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Abstract: Snakebite is classified by the WHO as a
neglected tropical disease. Envenoming is a significant
public health problem in tropical and subtropical regions.
Neurotoxicity is a key feature of some envenomings, and
there are many unanswered questions regarding this
manifestation. Acute neuromuscular weakness with respi-
ratory involvement is the most clinically important
neurotoxic effect. Data is limited on the many other
acute neurotoxic manifestations, and especially delayed
neurotoxicity. Symptom evolution and recovery, patterns
of weakness, respiratory involvement, and response to
antivenom and acetyl cholinesterase inhibitors are vari-
able, and seem to depend on the snake species, type of
neurotoxicity, and geographical variations. Recent data
have challenged the traditional concepts of neurotoxicity
in snake envenoming, and highlight the rich diversity of
snake neurotoxins. A uniform system of classification of
the pattern of neuromuscular weakness and models for
predicting type of toxicity and development of respiratory
weakness are still lacking, and would greatly aid clinical
decision making and future research. This review attempts
to update the reader on the current state of knowledge
regarding this important issue.

Introduction

Snakebite is a neglected tropical disease of global importance

[1]. Kasturiratne et al. (2008) estimated that annually at least 1.2

million snakebites, 421,000 envenomings, and 20,000 deaths occur

due to snakebite worldwide [2]. The actual figures are likely to be

much higher than these estimates. A study in a rural Sri Lankan

community found that nearly two-thirds of snakebite related

deaths are not reported in hospital-based data [3]. A nationally

representative survey in Bangladesh suggested that incidence of

snakebite is much higher than previously estimated [4]. Data from

the Million Deaths Study in India estimates that snakebite deaths

are more than 30-fold higher than recorded in official hospital

returns [5].

Snakebite-related mortality is highest in resource-poor coun-

tries, and is directly related to socioeconomic indicators of poverty

[1]. The highest burden of morbidity and mortality related to

snakebite is seen in the rural poor communities of tropical

countries in South Asia, Southeast Asia, and sub-Saharan Africa

[2,6,7]. Increased exposure to snakes due to traditional agricul-

tural practices, lack of good health care services, poor access to

available services, influence of health-seeking behaviour on

accessing the available health care services, and lack of effective

antivenom all contribute to this [2,8].

Neurotoxicity is a well-known feature of envenoming due to

elapids (family Elapidae) such as kraits (Bungarus spp.) [9–28],

cobras (Naja spp.) [9,14,20,21,29–39], taipans (Oxyuranus spp.) [40–

46], coral snakes (Micrurus spp.) [47–51], death adders (Acanthophis

spp.) [52–54], and tiger snakes (Notechis spp.) [55–57]. It has also

been well described with pit vipers (family Viperidae, subfamily

Crotalinae) such as rattlesnakes (Crotalus spp.) [58–67]. Although

considered relatively less common with true vipers (family

Viperidae, subfamily Viperinae), neurotoxicity is well recognized

in envenoming with Russell’s viper (Daboia russelii) in Sri Lanka and

South India [9,68–75], the asp viper (Vipera aspis) [76–82], the

adder (Vipera berus) [83–85], and the nose-horned viper (Vipera

ammodytes) [86,87].

Acute neuromuscular paralysis is the main type of neurotoxicity

and is an important cause of morbidity and mortality related to

snakebite. Mechanical ventilation, intensive care, antivenom

treatment, other ancillary care, and prolonged hospital stays all

contribute to a significant cost of provision of care. And ironically,

snakebite is common in resource-poor countries that can ill afford

such treatment costs. The cost of neurotoxic envenomation is

easily overlooked in the face of high mortality, and surprisingly,

there are few data on the cost of caring for patients with

neurotoxic envenomation.

Several other acute neurological features are reported after

snake envenomation, which are likely to be due to direct

neurotoxicity. These have not been well studied, with available

data being mostly confined to case reports, and their potential

pathophysiological mechanisms remain unclear. Neurological

manifestations can also result from non-neurotoxic effects of

envenoming, such as cerebral haemorrhage and infarction due to

coagulopathy, and myotoxicity. This article will focus only on the

direct neurotoxic effects of envenoming.

