organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-(4-Aminophenyl)-4-(4-ethoxyphenyl)-2-methoxynicotinonitrile

Thitipone Suwunwong,^a Suchada Chantrapromma^b*‡and Hoong-Kun Fun^c§

^aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: suchada.c@psu.ac.th

Received 6 August 2012; accepted 20 August 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.052; *wR* factor = 0.159; data-to-parameter ratio = 21.3.

In the title molecule, $C_{21}H_{19}N_3O_2$, the central pyridine ring makes dihedral angles of 14.46 (9) and 34.67 (8)° with the 4amino- and 4-ethoxy-substituted benzene rings, respectively. The ethoxy group is essentially coplanar with the attached benzene ring [C-O-C-C torsion angle = 178.70 (16)°] as is the methoxy group with the pyridine ring [C-O-C-Ntorsion angle = -3.0 (3)°]. In the crystal, molecules are linked by N-H···N hydrogen bonds into chains along [201]. Weak C-H···O hydrogen bonds and C-H··· π interactions are also present.

Related literature

The title nicotinonitrile derivative is a cyclized product of a chalcone and a malononitrile in the present of sodium methoxide. For the synthesis and applications of substituted pyridines and nicotinonitrile derivatives, see: Al-Jaber *et al.* (2012); Brandt *et al.* (2010); El-Sayed *et al.* (2011); Goda *et al.* (2004); Ji *et al.* (2007); Kamal *et al.* (2007); Kim *et al.* (2005); Kolev *et al.* (2005); Koner *et al.* (2012); Zhou *et al.* (2006). For a related structure, see: Chantrapromma *et al.* (2010). For standard bond-length data, see: Allen *et al.* (1987).

 $V = 1792.82 (10) \text{ Å}^3$

 $0.54 \times 0.25 \times 0.22 \text{ mm}$

17814 measured reflections

5216 independent reflections 3013 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.028$

Z = 4

Experimental

Crystal data $C_{21}H_{19}N_3O_2$ $M_r = 345.39$ Monoclinic, $P2_1/c$ a = 5.3924 (2) Å b = 16.5111 (5) Å c = 20.1415 (6) Å $\beta = 91.315$ (2)°

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.956, \ T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of
$wR(F^2) = 0.159$	independent and constrained
S = 1.04	refinement
5216 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
245 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C12-C17 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H2N3\cdots N2^{i}$ $C21-H21A\cdots O1^{ii}$ $C18-H18A\cdots Cg^{iii}$	0.88 (3)	2.20 (3)	3.084 (3)	177 (2)
	0.96	2.52	3.439 (2)	160
	0.96	2.84	3.7135 (18)	151

Symmetry codes: (i) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

TS thanks the Thailand Research Fund through the Royal Golden Jubilee PhD Program and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education, Ministry of Education, Thailand for financial support. The authors thank the Thailand Research Fund (grant No. RSA 5280033), Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5514).

[‡] Thomson Reuters ResearcherID: A-5085-2009.

[§] Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

References

- Al-Jaber, N. A., Bougasim, A. S. A. & Karah, M. M. S. (2012). J. Saudi Chem. Soc. 16, 45–53.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919–2927.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, S., Fun, H.-K., Suwunwong, T., Padaki, M. & Isloor, A. M. (2010). Acta Cryst. E66, o79–o80.
- El-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & Ashry, E. S. H. E. (2011). *Eur. J. Med. Chem.* **46**, 2948–2954.

- Goda, F. E., Abdel-Aziz, Alaa A.-M. & Attef, O. A. (2004). *Bioorg. Med. Chem.* **12**, 1845–1852.
- Ji, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). *Biochem. Pharmacol.* 74, 1253–1262.
- Kamal, A., Khan, M. N. A., Srinivasa, Reddy, K. S. & Rohini, K. (2007). Bio. Med. Chem. 15, 1004–1013.
- Kim, K.-R., Rhee, S.-D., Kim, H. Y., Jung, W. H., Yang, S.-D., Kim, S. S., Ahn, J. H. & Cheon, H. G. (2005). *Eur. J. Pharmacol.* 518, 63–70.
- Kolev, T., Stamboliyska, B. & Yancheva, D. (2005). *Chem. Phys.* 324, 489–496.
 Koner, R. R., Sinha, S., Kumar, S., Nandi, C. K. & Ghosh, S. (2012). *Tetrahedron Lett.* 53, 2302–2307.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhou, W.-J., Ji, S.-J. & Shen, Z.-L. (2006). J. Organomet. Chem. 691, 1356-1360.

