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A B S T R A C T   

The coronavirus disease-2019 (COVID-19) which caused by severe acute respiratory syndrome-related corona-
virus (SARS-CoV-2), is a pandemic threat to global public health. It has a wide spectrum of clinical manifestations 
from mild to critical illness, the most serious of which is the complications of acute respiratory distress syndrome 
(ARDS). SARS-CoV-2 infection appears mild in infants and children, however, in adults, it can lead to serious 
consequences. In this review, we highlighted the differences between the immune responses of the lung in 
children and adults, immune dysregulation and their possible role in clinical manifestations in COVID-19. There 
is a reduction in population of immunocompetent cells during aging and subsequently induced ineffective 
inflammation in the faces of some infections. Dysregulation in the immune system can lead to an unappropriated 
local and systemic immune responses and subsequently the rapid spread of the virus, leading to severe COVID-19 
disease. Therefore, recognizing the differences in the immune responses of various hosts as well as to improve the 
immune system disorder should always be part of research and treatment protocols.   

1. Introduction 

Family of Coronaviridae is the second cause of the common cold and 
responsible for 5–10 % of acute respiratory infections and could infect 
both humans and animals. The family consist of two subfamilies Coro-
navirinae and Torovirinae in which Coronavirinae (CoV) is subclassified 
into four genera of alpha-CoV, beta-CoV, delta-CoV, and gamma-CoV 
(Beniac et al., 2006). Coronavirus is a large family of positive-sense, 
single-stranded RNA viruses (Delmas and Laude, 1990). Their large 
genome ranging from 26 to 32 kilobases in length has the properties of a 
mRNA, namely a 5′ cap structure and a poly adenylated 3′ end (Li et al., 
2020). Coronaviruses contain three major structures: a large surface 
glycoprotein spike (S, 200 kDa), that forms the bulky (15–20 nm) 
peplomers found in the viral envelope, a matrix transmembrane glyco-
protein M (20− 30 kDa) and the internal phosphorylated nucleocapsid 
protein N (50− 60 kDa). The S protein induces cell fusion and binds to 

the host cell receptor (Delmas and Laude, 1990). The host cell receptors 
for SARS-CoV and MERS-CoV are cell membrane proteins, 
angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase IV 
(DPP-IV), respectively that abundantly expressed in the epithelial cells 
in the respiratory system (Raj et al., 2013). 

So far, seven human-transmitted coronaviruses have been discov-
ered. They are known to cause a variety of diseases including pneu-
monia, hepatitis, encephalomyelitis, nephritis, enteritis and other illness 
(Beniac et al., 2006). In the last two decades, two indigenous outbreaks 
of human coronavirus (HCoVs) have been reported, including corona-
virus severe acute respiratory syndrome (SARS-CoV) and Middle East 
respiratory syndrome (MERS-CoV) (Raj et al., 2013). Although, human 
coronavirus infections appear as a self-limiting respiratory infection in 
the most immunocompetent people, it causes lower respiratory disease 
in immunocompromised as well as olders. However, MERS-CoV, SAR-
S-CoV cause pulmonary and extra-pulmonary diseases in all people 
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(Pene et al., 2003). Howbeit, understanding the pathophysiology of 
SARS and MERS has been remained a debatable issue among researchers 
yet. Increased inflammatory cytokines in the serum of SARS and MERS 
patients has been shown associated with pulmonary inflammation and 
severe lung injury in SARS and MERS patients (Wong et al., 2004; 
Mahallawi et al., 2018). In December 2019, the cluster of severe acute 
respiratory syndrome caused by a novel beta-coronavirus emerged in 
Wuhan, Hubei, China. In which was named 2019 novel coronavirus 
(2019-nCoV). Due to an approximately 82 % genetic similarity between 
this strain and SARS-CoV, the new strain was named SARS-CoV-2 (Chan 
et al., 2020). World Health Organization (WHO) announced the disease 
caused by this novel virus as coronavirus disease-2019 (COVID-19). 
Bats, pangolins and humans are natural host, intermediate host and 
terminal host for SARS-CoV-2, respectively (Zhang et al., 2020a). 
Transmission of SARS-CoV-2 occurs human-to-human through physical 
contact, respiratory droplets, hospice and probably zoonotic (Cascella 
et al., 2020). Spike (S) glycoprotein binds to its target receptor (ACE2) 
on the epithelial cells of the respiratory tracts, enters and replicates. The 
receptor-binding domain (RBD) in the S glycoprotein directly sticks to 
the peptidase domain (PD) of ACE2. In addition to ACE2, SARS-CoV-2 
uses the serine protease TMPRSS2 for spike protein priming to 
entrance the host cell (Bittmann et al., 2020) Followed by the action of 
TMPRSS2, metalloprotease 17 and disintegrin in human airway 
epithelia, SARS-CoV-2 S protein promotes ACE2 downregulating and 
induce the shedding of active ACE2 ectodomain to convert it as a soluble 
form. Increased shedding of ACE2 facilitates viral replication, vascular 
permeability, local inflammation and in results, exacerbation the disease 
(Fu et al., 2020; Peron and Nakaya, 2020; Heurich et al., 2014). Higher 
levels of ACE2 expression, shedding and soluble form of ACE2 have been 
reported in adults (Peron and Nakaya, 2020), the probable causes of 
development of acute respiratory distress syndrome (ARDS) and lung 
injury (Peron and Nakaya, 2020; Schouten et al., 2016). A recent study 
indicated the potential binding interaction between the spike protein of 
SARS− COV2 and the host glucose regulated protein (GRP78). This 
finding described the potency of GRP78 to facilitate the SARS− COV2 to 
entrance the host cell. However, this is the primary finding and needs 
more investigation to approve such claim, effect of that in severity of 
COVID-19 and the expression levels of that in adults and children 
(Table 1). 