There are many challenges to the study of neurotoxicity after

snakebite. There is considerable variation between individual

patients in the clinical manifestations following envenoming by

any particular species. Clinical presentations of neurotoxicity are

likely to be colored by the emotional response to a snakebite,

neurological changes related to hypotension, shock and other

organ dysfunction (such as renal impairment), and by the non-

neurotoxic neurological manifestations of envenoming such as

those due to coagulopathy. Comparing findings from different

studies is difficult, as there is a lack of uniformity in description or

grading of neuromuscular weakness, or in assessment of response
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to treatment. Interpretation of neurophysiological findings is also

difficult as different methodologies have been used between

studies.

The effects of a bite from one snake species can also vary, as

venom constituents in one species may vary seasonally, geograph-

ically, as well as ontogenetically, and some venoms contain a

number of different neurotoxins.

Accurate case definition is the key to meaningful interpretation

of available data and comparison between studies. However, this is

hampered by the difficulties in identifying envenoming snakes,

which have been previously highlighted [88–91]. Previous studies

on snake identification have yielded variable results [92,93].

Immunodiagnosis of snake venom antigen is the most reliable way

of identifying the biting species, but cost and availability issues

preclude its use in the resource-poor settings where snakebite is

common [88–91]. Identification of the killed snake by trained

health staff is perhaps the best alternate way, but snake

identification without specific training can be incorrect and can

potentially lead to serious mistakes in management. Also, rates of

snake capture are low in most series, varying from 5–30% [14,94–

96]. Use of a clinical scoring system [89] or a syndromic

classification [90] has been suggested to improve snake identifi-

cation in the community setting, but these approaches have their

own drawbacks.

Methodology

We searched PubMed with varying combinations of the search

terms ‘‘snake bite,’’ ‘‘snake envenoming,’’ ‘‘snake venom,’’

‘‘neurotoxicity,’’ ‘‘neurology,’’ and ‘‘neurological manifestations.’’

We acquired only English-language articles. We also obtained

articles on ‘‘neuromuscular junction’’ and ‘‘neuromuscular block.’’

Additional related articles were obtained from citation tracking of

retrieved articles and tracking of ‘‘related citations’’ in PubMed.

Altogether, 624 titles and abstracts were screened, and 287 full

articles were retrieved and read by a single author (UKR) for data

acquisition. The reference list was further modified following

reviewers’ comments.

Pathophysiological Basis of Neuromuscular
Paralysis

The peripheral neuromuscular weakness after snakebite results

from defective neuromuscular junction (NMJ) transmission. It is

pertinent to briefly review the current knowledge on NMJ

transmission and neuromuscular block, to better understand the

effects of snake venom at the NMJ [97–104] (Figure 1).

Neuromuscular Transmission and Neuromuscular
Block

At the pre-synaptic level, the motor nerve axon terminal is

responsible for the synthesis, packaging, transport, and release

of the neurotransmitter acetylcholine (ACh). Release of ACh

in response to an incoming nerve action potential is triggered

by the opening of voltage-gated calcium channels and the

influx of calcium ions. Increased intracellular calcium

concentration triggers a cascade of events that leads to the

formation of a fusion complex made up of SNARE (Soluble

N-ethylmaleimide-sensitive-factor Attachment REceptor) pro-

teins, which enables fusion of ACh vesicles to the nerve

terminal membrane and ACh release [98–102,104]. Nicotinic

acetylcholine receptors (nAChRs) at the nerve terminal (pre-

synaptic neuronal autoreceptors -a3b2) facilitate release of

increasing quantities of ACh, by mobilising ACh vesicles from

a reserve pool to a releasable pool, in response to high

frequency stimulation via positive feedback systems [98–100].

Interference with neuromuscular transmission at a pre-

synaptic level can occur at voltage-gated calcium channels

(e.g., Lambert Eaton myasthenic syndrome), SNARE proteins

(e.g., botulism), potassium channels (e.g., neuromyotonia), or

at the neuronal nAChRs.

ACh released from the nerve terminal diffuses rapidly across the

synaptic cleft. Degradation of ACh at the synaptic cleft by acetyl

cholinesterase (AChE) is necessary for the termination of its action.

