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Abstract
Dihydrofolate reductase from  (ecDHFR) serves as a modelEscherichia coli
system for investigating the role of protein dynamics in enzyme catalysis. We
discuss calculations predicting a network of dynamic motions that is coupled to
the chemical step catalyzed by this enzyme. Kinetic studies testing these
predictions are presented, and their potential use in better understanding the
role of these dynamics in enzyme catalysis is considered. The cumulative
results implicate motions across the entire protein in catalysis.
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Introduction
Enzymes are large and flexible proteins that catalyze most chemi-
cal reactions in life. The dynamics of a protein’s folding from a 
linear polymer to the globular and active form of the enzyme are 
rather well understood. The role of the motions and vibrations of 
the folded enzyme throughout its catalytic cycle, on the other hand, 
is a matter of intensive investigation. Here we will present studies 
of E. coli dihydrofolate reductase, or DHFR, that focus on the role 
of dynamics across the protein in the chemical step catalyzed by 
this enzyme. DHFR from E. coli is a preferred model system for 
such studies because it is a small monomeric enzyme, has no metals 
or S-S bonds, and folds reversibly. Additionally, as this DHFR has 
been used in many diverse studies, the body of available informa-
tion on this enzyme opens the door to in-depth physical studies such 
as those presented below.

We must first address some controversy that has arisen in the field 
regarding terminology. The terms “dynamics” and “catalysis” are 
defined differently by different researchers. Most biochemists and 
several chemists use the term “dynamics” to refer to any vibration 
or motion of the protein complex with its ligands and solvent. That 
definition includes statistical and non-statistical dynamics (motions 
and vibrations). By contrast, several physical chemists define the 
term “dynamics” more narrowly, using it to refer only to chemical, 
or non-statistical, dynamics (motions or vibrations that are not in 
thermal equilibrium with their environment). As for the term “catal-
ysis”, it is formally defined as the ratio of catalyzed and uncatalyzed 
turnover rate constants under the same conditions. Unfortunately, 
performing studies of the uncatalyzed reactions is frequently chal-
lenging or even unrealistic for both experimentalists and theoreti-
cians. Computer-based calculations that have attempted to compare 
catalyzed to uncatalyzed reactions have usually begun with the 
enzymatic reactive complex, substituted water for the protein, and 
restricted the reactants to the orientation found in the enzyme in 
order to calculate the uncatalyzed reaction. However, in reality, the 
statistics of bringing reactants to the reactive orientation in question 
do not agree with the calculations, and some of these uncatalyzed 
reactions never actually occur experimentally without the catalyst. 
Consequently, most studies of “enzyme catalysis” address only the 
enzyme-catalyzed reaction, not the comparison to the uncatalyzed 
reaction. Since these researchers (probably a majority) still use the 

term “catalysis” (rather than “enzyme-catalyzed reaction”), they 
and their titles are condemned by some who assume they refer to 
the comparison with the uncatalyzed reaction. In reality, very few 
experimental studies have compared the catalyzed to the uncata-
lyzed reactions1, and (as far as I am aware) no experiment today can 
distinguish between statistical and non-statistical dynamics in an 
enzyme-catalyzed reaction2.

Returning to ecDHFR, to the best of my knowledge, no relevant 
uncatalyzed reaction has yet been reported for this enzyme. Since 
non-statistical dynamics cannot be tested on their own experimen-
tally, no such dynamics are proposed below when addressing protein 
dynamics that participate in catalysis. Instead we use a thermally 
equilibrated model that seems to be in accordance with all experi-
mental findings2, and “dynamics” here will mean all vibrations or 
motions in the protein complex (including solvent and ligands).

Studies of dihydrofolate reductase
Mapping a network of enzyme-wide motions involved in catalyz-
ing the chemical conversion requires the ability to experimentally 
probe the chemical step within the enzyme’s complex kinetic cas-
cade. The chemical step catalyzed by DHFR is a C–H→C hydride 
transfer, shown in Figure 1. The enzyme catalyzes the NADPH-
dependent reduction of 7,8-dihydrofolate (H

2
folate) to 5,6,7,8- 

tetrahydrofolate (H
4
folate), which is the reactive form of folic acid, 

and is a critical one-carbon carrier in DNA nucleotides’ biosynthesis 
and other cellular processes. It has been shown that N5 of H