In contrary to adults, SARS-CoV-2 infection appears mild or 
asymptomatic manifestation in children and only 1–5 % worldwide 
prevalence (Ludvigsson, 2020). About 15–20 % of adults demonstrated 

severe form of the COVID-19 disease characterized by interstitial 
pneumonia which developed to ARDS. Differences in the immune sys-
tem of children and adults may conducted to the different pathogenesis 
of COVID-19 in the mentioned age groups. Dysregulation and hyper-
activation in the innate and acquired immune systems that present in 
severe cases, could accrue followed by robust virus replication. Also, 
SARS-CoV-2 infection impaired cellular immunity by decreasing the 
activated T cell markers (e.g. CD69), enhancing expression of late acti-
vation markers such as CD25 and PD-1 in both CD4+ and CD8 + T cells, 
reduction in the lymphocyte number (lymphopenia), and rising proin-
flammatory cytokines and even cytokine storm (Yang et al., 2020). 

Based on defined pathophysiology of SARS− COV2, several strategies 
have been purposed to treat COVID-19 including drugs with potential 
anti-viral activity like as Chloroquine, Nucleoside analogues, Anti- 
protease agents, drugs targeted ACE-2 -mediated entry the virus like 
using the monoclonal antibody against S glycoprotein, drug with 
Immunomodulatory and anti- inflammatory properties, Corticosteroid, 
and monoclonal antibody to block inflammatory cytokines for inhibition 
of cytokine storm as a hallmark phenomenon in severe diseases. Despite 
trying these strategies, the treatment of this disease still faces challenges 
and surprises. 

Given the importance of the immune system in predicting the 
response to treatment and the importance of paying attention to the 
differences in the immune system between adults and children, this 
study aims to discuss the salient differences between the immune sys-
tems of adults and children, gender, immune-dysregulation and their 
possible role in clinical manifestations in COVID-19. 

1.1. Age-associated changes in immune responses considering 
immunosenescence and inflamm-aging 

The major protective physiological system against various threats (e. 
g. cancer, bacteria, virus, ...) is the immune system. Immune system is in 
almost fully connection with the other physiological systems, lead to 
formation the most important axis in the body, the neuro-
–endocrine–immune axis. Similar to the other organs and systems, im-
mune system could affect by the aging. According to the numerous 
studies, aging changes the immune agents and probably lead to reduce 
its potency and dysregulation. Altogether, the results and consequence 
of aging on immune regulation and variation is named immunose-
nescence. Like other organs and systems, the immune system can be 
affected by aging. According to several studies, aging causes changes in 
immune factors and may lead to a decrease in potency and dysregula-
tion. Altogether, the results and consequence of aging on immune 
regulation and variations is named immunosenescence. Immunose-
nescence has been demonstrated to be involved in promotion of in-
flammatory phenomena and related factors and inflamm - aging. In this 
section, to better understand the effect of age on COVID-19 manifesta-
tions, we discuss immune changes based on the effects of age or 
immunosenescence on immune cells and related mediators. 

1.2. Innate immunity (the cells) 

The innate immunity as the first-tier defense is stimulated after the 
pathogen enters the respiratory tracts and includes neutrophils, mono-
cytes and macrophages, dendritic cells (DCs), epithelial cells, natural 
killer cells (NKs), mast cells and some cytokines and mediators. 
increased proportion of neutrophils in bronchoalveolar lavage (BAL) 
fluids, more tissue inflammation, increased elastase activity, and release 
of primary granules have were found in older compared with younger 
adults (Meyer et al., 1996; Sapey et al., 2014]. Nevertheless, others have 
found neutrophils produce less superoxide in older people (≥85 years) 
than younger one (Polignano et al., 1994; McLachlan et al., 1995). 
Lower percentage of macrophages in BAL fluid of older subjects has been 
shown (Meyer et al., 1996). Furthermore, aging can impair the activa-
tion of CD4 + T cells by macrophage due to low expression of major 

Table 1 
The main mechanism of action of potential drugs for treatment of COVID-19.  