supplementary materials

Acta Cryst. (2012). E68, o2812-o2813 [doi:10.1107/S1600536812036276]

6-(4-Aminophenyl)-4-(4-ethoxyphenyl)-2-methoxynicotinonitrile

Thitipone Suwunwong, Suchada Chantrapromma and Hoong-Kun Fun

Comment

Pyridines have been reported for their applications in a number of areas (Goda *et al.*, 2004; Kamal *et al.*, 2007; Kolev *et al.*, 2005). There are several methods reported for the synthesis of substituted pyridine derivatives including nicotinonitrile derivatives (Al-Jaber *et al.*, 2012; Zhou *et al.*, 2006). Nicotinonitrile derivatives have a wide range of applications such as antitumor, antimicrobial, analgesic, anti-hyperglycemic and antiproliferative activities (Brandt *et al.*, 2010; El-Sayed *et al.*, 2011; Ji *et al.*, 2007; Kim *et al.*, 2005) and fluorescent materials (Koner *et al.*, 2012). Our research is aimed at the synthesis and preliminary fluorescent and antibacterial screening of nicotinonitrile derivatives. The title compound (I) was synthesized by the cyclization of a chalcone derivative with malononitrile to investigate its fluorescent properties. It was found that (I) exhibits fluorescence with the maximum emission at 498 nm when was excited at 370 nm in DMSO.

The molecular structure of the title compound is shown in Fig. 1. The central pyridine ring is inclined to the 4-aminophenyl and 4-ethoxyphenyl rings with the dihedral angles of 14.46 (9) and 34.67 (8)°, respectively. The dihedral angle between these two substituted benzene rings is 44.84 (9)°. The ethoxy substituent of the 4-ethoxyphenyl group is essentially co-planar with the attached benzene ring with the torsion angle C15–O1–C18–C19 = 178.70 (16)° and C18– O1–C15–C16 = 1.8 (3)°. The methoxy group is also approximately co-planar to the pyridine ring as indictated by the torsion angle C21–O2–C11–N1 = -3.0 (3)°. The bond distances agree with the literature values (Allen *et al.*, 1987) and are comparable with those for a related structure (Chantrapromma *et al.*, 2010).

In the crystal (Fig. 2), molecules are linked by N—H…N hydrogen bonds into chains along [201]. Weak C—H…O hydrogen bonds and C—H… π interactions are also present (Table 1).

Experimental

The title compound (I) was synthesized by stirring the solution of (E)-1-(4-aminophenyl)-3-(4-ethoxyphenyl)prop-2en-1-one (0.27 g, 1 mmol) in methanol (10 ml) with a freshly prepared sodium methoxide (1.0 mmol of sodium in 20 ml of methanol). Excess malononitrile (0.13 g, 2.0 mmol) was then added with continuous stirring at room temperature until the precipitate was separated out. The resulting solid was filtered. Pale brown block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature over several days, Mp. 477–478 K.

Refinement

Amino H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic, 0.97 for CH₂ and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

6-(4-Aminophenyl)-4-(4-ethoxyphenyl)-2-methoxynicotinonitrile

$V = 1792.82 (10) \text{ Å}^3$
Z = 4
F(000) = 728
$D_{\rm x} = 1.280 {\rm ~Mg} {\rm ~m}^{-3}$
Melting point = $477-478$ K
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5216 reflections
$\theta = 2.0-30.0^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K

Data collection

17814 measured reflections
5216 independent reflections
3013 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$
$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 2.0^\circ$
$h = -7 \rightarrow 7$
$k = -23 \rightarrow 23$
$l = -28 \rightarrow 28$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0647P)^2 + 0.3033P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Block, pale-brown