At the post-synaptic level, ACh binds to muscle nAChRs (adult

or mature type—a1b1ed) on the post-synaptic membrane.

nAChRs are ligand-gated ion channels, and their activation by

ACh leads to an influx of sodium and calcium cations,

accompanied by efflux of potassium ions through potassium

channels, and produces an end-plate potential. If adequate ACh is

released, this end-plate potential is propagated by the opening of

sodium channels along the perijunctional zone and muscle

membrane and initiates calcium release and muscle contraction

[98–100,102].

Neuromuscular block at the post-synaptic level is classified

into non-depolarising and depolarising types. Depolarising

neuromuscular blocking agents (NMBAs) (such as suxametho-

nium) bind irreversibly to the post-synaptic muscle nAChRs,

and produce a non-competitive block, which is not reversed by

acetyl cholinesterase inhibitor drugs (AChEIs). Depolarising

NMBAs initially produce excessive depolarisation [97], which

can be seen as muscle fasciculations [102]. This is followed by

secondary changes responsible for muscle paralysis such as

receptor desensitisation, inactivation of and blockage of

voltage-gated sodium channels, and alterations in ion perme-

ability of the membranes [97,98]. Non-depolarising NMBAs

(such as curare and its derivatives—d-tubocurarine, pancur-

onium, atracurium), in contrast, competitively inhibit ACh

binding to the post-synaptic muscle nAChRs, and produce a

competitive type of block. They repetitively associate with and

dissociate from the ACh binding sites, rather than producing

prolonged binding, and therefore can be displaced by ACh

[97]. Blockade, therefore, can be reversed by AChEIs (such as

edrophonium, neostigmine, and pyridostigmine) which act by

increasing the available ACh at the synaptic cleft. The nAChR

has two ligand binding sites, and both must be simultaneously

occupied by ACh for the receptor to be active. The occupation

of a single binding site by one molecule of a NMBA would

therefore effectively ‘‘block’’ the receptor [98–100,102]. Non-

depolarising NMBAs, however, in addition have been shown to

produce pre-synaptic effects by binding to the pre-synaptic,

neuronal nAChRs (a3b2) [97–99,105,106], and this finding has

challenged the traditional simplistic concept of pre-synaptic

and post-synaptic block. Neurophysiologically, this dual effect

is reflected by the combination of reduction in twitch

amplitude (due to blockade of post-synaptic muscle nAChRs)

and fade of the twitch height responses on repetitive (train-of-

four or tetanic) stimulation (due to blockade of pre-synaptic

neuronal nAChRs) [97,98,100]. Depolarising NMBAs, in

contrast, only produce reduction in the twitch amplitude, but

do not produce the tetanic or train-of-four (TOF) fade [98–

100]. Non-depolarising block also produces a characteristic

post-tetanic potentiation following high frequency (tetanic)

stimulation [99,100,102,107]. NMBAs are known to impair

NMJ transmission by several additional effects on the nAChRs,

without binding to the receptor binding sites. These include

alteration of receptor dynamics, desensitization, and channel

blockade [102].
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Figure 1. Sites of action of snake neurotoxins and other substances on the neuromuscular junction. Schematic representation of the
neuromuscular junction showing different sites of action of snake neurotoxins, other toxins, and pharmacological substances, and sites of
involvement in disease states (examples indicated where relevant). 1. Synaptic vesicular proteins: Snake toxins: beta-bungarotoxin (Bungarus
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Snake Venom Toxins and Neuromuscular Block
(Table 1, Figure 1)

Traditionally it has been considered that snake venom toxins

cause two types of neuromuscular blockade, pre-synaptic and post-

synaptic; but this view may be oversimplistic and needs to be

reviewed in view of the recent insights into neuromuscular

transmission and descriptions of different patterns of neurotoxicity.

Much of the current understanding of neurotoxicity has come

from animal studies using purified individual toxins.