Anti-viral activity Immunomodulatory and anti- 
inflammatory properties 

Chloroquine and Hydroxychloroquine Chloroquine and 
Hydroxychloroquine 

Nucleoside analogues IL-6 inhibitor 
Remdesivir Tocilizumab 
Galidesivir Sarilumab 
Favipiravir Siltuximab 
Ribavirin 
Anti-protease Corticosteroid 
Lopinavir/Rritonavir  
Darunavir/Cobicistat 
Atazanavir/Ritonavir 
IFN-α/IFN-β IFN-α/IFN-β 
Convalescent plasma Intravenous immunoglobulin 
Baricitinib Baricitinib 
Umifenovir Thalidomide 
Inhibition of ACE2-mediated virus entry Fingolimod 
Camostat mesylate 
mAb against S glycoprotein Bevacizumab 
antibodies or small molecules blocking ACE2 

human recombinant soluble ACE2 (hrsACE2) 
Leronlimab 
Mesenchymal stem cell 

Oseltamivir Thymosin alpha-1 
Nitazoxanide Melatonin  

S. Tahaghoghi-Hajghorbani et al.                                                                                                                                                                                                            



Virus Research 290 (2020) 198197

3

histocompatibility (MHC) class II molecules in aged mice (Herrero et al., 
2001). Decreasing in the fundamental properties of macrophages 
including the levels of phagocytosis (Swift et al., 1999), apoptotic cells 
clearance (Arnardottir et al., 2014), Toll-like Receptors (TLRs) expres-
sion (Boehmer et al., 2005), proinflammatory and immunomodulatory 
mediators production (Mahbub et al., 2012), telomerase activity (Arai 
et al., 2015), superoxide anion releasing (Kelly et al., 2003), reactive 
oxygen species (ROS) and reactive nitrogen intermediates (RNI) have 
been found in relation with aging (Tasat et al., 2003). 

Also, age-related changes in dendritic cells (DC) have been demon-
strated in the preponderance of the evidence. It has been reported that 
aging cannot affect the number of DCs in the lung, although it may 
change the subset frequency (Wong and Goldstein, 2013). In conjunc-
tion the above, Heier et al. demonstrated that the density of antigen 
presenting cells (APCs), CD68+ macrophages and CD11c + DCs, are 
similar in the airway mucosa of children older than 2 years and adults 
(Heier et al., 2011). In addition, no DCs has been found in the human 
tracheobronchial mucosa in the first year of life, although rapid influx of 
them occurs by infectious stimuli (Tschernig et al., 2001). However, in 
some recent reports, in compare with older cases, lower densities of DC 
in the tracheal mucosa of infant has been detected (Tschernig et al., 
2006). Furthermore, increased expression of prostaglandin D2 upon 
respiratory viral infection in the lungs of aged mice such as influenza A 
virus and SARS coronavirus infection leads to the impaired homing of 
lung DCs and T cell activation (Zhao et al., 2011). On the other hand, 
with aging, plasmacytoid dendritic cells (PDCs) showed impairment in 
interferon (IFN)-I production and antigen-presenting capacity after 
stimulation with influenza virus. 

NK cell, as the other important anti-viral innate cell, has been re-
ported to be related with higher incidence of viral infection. In older 
animals infected with the influenza virus, it has been shown to reduce 
both the number of NK cells and the ability to produce cytokines (Beli 
et al., 2011; Nogusa et al., 2008). 

Mast cells are another player of innate immunity with ~400 % in-
crease in the number of activated forms compared with resting condition 
in aged tissues for COVID19-related pneumonia. The cytokines storms 
through mast cell degranulation leads to severe damage to pulmonary 
tissue. Rangwani demonstrated that fatal vasodilatory / interstitial 
macrophages are resulting from high levels of mast cells in the older 
population (Rangwani, 2020). 

1.3. Innate immunity (soluble mediators) 

In addition to the immune cells, cytokines and immune mediators of 
the innate immune system are affected by aging. Bronchoalveolar lavage 
(BAL) fluid levels of myeloperoxidase (MPO), IL-6 (inflammatory cyto-
kine), IL-10 (anti-inflammatory cytokine), and p-selectin were signifi-
cantly lower in neonates and children compared to adults; however, an 
opposite trend in endothelial activation marker Intercellular Adhesion 
Molecule 1 (ICAM-1) expression was seen with higher expression in 
neonates (Schouten et al., 2015). 