 $0.54 \times 0.25 \times 0.22 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.3134 (2)	0.38320 (7)	0.14470 (6)	0.0637 (3)
O2	1.3927 (3)	0.09389 (7)	0.37553 (7)	0.0737 (4)
N1	1.3663 (3)	0.21531 (8)	0.43089 (6)	0.0543 (3)
N2	1.0455 (4)	0.08668 (10)	0.23879 (9)	0.0858 (6)
N3	1.6313 (5)	0.48378 (15)	0.64781 (10)	0.0987 (7)
C1	1.5687 (4)	0.32043 (10)	0.52550 (9)	0.0654 (5)
H1A	1.6556	0.2743	0.5133	0.078*
C2	1.6575 (4)	0.36652 (11)	0.57804 (9)	0.0675 (5)
H2A	1.8018	0.3506	0.6006	0.081*
C3	1.5363 (4)	0.43554 (12)	0.59760 (9)	0.0663 (5)
C4	1.3212 (5)	0.45547 (16)	0.56331 (12)	0.1042 (9)
H4A	1.2332	0.5012	0.5759	0.125*
C5	1.2329 (4)	0.40959 (14)	0.51089 (11)	0.0874 (7)
H5A	1.0877	0.4254	0.4887	0.105*

C6	1.3538 (3)	0.34094 (10)	0.49045 (8)	0.0514 (4)
C7	1.2622 (3)	0.28980 (9)	0.43520 (8)	0.0501 (4)
C8	1.0805 (3)	0.31513 (10)	0.38963 (8)	0.0540 (4)
H8A	1.0110	0.3663	0.3941	0.065*
С9	1.0004 (3)	0.26572 (9)	0.33750 (7)	0.0485 (4)
C10	1.1104 (3)	0.18863 (9)	0.33383 (8)	0.0509 (4)
C11	1.2909 (3)	0.16807 (9)	0.38214 (8)	0.0537 (4)
C12	0.8139 (3)	0.29470 (9)	0.28753 (7)	0.0484 (4)
C13	0.8087 (3)	0.37611 (10)	0.26827 (8)	0.0547 (4)
H13A	0.9214	0.4122	0.2876	0.066*
C14	0.6399 (3)	0.40372 (10)	0.22128 (8)	0.0564 (4)
H14A	0.6392	0.4581	0.2093	0.068*
C15	0.4699 (3)	0.35068 (10)	0.19151 (8)	0.0511 (4)
C16	0.4713 (3)	0.27011 (10)	0.21019 (8)	0.0544 (4)
H16A	0.3585	0.2341	0.1908	0.065*
C17	0.6410 (3)	0.24309 (10)	0.25784 (8)	0.0534 (4)
H17A	0.6391	0.1889	0.2703	0.064*
C18	0.1324 (3)	0.33169 (12)	0.11351 (9)	0.0643 (5)
H18A	0.0257	0.3082	0.1465	0.077*
H18B	0.2131	0.2881	0.0900	0.077*
C19	-0.0167 (4)	0.38315 (14)	0.06586 (11)	0.0864 (7)
H19A	-0.1479	0.3513	0.0461	0.130*
H19B	0.0887	0.4030	0.0317	0.130*
H19C	-0.0865	0.4281	0.0893	0.130*
C20	1.0686 (3)	0.13264 (10)	0.28075 (9)	0.0608 (5)
C21	1.5900 (4)	0.07236 (12)	0.42137 (11)	0.0818 (7)
H21A	1.6516	0.0196	0.4105	0.123*
H21B	1.5285	0.0719	0.4657	0.123*
H21C	1.7217	0.1112	0.4185	0.123*
H2N3	1.747 (5)	0.4641 (15)	0.6750 (13)	0.101 (8)*
H1N3	1.536 (5)	0.5205 (19)	0.6634 (15)	0.129 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0660 (7)	0.0607 (7)	0.0629 (8)	-0.0029 (6)	-0.0309 (6)	0.0055 (6)
O2	0.0944 (9)	0.0481 (6)	0.0765 (9)	0.0129 (6)	-0.0432 (8)	-0.0048 (6)
N1	0.0654 (8)	0.0489 (7)	0.0478 (7)	-0.0002 (6)	-0.0171 (6)	0.0033 (6)
N2	0.1065 (14)	0.0644 (10)	0.0843 (12)	0.0134 (9)	-0.0443 (11)	-0.0191 (9)
N3	0.1089 (16)	0.1055 (16)	0.0794 (13)	0.0313 (13)	-0.0496 (12)	-0.0399 (12)
C1	0.0775 (12)	0.0515 (9)	0.0655 (11)	0.0122 (8)	-0.0303 (9)	-0.0019 (8)
C2	0.0783 (12)	0.0623 (10)	0.0603 (11)	0.0073 (9)	-0.0347 (9)	0.0019 (8)
C3	0.0720 (11)	0.0775 (12)	0.0485 (10)	0.0090 (9)	-0.0192 (9)	-0.0112 (8)
C4	0.0993 (16)	0.1191 (19)	0.0918 (16)	0.0551 (14)	-0.0506 (13)	-0.0563 (15)
C5	0.0796 (13)	0.1055 (16)	0.0750 (14)	0.0393 (12)	-0.0402 (11)	-0.0366 (12)
C6	0.0576 (9)	0.0548 (9)	0.0411 (8)	0.0016 (7)	-0.0128 (7)	0.0017 (7)
C7	0.0555 (9)	0.0513 (8)	0.0431 (8)	-0.0004 (7)	-0.0106 (7)	0.0030 (6)
C8	0.0626 (10)	0.0513 (8)	0.0472 (9)	0.0068 (7)	-0.0148 (7)	-0.0027 (7)
C9	0.0510 (8)	0.0499 (8)	0.0439 (8)	-0.0027 (7)	-0.0108 (7)	0.0037 (6)
C10	0.0586 (9)	0.0466 (8)	0.0468 (8)	-0.0045 (7)	-0.0156 (7)	0.0023 (6)