The pre-synaptically active neurotoxins (beta-neurotoxins—

mostly neurotoxic phospholipase A2 toxins, PLA2s) bind to the

spp.), taipoxin (O. scutellatus); Other toxins: botulinum toxin, tetanus neurotoxin. 2. Voltage-gated calcium channel: Snake toxins: calciseptine
(Dendroaspis spp.), beta- bungaratoxin (Bungarus spp.); Other toxins: omega-conotoxin (marine snail, Conus spp.); Disease states: Lambert-Eaton
myaesthenic syndrome. 3. Pre-synaptic membrane: Snake toxins: phospholipase A2 toxins. 4. Pre-synaptic ACh receptor: Snake toxins:
candoxin (Bungarus candidus); Other toxins: curare; Pharmacological substances: non-depolarising blocking drugs (atracurium). 5. Voltage-gated
potassium channels: Snake toxins: dendrotoxins (Dendroaspis spp.); Disease states: neuromyotonia, Isaacs’ syndrome; Pharmacological substances:
magnesium sulphate, aminoglycosides. 6. Acetylcholine: Lysis by exogenous acetylcholinesterase in snake venom: cobra venom (Naja spp.). 7.
Acetylcholinesterase: Inhibitors of endogenous AChE in snake venom: fasiculins (Dendroaspis spp.). 8. Post-synaptic ACh receptors: Snake
toxins: alpha-bungaratoxin (Bungarus spp.), candoxin (B. candidus), azemiopsin (A. feae), waglerin (T. wagleri ); Other toxins: alpha-conotoxin (marine
snail, Conus spp.); Disease states: myasthenia gravis; Pharmacological substances: depolarising blocking agents (e.g., succinylcholine), non-depolarising
blocking drugs (e.g., atracurium). 9. Voltage-gated sodium channels: Snake toxins: crotamine (Crotalus spp.); Other toxins: pompilidotoxin (wasps),
delta-conotoxin (Conus spp.), tetradotoxin (pufferfish).
doi:10.1371/journal.pntd.0002302.g001

Table 1. Summary of some key animal studies with individual snake neurotoxins.

Toxin
Authors; year;
[reference] Study description Pathological change

Physiological/clinical
effects

Beta-
bungarotoxin

Dixon & Harris;
1999; [108]

In vitro–isolated nerve-muscle
preparation (phrenic
nerve-hemidiaphragm)
in mice; In vivo nerve-muscle
preparation in rats (sciatic
nerve-soleus muscle; e/m:
labeling of AChR,
synapatophysin, or axonal
neurofilament)

1) Depletion of synaptic vesicles (e/m: loss of synpatophysin
immunoreactivity); 2) Destruction of motor nerve terminal
(e/m: mitochondrial damage, Schwaan cell processes invading
synaptic cleft); 3) Degeneration of axons (staining for anti-
neurofilament antibodies): denervation starts at 3 h, 90% by 6 h,
and complete by 24 h; 4) Reinnervation (by anti-synaptophysin
labeling, labeling for axonal neurofilament): all NMJs reinnervated
by 5 days, stable by 7 days, 90% by 14–21 days, reinnervation
with multiple collateral innervation

Early onset paralysis—initial
facilitation (maximal at
30 min), followed by
irreversible failure of NMJ
transmission (max. at
210 min)

Beta-
bungarotoxin

Prasarnpun et al.;
2004; [117]

Rat phrenic nerve-
hemidiaphragm

- NMJ transmission failure—lag
phase of 20–60 min,
complete failure by 120–
240 min

Beta-
bungarotoxin

Prasarnpun et al.;
2005; [109]

Rat soleus muscle; e/m:
NMJs and nAChRs identified;
synaptic proteins
(synaptophysin, SNAP-25,
and syntaxin) labeled; sodium
channels labeled; axon counts

1) 3–6 hours: depletion of synaptic vesicles, mitochondrial
damage, transient upregulation of voltage-gated sodium
channels, reduction in immunoreactivity of synaptic proteins;
2) Degeneration of terminal boutons, with isolation from post-
synaptic membrane by Schwann cell processes, and withdrawal
from synaptic clefts; denervation complete by 12 h; 3)
Reinnervation starts at 3 days, and complete by 7 days.
Progressive increase in the immunoreactivity of SNARE proteins:
75% by 7 days; 4) Persistent axonal loss at 6 months

Flaccid paralysis by 3 h;
Return of function starting by
3 days, and complete by 7
days

Alpha-
bungarotoxin

Lee et al.; 1977;
[106]

In vivo cat sciatic
nerve-tibialis anterior
preparation

- Gradual onset NMJ block—
50% block in 30–60 min; No
fade with tetanic or train-of-
four stimulation; Post-tetanic
facilitation

Taipoxin,
notexin

Cull-Candy et al.;
1976; [111]