1.4. Acquired immunity 

In addition to the innate immune system, there is a difference be-
tween the acquired immune system in children and adults. In old age, 
insufficient production of T cells due to thymus atrophy disrupts to the 
effective respond to new antigens. Also, increased T helper type 2 (Th2) 
cytokine response, diminished CTL-mediated immunity and the gran-
zyme B in response to influenza have been reported that is directly 
associated with severe form of influenza (McElhaney, 2005). Moreover, 
with aging, fewer naïve cells are converted to memory cells in 
responding to a novel pathogen (Meyer et al., 1996). However, ac-
cording to the recent studies, diminished naïve T cell in elderly could be 
compensated by IL-7 stimulation. In addition, compared to young peo-
ple, older people do not seem to have a serious problem defending 

themselves against new pathogens. Such finding encountered immuno-
senescence in adaptive immune system hypothesis with remarkable 
challenge. This is a controversial note about the effect of age on the 
severity of COVID-19 in adults and adolescents. 

Interestingly, a new T cell phenotype appears in aging which called 
NK like T cell. This cell represents the αβ T cell receptor (TCR) and NK 
cell receptors. NK like T cell express two markers of senescence, 
including CD57 and Killer Cell Lectin Like Receptor G1(KLRG1) (Michel 
et al., 2016). KLRG1 is an inhibitory receptor and harnesses classical 
TCR signaling (Henson et al., 2009). Also, CD57 + T cells produce IFN-γ 
but they are unable to proliferate in response to cognate antigen 
(Brenchley et al., 2003). In addition, the impaired ability of B cell to 
differentiate into plasma cells has been detected in elderly (Bulati et al., 
2017). The impact of such a finding in COVID-19 is valuable, as it is a 
finding that revealed the poor antibody production and un-sustainable 
immunity against COVID-19. 

Overall, data from animal models cannot be directly translated into 
humans, and further human studies with different age groups are needed 
to better understand the age-related changes in respiratory immune cells 
to address these important issues. Furthermore, there is a long way to 
light up the immune dysregulation and immune variation in COVID-19, 
especially based on the severity degree of the disease and aging. Taken 
together, aging has been shown to affect the function and density of 
immune cells in the respiratory system with an outstanding role of 
innate immunity, which may potentially have a therapeutic effect on 
lung damage. The how immune responses weaken with age has been 
depicted in Figs. 1 and 2. 

2. Immunopathogenesis of COVID-19 

The precise mechanism of COVID-19 pathogenesis and the difference 
between children and adults remain elusive. However, the recent studies 
in COVID-19 patients and previous studies in the field of SARS-CoV and 
MERS-CoV infections have provided some perceptions into pathogenesis 
of COVID-19. In addition to age and health conditions, it is not unex-
pected that the differences in the immune system of children and adults 
play a chief role in the variation observed in the severity of the COVID- 
19 pathogenesis. 

The viral spike glycoprotein of coronavirus binds to the target cells 
by ACE2, merging to the membrane and release the viral RNA (Li et al., 
2003). One hypothesis associated with low severity of COVID-19 in 
children is variations in the levels of expression of the ACE2 receptor in 
adults and children, a factor that may predispose adults to the disease 
and the high prevalence of COVID-19 among them (Brodin, 2020a). 
However, after the manifestation of viral RNA in the cytoplasm of 
infected cells, expression of viral polypeptide genes, replication, tran-
scription, and formation of virions, they release from the host cells 
(Sahin et al., 2020). Viral RNA, as a pathogen-associated molecular 
patterns (PAMPs), evokes innate immune system. In the cytoplasm, viral 
RNA is sensed by cytosolic receptor melanoma 
differentiation-associated gene 5 (MDA5), the viral RNA receptor 
retinoic-acid inducible gene I (RIG-I) and nucleotidyl transferase cyclic 
GMP-AMP synthase (cGAS). In the endosome, viral RNA is recognized by 
endosomal TLRs, leading to activation of downstream cascades mole-
cules and then cytokines production, especially IFN- I (Guo et al., 2020). 
Other cytokines such as IL-1, IL-2, IL-4, IL-7, IL-10, IL-12, IL-13, IL-17, 
macrophage colony-stimulating factor (MCSF), granulocyte-colony 
stimulating factor (G-CSF), MCP-1, macrophage inflammatory 
protein-1 alpha (MIP-1α), interferon gamma-induced protein-10 (IP-10), 
IFN-γ, TNF-α, and hepatocyte growth factor (HGF) have also been shown 
to increase in COVID-19 infection, resulting in cytokine storm and 
worsening the patient’s condition (Huang et al., 2020; Chen et al., 
2020a). 