2
folate 

is protonated by the enzyme prior to the hydride transfer step3. This 
fact greatly simplifies the calculations and data interpretation for 
this enzyme, as these can focus on a single barrier event. This fact, 
however, makes the assessment of the experimental rate constant 
of the C–H→C hydride transfer very challenging. While computer-
based molecular calculations address only that chemical step, rep-
resenting a single kinetic barrier, the rate for that single step is quite 
impossible to assess experimentally, leaving little room for direct 
examination of the theoretical predictions. To emphasize this last 
point, Figure 2 presents a minimal kinetic scheme for this enzyme4. 
As one can see in this scheme, most of the enzyme is never free. 
The release of the first product (NADP+) is followed by the bind-
ing of the substrate NADPH, and only then is the product H

4
folate 

released, prior to the binding of the second substrate, H
2
folate, to 

Figure 1. Dihydrofolate reductase catalyzed C-H→C hydride transfer. The reaction catalyzed by dihydrofolate reductase (DHFR). 
R = adenine dinucleotide 2’ phosphate and R’ = (p-aminobenzoyl) glutamate. It has been shown that the protonation of the N5 position of DHF 
occurs prior to hydride transfer, at all relevant media pH (5–11.5)3.
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form the reactive complex. This scheme indicates that steady-state 
kinetic parameters (i.e., k

cat
 and k

cat
/K

M
) do not always reflect the 

chemical step, which can be much faster than other kinetic steps.

To handle this type of problem it is usual to employ pre-steady-state 
kinetics, in which the substrate under investigation (e.g., NADPH) 
is pre-bound to the enzyme, and the reaction is initiated by a very 
high concentration of the second substrate (in this case H

2
folate). 

The conversion of NADPH to NADP+ on the enzyme is followed 
spectroscopically, so neither substrate binding nor product release 
affects the rate constant. However, the second substrate, H

2
folate, is 

not protonated in solution (at physiological pH). Thus, after its very 
fast binding to the enzyme-NADPH complex, major changes in the 
active site are required (involving at least residues D27 and Y1003) 
in order to protonate this substrate prior to the hydride transfer, and 
bring it into the reactive conformation in the ternary complex. This 
problem with using pre-steady-state rate constants is also apparent 
from the pH-dependence of these observed rate constants4,5. The 
only way to assess a pH-independent pre-steady-state rate constant 
is by measuring the pH dependence across a broad pH range, and 
extrapolating to infinitely low pH4. Unfortunately, this has been a 
common practice only in Benkovic’s lab4,6.

Figure 2 also makes plain another, more serious problem with the 
pre-steady-state approach for ecDHFR: the measured pre-steady-
state rate constant, even when extrapolated to a low pH, is at the 
millisecond timescale (e.g., 950 s-1 in Figure 2). This rate constant 
is much slower than the C–H→C hydride transfer per se, which 
takes place at the picosecond to femtosecond timescale.

A more direct experimental method of investigating only the 
chemical step is to study kinetic isotope effects (KIEs), comparing 
the rates or rate constants of two substrates in which the cleaved 
C-H bond carries different isotopes (e.g., H/D, H/T, or D/T). In 
such a study, the complex kinetic expression that constitutes the 
absolute rate is greatly simplified, as many steps that are not iso-
topically sensitive (i.e., steps that do not include the C-H cleav-
age in this case) fall out of the KIE equation (ratio of rates). This 
point is emphasized by Figure 3, which indicates how difficult it 
is to determine rate constants on the H-transfer step from either 

steady-state kinetics (e.g., k
cat

 or k
cat

/K
M

) or pre-steady-state kinet-
ics. The scheme shows that steps other than the C–H→C hydride 
transfer under study are frequently rate-limiting for the kinetic 
parameter measured. Kinetic isotope effects (KIEs) are also not 
complexity-free, and the observed KIEs are often smaller than their 
intrinsic value on the chemical conversion itself7,8. This said, KIEs 
are a useful way to examine the chemical step when a method is 
used to assess their intrinsic value9–11.

As illustrated in Figure 3, most of the KIE results from differences 
between the zero point energies (ZPE) of the ground state and 
the transition state, and can be also affected by nuclear-quantum-
mechanical tunneling (a phenomenon in which the atom is trans-
ferred under the classical energy barrier via its wave-like properties). 
In the case of H-tunneling, the transition state becomes the 
tunnelingready state (TRS), or the chemically reactive state, which 
is the quantum mechanically delocalized transition state2. Impor-
tantly, the intrinsic KIE is an experimentally measurable ratio of 
rates that can be directly compared to molecular calculations of the 
chemical step per se.