supplementary materials

C11	0.0651 (10)	0.0436 (8)	0.0516 (9)	0.0004 (7)	-0.0162 (8)	0.0048 (7)
C12	0.0505 (8)	0.0499 (8)	0.0442 (8)	0.0006 (7)	-0.0123 (7)	-0.0004 (6)
C13	0.0628 (10)	0.0474 (8)	0.0530 (9)	-0.0030 (7)	-0.0209 (8)	-0.0033 (7)
C14	0.0675 (10)	0.0444 (8)	0.0562 (10)	0.0000 (7)	-0.0212 (8)	0.0020 (7)
C15	0.0523 (8)	0.0531 (8)	0.0471 (9)	0.0016 (7)	-0.0146 (7)	0.0007 (7)
C16	0.0503 (9)	0.0545 (9)	0.0576 (10)	-0.0071 (7)	-0.0172 (7)	0.0012 (7)
C17	0.0543 (9)	0.0487 (8)	0.0568 (9)	-0.0036 (7)	-0.0122 (7)	0.0068 (7)
C18	0.0598 (10)	0.0711 (11)	0.0608 (11)	-0.0038 (8)	-0.0226 (8)	-0.0032 (8)
C19	0.0809 (14)	0.0989 (16)	0.0775 (14)	-0.0139 (12)	-0.0418 (11)	0.0149 (12)
C20	0.0703 (11)	0.0479 (8)	0.0630 (11)	0.0020 (8)	-0.0256 (9)	-0.0007 (8)
C21	0.0986 (15)	0.0603 (11)	0.0843 (14)	0.0193 (10)	-0.0444 (12)	-0.0005 (10)

Geometric parameters (Å, °)