Virion particles infect a variety of immune cells and have various 
consequences (Lai et al., 2020). Leukopenia, neutropenia or neutro-
philia, thrombocytopenia and increased infiltration of lymphocytes to 
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the lung are the findings in the adults and infected mothers (Guo et al., 
2020; Huang et al., 2020; K-q et al., 2020), while neutropenia was seen 
in infants (K-q et al., 2020). Because the severity of COVID-19 has been 
reported to be associated with T lymphopenia and possibly increased 
lymphocyte infiltration into the lungs (Zhou et al., 2020; Diao et al., 
2020), the absence of these findings in children is likely to be associated 
with mild disease. 

In addition to immune cells, the hepatocytes, human airway 
epithelial cell, and kidney tubular cells are infected by virion particles 
through ACE2 receptor (Lai et al., 2020; Zhang et al., 2020b; Xu et al., 
2020a). ACE2 has been shown to be widely present in renal cells. In 
COVID-19 patients, acute kidney injury is strongly associated with the 
severity of diseases and increased rate of mortality and morbidity 
(Valizadeh et al., 2020b). In addition, overexpression of ACE2 receptor 
in cholangiocytes predisposes these cells to SARS-CoV-2 infection and 
leads to liver dysfunction. However, pathological examination of liver 
tissue from some dead COVID-19 patients did not shown viral inclusions 
in the liver (Zhang et al., 2020b). Furthermore, liver biopsy samples and 
histological examination showed mild lobular and portal activity in 
dead patient (Xu et al., 2020b). Overall, while the role of the immune 
system, age, endothelial system, and ACE2 expression has received 
considerable attention, more research is needed to better understand the 

exact mechanism of COVID-19 pathogenesis. 

3. Immune dysregulation in COVID-19 

In healthy condition, a negative regulation in the immune responses 
occurs in the adult lungs. However, the negative regulation declines 
upon respiratory virus infection (Toapanta and Ross, 2009; Sharma and 
Goodwin, 2006). These changes may be delayed in some adults. 
Decreased immunocompetent cells population during aging and induc-
tion of ineffective inflammation upon some infections may be the reason 
for such a delay. Robust virus replication and delayed early innate im-
mune response (IFN-l production) lead to over-activation of immune 
cells to compensate. The successful treatment of either SARS-CoV or 
MERS-CoV infected mice by early administration of type 1interferon 
(IFN-I) shows that the timing of IFN-I administration has been more 
important to yield a protective response (Channappanavar and Perlman, 
2017). 

Release of Damage-Associated Molecular Patterns (DAMPs) by 
damaged cells through virus replication lead to over-activation of 
cGAS–cGAMP–STING pathway and dysregulation of IFN-I production. 
All of these lead to an influx of pathogenic inflammatory monocyte- 
macrophages (IMMs) and neutrophils, which ultimately result in 

Fig. 1. The relationship between age- 
dependent changes in immune responses with 
the severity of COVID-19 disease. 
Differences in the immune system of children 
and adults may be the reasons for clinical dif-
ferences in the severity of COVID-19. During 
aging, immune responses undergo changes that 
lead to more severe disease, some of which are 
include: a) depletion of well-ordinated innate 
immunity and regulative cytokines, b) dimin-
ished ability of the innate immune cells to 
recognize PAMPs, followed by strong activation 
of PRRs, influx of pathogenic immune cells and 
excessive release of proinflammatory cytokines 
for compensation, c) reduction ratio of naïve 
lymphocyte/memory lymphocyte, d) induce of 
negative regulation and the predominance of 
Th2 to Th1 responses, e) decrement of circu-
lating plasma cells, f) increase of regulatory T 
cells (CD4+ CD25+ FOXP3+) function, and g) 
decrease of CTLs activity and diminish of CTL- 
mediated immunity. PAMP: Pathogen associ-
ated molecular pattern; PRR: Pathogen recog-
nition receptor; Th: T helper; CTL: Cytotoxic T 
lymphocyte.   
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inflammation and severe damage to the lung and other tissues such as 
seen in COVID-19 (Channappanavar et al., 2016; Motwani et al., 2019; 
Liu et al., 2014). In addition, large amounts of pro-inflammatory cyto-
kines (IFN-α, IFN-γ, IL-1β, IL-6, IL-12, IL-8, IL-18, IL-33, TNF-α, etc.) and 
chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10, etc.) release 
by immune effector cells that lead to cytokine storm, one of the major 
cause of death in COVID-19 (Huang et al., 2020). Among the inflam-
matory mediators mentioned, mediators produced by IMMs and neu-
trophils such as IL-6, IL-1β, and TNF-α, ROS and nitric oxide (NO) 
showed more adverse effects than others. The IL-1β and TNF-α induce 
hyaluronan synthase 2 (HAS2) in CD31+ endothelium, alveolar epithe-
lial cells and fibroblasts which dramatically increase water absorption, 
fluid jelly formation in lung and makes breathing difficult (Bell et al., 
2019). The NO and ROS can enhance endothelial permeability and 
extravasation of immune cells into the lungs which lead to damage of 
alveolar epithelium, impair efficient gas exchange and finally respira-
tory distress (Short et al., 2014). Activated endothelium can secrete 
proinflammatory cytokines and chemokines such as CCL5/RANTES and 
IP-10/CXCL10 which recruit of several types of leukocytes: T cells, NK 
cells, monocytes, DCs, and granulocytes that may exacerbate inflam-
mation and airway hyper-reactivity (Wang et al., 2013). Excessive 
neutrophil response, hydrolytic enzymes and myeloperoxidase released 
into the extracellular space and neutrophil extracellular traps (NETs) 
formation are associated with severe lung pathology during infection 
(Short et al., 2014; Kruger et al., 2015). 