To better assess the intrinsic KIEs for DHFR, we used all three 
isotopes of hydrogen (i.e., the Northrop-method)12,13. In contrast 
to most other methods, this method makes assumptions that might 
slightly affect the size of the KIE, but are not likely to alter its 
temperature dependence. This is useful because the temperature 
dependence of intrinsic KIEs is a sensitive probe of the nature of the 
H-transfer or, more specifically, the donor-acceptor distance (DAD) 
dynamics and distribution at the TRS2,14,15. It is fair to say that the 
temperature dependence of KIEs is a more meaningful probe of the 
nature of the catalyzed chemical step than are the rate constants or 
KIEs themselves2.

In most wild-type and well evolved enzymes, it has been found 
that the intrinsic KIEs for H-transfer reactions are temperature-
independent14, suggesting the enzymes evolved to have short and 
narrowly distributed DADs (i.e., a well- reorganized TRS)16. Muta-
tions that affect the chemical step, as well as unnatural substrates 
or non-physiological reaction conditions, often lead to more highly 
temperature-dependent KIEs (with poorly reorganized TRSs). The 

Figure 2. The catalytic cycle of Escherichia coli dihydrofolate reductase. During its turnover, Escherichia coli dihydrofolate reductase 
(ecDHFR) cycles through 5 kinetic intermediates. The rate constants of all steps are from 4. The pH-independent rate (950 s-1 in red), 
sometimes addressed as the hydride-transfer rate, was obtained from non-linear regression of the pH dependence of observed single-
turnover rate constants4. The overall rate-limiting step on the catalytic turnover number, kcat, is 12.5 s-1 (in blue).
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broader distribution of DADs means lower frequency of DAD sam-
pling at the TRS, and this dynamic search for short DADs results in 
increased KIE temperature dependence.

Experimental test of computed prediction
A test case is presented below in which the temperature dependence 
of intrinsic KIEs was used to study a predicted network of coupled 
motions in the DHFR from E. coli17. Figure 4 presents residues that 
are predicted to be coupled to each other and be part of the reaction 
coordinate of the C–H→C hydride transfer steps. Some of these 
residues are in the active site and in direct contact with the reac-
tants (e.g., I14), while others are far from the active site, and their 

Figure 3. An illustration of the difficulty in assessing the rate of the chemical step (red) catalyzed by an enzyme. Both steady-state 
parameters (e.g., kcat/KM (V/K) and kcat) and pre-steady-state rates (e.g., single-turnover rate) involve several microscopic rate constants, 
which may not represent the rate of the chemical step. In Escherichia coli dihydrofolate reductase (ecDHFR), pH 7, kcat mostly represents the 
release of the product H4folate, kcat/KM mostly represents the binding of the substrate H2folate4, and the single-turnover rate mostly represents 
the conversion of the initial ternary complex (Enz.NADPH.H2folate) to its reactive form with protonated-H2folate3. The intrinsic kinetic isotope 
effects (KIEs) (whether resulting from differences in zero-point-energy or from quantum tunneling or both) better reflect the chemical step 
per se, but assessing these from their observed values is quite challenging (see text).

coupling to the chemistry catalyzed by the active site is not trivial 
at all.

Various molecular calculations of DHFR from E. coli, along with 
bioinformatics statistics of DHFR from various organisms, pre-
dicted that several residues in the enzyme’s active site as well as 
several residues remote from the active site are dynamically and 
genetically coupled to the catalyzed reaction19–23. The term geneti-
cally coupled refers to residues that co-evolve, and thus while 
they are not highly conserved, their distribution differs from ran-
dom statistical distribution22. One example from a molecular cal-
culation and one from bioinformatics are presented in Figure 5. 
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Interestingly, both methods predicted that several residues are 
coupled to the chemistry (e.g., G121, M42, and F125), while oth-
ers were implicated only by bioinformatics (e.g., W133). To test 
these predictions, we measured the intrinsic KIEs for the wild-type 
enzyme and for its single and double mutants, testing residues 
predicted to be coupled by one of these methods or both.