01—C15	1.3612 (17)	C9—C10	1.407 (2)
O1—C18	1.4291 (19)	C9—C12	1.485 (2)
O2—C11	1.3502 (19)	C10—C11	1.402 (2)
O2—C21	1.437 (2)	C10—C20	1.427 (2)
N1—C11	1.3114 (19)	C12—C17	1.388 (2)
N1—C7	1.356 (2)	C12—C13	1.399 (2)
N2—C20	1.141 (2)	C13—C14	1.376 (2)
N3—C3	1.377 (2)	C13—H13A	0.9300
N3—H2N3	0.88 (3)	C14—C15	1.393 (2)
N3—H1N3	0.86 (3)	C14—H14A	0.9300
C1—C2	1.380 (2)	C15—C16	1.382 (2)
C1—C6	1.385 (2)	C16—C17	1.385 (2)
C1—H1A	0.9300	C16—H16A	0.9300
C2—C3	1.376 (3)	C17—H17A	0.9300
C2—H2A	0.9300	C18—C19	1.501 (3)
C3—C4	1.376 (3)	C18—H18A	0.9700
C4—C5	1.375 (3)	C18—H18B	0.9700
C4—H4A	0.9300	C19—H19A	0.9600
C5—C6	1.375 (3)	C19—H19B	0.9600
С5—Н5А	0.9300	C19—H19C	0.9600
C6—C7	1.473 (2)	C21—H21A	0.9600
С7—С8	1.391 (2)	C21—H21B	0.9600
C8—C9	1.391 (2)	C21—H21C	0.9600
C8—H8A	0.9300		
C15—O1—C18	118.42 (13)	O2—C11—C10	115.38 (14)
C11—O2—C21	117.24 (13)	C17—C12—C13	117.46 (14)
C11—N1—C7	117.77 (13)	C17—C12—C9	122.12 (14)
C3—N3—H2N3	119.3 (17)	C13—C12—C9	120.42 (13)
C3—N3—H1N3	117 (2)	C14—C13—C12	121.20 (14)
H2N3—N3—H1N3	117 (3)	C14—C13—H13A	119.4
C2—C1—C6	121.82 (17)	C12—C13—H13A	119.4
C2C1H1A	119.1	C13—C14—C15	120.40 (15)
C6-C1-H1A	119.1	C13—C14—H14A	119.8
C3—C2—C1	121.18 (16)	C15—C14—H14A	119.8
С3—С2—Н2А	119.4	O1—C15—C16	124.59 (14)