Enhancing innate immune response mainly affects acquired immu-
nity and leads to dysfunction (Diao et al., 2020). The numbers of B cells, 
T cells (both CD4+ and CD8 + T cells) and NK cells are more severely 
decrease, especially among elderly patients and in patients requiring 
ICU care. This finding may be due to an increased infiltration of these 
cells into other organs such as lung, kidney or liver which should be 

investigated in future pathophysiological studies of COVID-19. Inter-
estingly, T cell numbers are negatively correlated with the serum levels 
of IL-6, IL-10, and TNF-α concentrations (Diao et al., 2020). Both Th cells 
and suppressor T cells were below normal levels, while Th and sup-
pressor T ratio remained in the normal range. The percentage of naive 
helper T cells (CD3+CD4+CD45RA+) increased and memory helper T 
cells (CD3+CD4+CD45RO+) decreased. This imbalance between the 
naive and memory CD4 + T cells leads to loss an efficient immune 
response. Interestingly, the regulatory T cells (CD4+CD25+FOXP3+) 
and suppressor T cells (CD3+CD8+ CD28+) are affected and reduced, 
which can lead to increased inflammation and cytokine storm in 
COVID-19. Also, the higher neutrophil-to-lymphocyte ratio (NLR), as 
well as lower percentages of monocytes, eosinophils, and basophils have 
been indicated (Qin et al., 2020). NLR, is a well-known marker of sys-
temic inflammation and infection. 

Similar to some chronic infections, persistent virus exposure and/or 
inflammation along with the high levels of IL-10, as an inhibitory 
cytokine, lead to exhaustion T cells. Cytotoxic T cells, which play an 
important role against viral infections and cancers, increase the 
expression of some checkpoint inhibitor including PD-1 and Tim-3 and 
A2aR, leading to a loss of cytokine production capability, reduced 
cytotoxic function and T cell proliferation (Diao et al., 2020; Masoumi 
et al., 2020).. Interestingly, the exhausted CD94/NK group 2 member A 
(NKG2A)+ cytotoxic lymphocytes increase in COVID-19 patients. NK 
cells also get exhausted of increasing the expression of NKG2A as an 
inhibitory receptor. There are lower populations of CD107a + NK, 
IFN-γ+ NK, IL-2+ NK, TNF-α+ NK and granzyme B + NK cells in the 
peripheral blood of COVID-19-patients. 

Humoral immunity is also thought to be involved in severity of the 
COVID-19. Adults are more likely to have higher levels of antibodies due 
to exposure to the coronavirus than young people. This results in 

Fig. 2. The difference in immune responses in the lungs of children and adults to SARS-CoV-2 is the reason for the different clinical manifestations. 
In children, SARS− COV-2 infection may be quickly eradicated due to having less mature ACE2 receptors and rapid activation of immunocompetent immune cells 
(right side). In adults, the negative regulation of the immune response in the respiratory tract, late changes in the nature of the immune responses, decrease in 
population of immunocompetent cells, increase of ACE2 expression, ACE2 shedding and sACE2 production, all can lead to an uncontrolled immune response, 
widespread ineffective inflammation, immune dysregulation, cytokine storm and ARDS (left side). ACE2: Angiotensin− COnverting enzyme 2; SARS− COV2: severe 
acute respiratory syndrome coronavirus 2; ARDS: Acute respiratory distress syndrome. 
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antibody-dependent enhancement (ADE) induction. During ADE, low 
affinity or low concentrations antibodies due to previous exposure, 
instead of neutralizing, opsonize viral particles and promote FcγR 
mediated internalization by lung epithelial cells and infiltrating mono-
cytes and DCs are involved in the deterioration of COVID-19(13). The 
phenomenon of ADE in patients with severe COVID-19 has yet to be 
determined and needs further investigation. 