Figure 6 summarizes the isotope effects on the activation param-
eters for the intrinsic KIEs, where ΔE

a (H/T)
 represents the slope of 

the temperature dependence of the H/T KIEs (the larger the value, 
the more temperature-dependent are the KIEs), and A

H
/A

T
 is the 

isotope effect on the Arrhenius pre-exponential factors. The green 
data points are for single mutations at the active site (I14 to V, A, 
and G), each of which is designed to generate a poorly reorganized 
TRS by decreasing the size of an enzymatic side-chain holding the 
H-donor close to the acceptor24. For these mutants, the smaller the 
side chain is, the larger is ΔE

a (H/T)
 and smaller A

H
/A

T
.  This observa-

tion is in accordance with the fact that longer DADs, with broader 
distributions, are associated with greater temperature dependence 
of intrinsic KIEs. The effect of active site mutations on the cata-
lyzed reaction and its DAD is more obvious than that of remote 
mutants. Studies of mutants far from the active site indicate that 
double mutants have a non-additive effect that is much larger than 
their respective single mutants (ΔE

a (H/T) double mutant A&B
 > ΔE

a (H/T) mutant A + 

ΔE
a (H/T) mutant B

). This finding supports the prediction that those 
residues are coupled to each other along the reaction coordinate for 
the hydride transfer in the wild-type enzyme. Interestingly, I14 is 

Figure 4. Structure of dihydrofolate reductase from Escherichia 
coli highlighting the residues under study. Dihydrofolate 
reductase (DHFR) structure (PDB ID 1rx2; 18) colored based on 
genetic coupling analysis as conserved (red), strongly coupled 
(pink), and weakly coupled (orange). The NADPH cofactor (dark 
blue) and folate (light blue) are highlighted as sticks, and an arrow 
is drawn at the path of the hydride transfer under study. The four 
coevolving residues that are discussed in the text are highlighted 
as spheres, and the insertion sites at N23 and G51 are highlighted 
as dark blue spheres. Reproduced from 15 with permission from the 
American Society of Biochemistry and Molecular Biology.

Figure 5. Coupling predicted from QM/MM and bioinformatics calculations. Left Panel: QM/MM calculations. A map of all Escherichia 
coli dihydrofolate reductase (ecDHFR) residues that are coupled to each other and to the reaction coordinate. The two axes are identical and 
represent the atoms of the enzyme in sequential order. Residues under study here are marked by arrows (M42, G121, F125). Right Panel: 
Bioinformatics calculations. The evolutionary coupling network of amino acid residues in DHFR, with highly conserved residues in red boxes 
and lines connecting residues that co-evolve (i.e., are genetically coupled). Reprinted from 21 and 22 with permission from National Academy 
of Science and Annual Reviews, respectively.
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also found to be coupled to remote residues like G121, offering a path 
through which the remote residues can affect the H-transfer step25.

In accordance with predictions made by the calculations presented 
above, these findings indicate that several residues across the whole 
protein, including some far from the active site, are involved in a 
network of coupled motions that affect the chemical step catalyzed 
by DHFR from E. coli. The fact that the bioinformatics calculation 
alone predicted that W133 is coupled, yet it had no visible effect 
on the chemical step, suggests that there might be more than one 
functional network. In addition to a network that affects activation 

of the chemical bond, there could be networks that are important 
for proper folding or for other biological functions. Notably, a very 
different type of calculation did not predict “protein promoting 
vibrations” to be part of the chemical step in this enzyme27, but it is 
not clear that these calculated vibrations address the same phenom-
ena and motions on the same timescale as those examined by the 
studies19–23 and experiments presented above24–26,28.

Concluding remarks
An important take-home message from the above studies is that 
observed rate constants and KIEs should not be taken as a probe 
for a single kinetic step. These observed values often represent a 
complex kinetic expression rather than the chemical step per se. 
The observed rate constants and KIEs, and especially their tem-
perature dependence (and thus their activation parameters) often 
reflect complex phenomena involving many microscopic rate con-
stants. This is unfortunate, as most calculations address only the 
barrier that is the chemical step, but not other steps affecting the 
experimental measurement. In many cases the bond cleavage step 
of interest occurs at the picosecond to femtosecond timescale and 
is a fleeting event within catalytic turnover, which occurs at the 
millisecond timescale. Not many experimental methods are avail-
able that report on the time scale of the bond activation, yet the 
ability to probe intrinsic parameters that probe the chemical step, 
such as those presented in Figure 6, is critical when experimen-
tally assessing any molecular calculation that focuses on the single 
kinetic step in which the chemical conversion occurs.
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Figure 6. Correlation chart of the isotope effects on the activation 
parameters. Presented are data for wild-type (WT) (black), distal 
(red), and local (green) mutants of Escherichia coli dihydrofolate 
reductase (ecDHFR). The double mutant bridging local and distal 
is in blue. Error bars represent standard deviation. The yellow block 
represents the semi-classical range of the Arrhenius pre-exponential 
factor (0.3–1.7). Reproduced from 26 with permission of the American 
Chemical Society.
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