C1—C2—H2A	119.4	01 - C15 - C14	116 19 (14)
$C_2 - C_3 - C_4$	117.04 (17)	C_{16} C_{15} C_{14}	110.19(11) 119.22(14)
$C_2 = C_3 = N_3$	121 22 (18)	C_{15} C_{16} C_{17}	119.88 (14)
C4-C3-N3	121.22(10) 121.7(2)	C15—C16—H16A	120.1
$C_{5}-C_{4}-C_{3}$	121.7(2) 121.77(19)	C17 - C16 - H16A	120.1
$C_5 - C_4 - H_4 A$	119.1	C_{16} C_{17} C_{12}	120.1 121.83(15)
$C_3 - C_4 - H_4 A$	119.1	C_{16} C_{17} H_{17A}	119.1
C6-C5-C4	121 70 (17)	C12 - C17 - H17A	119.1
C6 C5 H5A	110.1	C12 - C17 - III/K	117.1 107 14 (15)
C4-C5-H5A	119.1	01 - C18 - H184	110.3
C_{4}	119.1		110.3
$C_{5} = C_{6} = C_{7}$	110.47(15) 123.06(15)	C1 $C18$ $H18P$	110.3
$C_{3} = C_{0} = C_{7}$	125.00(15) 120.46(15)		110.3
CI = CO = C/	120.40(13) 121.12(14)		110.5
NI = C7 = C6	121.12(14)		108.5
$NI = C / = C \delta$	115.86 (13)	C18—C19—H19A	109.5
	123.02 (14)	C18—C19—H19B	109.5
C9—C8—C7	121.57 (15)	H19A—C19—H19B	109.5
C9—C8—H8A	119.2	С18—С19—Н19С	109.5
С7—С8—Н8А	119.2	Н19А—С19—Н19С	109.5
C8—C9—C10	116.51 (13)	H19B—C19—H19C	109.5
C8—C9—C12	121.09 (14)	N2—C20—C10	177.0 (2)
C10—C9—C12	122.38 (13)	O2—C21—H21A	109.5
C11—C10—C9	118.00 (14)	O2—C21—H21B	109.5
C11—C10—C20	117.27 (14)	H21A—C21—H21B	109.5
C9—C10—C20	124.46 (13)	O2—C21—H21C	109.5
N1-C11-O2	119.58 (13)	H21A—C21—H21C	109.5
N1-C11-C10	125.03 (15)	H21B—C21—H21C	109.5
C6—C1—C2—C3	-0.5 (3)	C7—N1—C11—C10	0.1 (3)
C1—C2—C3—C4	1.2 (3)	C21—O2—C11—N1	-3.0(3)
C1—C2—C3—N3	-176.7 (2)	C21—O2—C11—C10	176.03 (17)
C2—C3—C4—C5	-1.3 (4)	C9-C10-C11-N1	0.0 (3)
N3—C3—C4—C5	176.6 (3)	C20-C10-C11-N1	174.15 (17)
C3—C4—C5—C6	0.7 (5)	C9—C10—C11—O2	-179.00 (15)
C4—C5—C6—C1	0.1 (4)	C20—C10—C11—O2	-4.8 (2)
C4—C5—C6—C7	179.0 (2)	C8—C9—C12—C17	-146.49 (17)
C2—C1—C6—C5	-0.2 (3)	C10—C9—C12—C17	35.4 (2)
C2-C1-C6-C7	-179.14 (17)	C8-C9-C12-C13	34.1 (2)
C11—N1—C7—C8	0.3 (2)	C10-C9-C12-C13	-144.01(17)
$C_{11} = N_1 = C_7 = C_6$	-179.60(15)	C17-C12-C13-C14	-0.5(3)
C5-C6-C7-N1	$-165\ 10\ (19)$	C9-C12-C13-C14	178 94 (16)
C1 - C6 - C7 - N1	138(2)	C_{12} C_{13} C_{14} C_{15}	-0.2(3)
C_{5} C_{6} C_{7} C_{8}	15.0(2)	C18 - 01 - C15 - C16	18(3)
C1 - C6 - C7 - C8	-166 12 (17)	C18 - C15 - C14	-178 89 (15)
N1 - C7 - C8 - C9	-0.8(3)	C_{13} C_{14} C_{15} $-C_{14}$	-178 70 (16)
	170 16 (16)	$C_{13} = C_{14} = C_{15} = C_{16}$	1/0.79(10)
$C_{7} = C_{8} = C_{9} = C_{7}$	0.8(2)	01 C15 C16 C17	170 15 (16)
$C_{7} = C_{8} = C_{9} = C_{10}$	-177 43 (15)	C14 C15 C16 C17	-0.2(3)
$C_{1} = C_{0} = C_{10} = C_{11}$	-0.4(2)	$C_{14} = C_{13} = C_{10} = C_{17}$	-0.6(3)
C0-C7-C10-C11	0.4(2)	$C_{13} - C_{10} - C_{17} - C_{12}$	0.0 (5)

C12—C9—C10—C11	177.79 (15)	C13—C12—C17—C16	1.0 (3)
C8—C9—C10—C20	-174.09 (17)	C9—C12—C17—C16	-178.51 (16)
C12—C9—C10—C20	4.1 (3)	C15—O1—C18—C19	178.70 (16)
C7—N1—C11—O2	178.99 (16)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H···A	D—H	H···A	D····A	D—H···A
N3—H2 N 3····N2 ⁱ	0.88 (3)	2.20 (3)	3.084 (3)	177 (2)
C21—H21A····O1 ⁱⁱ	0.96	2.52	3.439 (2)	160
C18—H18 <i>A</i> ··· <i>Cg</i> ⁱⁱⁱ	0.96	2.84	3.7135 (18)	151

Symmetry codes: (i) *x*+1, -*y*+1/2, *z*+1/2; (ii) -*x*+2, *y*-1/2, -*z*+1/2; (iii) *x*-1, *y*, *z*.