However, it should be noted that innate immune response is highly 
involved in the disease outcome. Rapid and regular innate immunity 
plays a crucial role in the first line of defense against SARS-CoV-2 
infection. In children, SARS-CoV-2 infection may be quickly eradi-
cated or at least remain mild due to having less mature ACE2 receptors 
and strong and well-coordinated innate immune responses. However, 
there is a different situation in adults. As regards different expression of 
ACE2, more viruses can enter the cells and infect them. Due to the 
negative regulation of the immune response in the adult respiratory 
tract, changes in the nature of responses and shifts to the effective 
inflammation occur with delay, especially in individuals with poor im-
mune functions. Faster replication of the virus than the immune system’s 
response, as well as the conversion of local inflammation into wide-
spread lung and other organs inflammation cause the immune defense to 
spiral out of control and eventually exhausted. There are two compli-
cations here:  

1 cytokine storm, acute lung and other organs injury and even death  
2 Modulation of immune responses and exhaustion of critical and 

essential immune cells in viral defense. 

This suggests that differences in the immune system of children and 
adults, especially immune homeostasis, play an important role in the 
clinical differences of COVID-19. Therefore, future animal and clinical 
studies should focus on the evaluation and efficacy of immunothera-
peutic agents that directly affect host immunopathologic responses. 
Possible age-dependent differences in the immune system that make 
higher susceptibility to severe COVID-19 are summarized in Fig. 1 and 2. 

4. Host factors associated with mild to severe COVID-19 

The wide spectrum of COVID-19 clinical manifestations varies from 
mild, severe to critical disease, which is including respiratory failure 
resulting in death (Wu and McGoogan, 2020). Not only the virus viru-
lence factors, but some host related factors can also involve in disease 
outcomes. Some of the important host-associated-factors related to 
disease outcomes are age, gender, obesity, tobacco users/smokers, ge-
netic variation, comorbidities like cardiovascular disease, chronic res-
piratory disease, hypertension, diabetes, cerebrovascular diseases, and 
cancer. 

Older people are more likely to show the severe form of the disease 
(Wang et al., 2020). In addition to less accurate immune responses in 
aged patients, comorbidities are more frequent with aging (Wu et al., 
2020). The number of leukocytes decreases and the ratio of immune cells 
in the peripheral blood and lungs changes with age. The number of CD8 
T cells, proliferation, and granzyme + T cells have been shown to be 
significantly reduced in older monkeys. (Arjeyni et al., 2017). However, 
the compensatory effect of IL-7 stimulation on the number of T cells has 
recently been indicated (Gattinoni et al., 2017). B cell population 
decrease, followed by the reduction of neutralizing antibodies and 
mucosal IgA in the elderly. Decreased pulmonary DCs and macrophages 
in old ages are accompanied by a decrease in the frequency of cos-
timulatory CD86 + cells through SARS infection (Clay et al., 2014). 
Senescence leads in the accumulation of ROS due to the attenuated 
antioxidative defense system. Redox imbalance activates of 
redox-sensitive transcription factors, such as nuclear factor kappa B 
(NF-κB), which promote the expression of proinflammatory genes, 
including IL1β, IL6, TNFα, and adhesion molecules (Chung et al., 2006). 
On the other hand, NF-κB activation negatively inhibits type I IFN 

signaling. In fact, the disease outcomes depend on the balance between 
the antiviral and proinflammatory responses, which are negatively 
influenced by aging (Smits et al., 2010). There is a correlation between 
ACE2 expression and COVID-19 fatality. Different expression of ACE2 
during adulthood is another cause for the severity of SARS-CoV 2 disease 
in aged patients (Chen et al., 2020b) (Fig. 3). 

Decreased sensitivity of females to COVID-19 disease could refer to 
sex hormones. Estrogen acts as an immunomodulatory factor in females, 
while testosterone is an immunosuppressor. SARS-CoV-2 replication is 
suppressed by estrogen signaling in females, so they have a lower viral 
load (Channappanavar et al., 2017). During an inflammation, estrogens 
repress monocyte-macrophage infiltration and NFκβ activation via 
suppression of special micro-RNAs such as miR125 and let7a in mac-
rophages. Ovariectomy or estrogen receptor antagonists increase 
monocyte-macrophage and neutrophil recruitment into the lung of the 
SARS-CoV-2 infected female mice and increase disease severity and 
mortality (Channappanavar et al., 2017). Immune related genes on the 
Xchromosome play a crucial role in feminine protection. For example, 
overexpression of TLR-7 in women, which is located on the X chromo-
some, upregulates IFN-β in plasmacytoid dendritic cells and improves 
antiviral protection (Seillet et al., 2012). Estrogen also enhances the 
ACE2 mRNA levels and reduce disease fatality in women (Bukowska 
et al., 2017). 

