, other covariates
such as flow velocity may have played an important role but
were not included, and some variables such asmigratorymotiv-
ation are all but impossible tomeasure quantitatively in anycase.
Like any model, ours was an imperfect representation of reality.
We feel it was close enough to reality to provide useful insight.
Another caveat of our analysis is that we dropped fish with
missingmeasurements from our dataset, rather than conducting
a so-called ‘censoring analysis’ of missing data. Since we used
only ‘entry’ and ‘exit’ data points, a proper censoring analysis
was impossible. Furthermore, since data pointswere likelymiss-
ing independently at random due to missed radiotelemetry
signals, we incurred little bias in this manner.

To our knowledge, our results provide the first demon-
stration of a positive density effect for fish passing riverine
obstacles. This is in contrast to the prevailingwisdom that over-
crowding is the dominant effect. More broadly, it is one of only
a handful of examples of collective navigation in freely-
migrating populations. Given the ubiquity of social movement
duringmigration, we expect manymore examples of collective
navigation to be uncovered, especially as new technologies
improve our ability to quantify collective movement in situ
[50]. Such studies underscore the need for further investigation
of density effects, since these processes could have important
ecological implications. For example, if populations decline,
densities at dams will decline: will this alleviate overcrowding
or reduce collective benefits? In the first case, population
decline is buffered, while in the other it is magnified, poten-
tially generating critical transitions that may lead to sudden
population collapses [15,51]. As anthropogenic disturbances
simultaneously increase navigational difficulty in a variety of
contexts and decrease population densities, understanding
the role of density-dependent processes, such as collective
navigation, may therefore yield critical insights for sound
management and conservation [52].
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time) used here. Although they reported a sigmoidal (positive at low
densities, then negative at high densities) density effect in alewives, a
visual analysis of their data appears more consistent (in our
framework) with either no density effect or a negative effect,
although there is a large group of outliers that could indicate a posi-
tive effect.
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