Single nucleotide polymorphisms (SNPs) are genetic variants be-
tween individuals. More than a hundred SNPs are identified in the ACE2 
gene, in which 2 SNPs were located within the coding region. Studies on 
SARS are demonstrated that these polymorphisms have no effect on 
disease outcomes (Chiu et al., 2004). ARDS studies have been shown 
that the presence of SNP located within intron 16 of the ACE gene is 
associated with higher survival rates (Imai et al., 2007). SNPs in the 
oligoadenylate synthetase 1 (OAS1) and Myxovirus resistance 1 (MxA) 
promoter region, IL12RB1, Toll-Like Receptor Adaptor Protein Ticam2, 
HLA-B*0703, and HLA-DRB1*0301 are involved in SARS susceptibility 
(Tang et al., 2008; Gralinski et al., 2017; Ng et al., 2004). 

Obesity increases the secretion of various cytokines and adipokines, 
such as TNF-α, IL-6, TGF-β, leptin, and adiponectin, which causes an 
inflammatory basal state that delays innate and acquired immune re-
sponses and allows the virus to spread (Honce and Schultz-Cherry, 
2019). Suppressor of cytokine signaling (SOCS) proteins are upregu-
lated in the peripheral blood mononuclear cell (PBMC) and lungs of the 
obese individuals and inhibit the production of type I and type III IFNs 
and pro-inflammatory cytokines (Teran-Cabanillas et al., 2014). In 
obese mice, alveolar macrophages are reduced and less capable to ex-
press type I IFN receptor and IFN-stimulated genes (Smith et al., 2009). 
CD4+ and CD8 + T cells of obese individuals produce more IL-5 and 
fewer IFN-γ, TNFα, granzyme B, and CD40 ligand (Paich et al., 2013). 
Obesity also increases the risk of many comorbidities such as type II 
diabetes, cancer and cardiovascular disease, leading them to severe 
COVID-2019 infection (Guh et al., 2009). Diabetes, hypertension and 
cardiovascular disease are other risk factors for COVID-19 that are 
associated with obesity, as these disorders are more common in people 
with higher BMIs. Renin–Angiotensin–Aldosterone System (RAAS) in-
hibitors, such as ACE inhibitors, angiotensin II type 1 receptor blockers 
(ARBs), or mineralocorticoid receptor antagonists (MRAs) are conven-
tional treatments for these conditions. RAAS inhibition increases 
expression of ACE2, so it enhances the viral load and prone individuals 
to the detrimental outcomes (Kuster et al., 2020). Different mechanisms 
are associated with immune paralysis in diabetes include: a) decrease 
the secretion of IFN-γ and TNF-α by T cells, NK cells, and macrophages, 
b) declined MHC-І expression and also antibody biological function 
because of glycation (Klekotka et al., 2015). Intensive immunosup-
pressive drugs are used in cancer patients make them sensitive to various 
viral infections, including SARS-CoV-2 (Arjeyni et al., 2017). 

Lung macrophages in smokers suppress the immune system more 
than non-smokers. These macrophages secrete low levels of IL-1, IL-6 
and TNF-α (Arcavi and Benowitz, 2004). NK cell activity and serum 
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levels of IgG and IgA are reduced in smokers (Ferson et al., 1979). ACE2 
expression is also increased in tobacco users (Cai, 2020). 

5. Conclusion 

Not surprisingly, that the differences in the immune system of chil-
dren and adults play a major role in the severity of the pathogenesis of 
COVID-19. During aging, the immune system changes, causing induce 
unfunctional cells and ineffective inflammation especially in response to 
infections. Therefore, because the severity of the disease varies from 
child to adult and depends on the severity of virus entry/replication and 
host immune responses, the treatment approach in COVID-19 is highly 
dependent on the stage of the disease. Also, future studies should focus 
on the evaluation and efficacy of immunotherapeutic agents that 

directly affect host immunopathologic responses. 
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Fig. 3. SARS-CoV-2 biogenesis cycle and prob-
ably action site of commonly used drugs in the 
early stage of acute infection. 
TMPRSS2 cleaves and activates SARS− COV-2 -S 
glycoprotein for binding to its target receptor 
(ACE2) on the epithelial cells of the respiratory 
tracts. After receptor binding, the virus enters, 
gains access to the host cell cytosol and repli-
cates. Following subgenomic RNA synthesis and 
assembly, virions are transported to the cell 
surface in vesicles and released by exocytosis. 
There are some potential approaches to prevent 
virus entry to the target cells and blocks several 
stages of life cycle of SARS− COV-2, for instance 
attachment, clathrin-mediated endocytosis, and 
replication. 1a > Fusion, 1b > Endocytosis, 2>
Viral-host membrane fusion and release of viral 
RNA, 3> Translation, 4> Proteolysis, 5> Traf-
ficking of newly synthesized viral proteins to 
the Golgi, 6> Transcription and replication of 
viral RNA, 7a > Assembly of mature Virion in a 
vesicle, 7b > Final Packaging, 8> Virion release 
via exocytosis. ACE2: Angiotensin− COnverting 
enzyme 2; SARS− COV2: severe acute respira-
tory syndrome coronavirus2.   
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