Isolated mouse phrenic
nerve-hemidiaphragm
preparation

Nerve terminal damage—depletion of synaptic vesicles,
axoplasmic vacuoles, mitochondrial change, axolemmal
indentations

NMJ block—Initial latency 40–
60 min; maximal 110–
120 min

Notexin,
taipoxin

Harris et al.;
2000; [118]

In vivo rat soleus muscle;
e/m: labeling of AChR and
axonal neurofilament

1) Nerve terminal degeneration (depletion of synaptic vesicles,
mitochondrial damage): start at 1 h, 70% by 24 h; 2) Axonal
degeneration; 3) Reinnervation start at 2–3 days, 88% by
5 days, complete by 21–28 days; 4) Abnormal collateral
innervation persistent at 9 months

-

Crotoxin Hawgood et al.;
1977; [233]

Isolated mouse phrenic
nerve-hemidiaphragm
preparation

Inhibit quantal release of ACh at nerve terminal -

Candoxin Nirthanan et al.;
2002; [135];
2003; [134]

Rat tibialis anterior muscle;
mouse phrenic nerve-
hemidiaphragm; binding
to muscle nAChRs

- Non-depolarising post-
synaptic block; rapid onset;
reversible with AChEIs;
significant TOF fade

doi:10.1371/journal.pntd.0002302.t001
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motor nerve terminals, leading to depletion of synaptic ACh

vesicles, impaired release of ACh, and later, degeneration of the

motor nerve terminal [108–111]. They produce neuromuscular

block that occurs in three phases: an immediate depression of ACh

release, followed by a period of enhanced ACh release, and then

complete inhibition of NMJ transmission [108,112–116]. The

effects on neuromuscular transmission develop following a latency

period of 20–60 minutes [111,114,117]. The binding of pre-

synaptic toxins to the nerve terminal is irreversible [109,111].

Clinical recovery is slow as it is dependent on regeneration of the

nerve terminal and formation of a new neuromuscular junction

[109,110]. Hence, patients with respiratory failure may need

respiratory support for a longer period before spontaneous

breathing can resume [108,110,113,114,118]. Treatment with

antivenom or AChEIs is unlikely to be effective in pre-synaptic

toxicity [108,109,114,118], and incomplete recovery and delayed

effects are more likely [108].

Pre-synaptic toxins are best illustrated by beta-bungarotoxin (b-

BuTX) of kraits (Bungarus spp.) which predominantly has potent

PLA2 enzymatic activity. Dixon and Harris (1999) first highlighted

the significance of denervation in producing the treatment-

resistant paralysis in krait bite [108]. They showed that beta-

bungarotoxin produces pre-synaptic toxicity characterized by

depletion of synaptic vesicles, destruction of motor nerve

terminals, and axonal degeneration followed by reinnervation

[108]. Prasarnpun et al. (2004, 2005) [109,117] showed that beta-

bungarotoxin produced calcium influx through voltage-gated

calcium channels and increased release of ACh via SNARE-

complex dependent mechanisms leading to depletion of synaptic

vesicles. They were able to demonstrate the correlation between

pathological changes and the neuromuscular transmission failure

induced by beta-bungarotoxin [109]. Rat muscles inoculated with

beta-bungarotoxin were paralysed within 3 hours. This was

associated with loss of synaptic vesicles, mitochondrial damage,

transient upregulation of voltage-gated sodium channels, and a

reduction in immunoreactivity of SNARE proteins (synaptophysin,

SNAP-25, and syntaxin). Between 3 and 6 hours after inoculation,

nerve terminals showed evidence of degeneration. These included

degeneration of terminal boutons, their isolation from the post-

synaptic membrane by Schwann cell processes, and withdrawal

from synaptic clefts. By 12 hours, all muscle fibres were

denervated. Reinnervation began at 3 days with the appearance

of regenerating nerve terminals, a return of neuromuscular

function in some muscles, and a progressive increase in the

immunoreactivity of SNARE proteins. Full recovery occurred at 7

days [109]. Harris et al. (2000) showed that taipoxin (from taipans,

Oxyuranus spp.) and notexin (from the Australian tiger snake,

Notechis scutatus) had effects similar to beta-bungarotoxin [118].

They suggested that all pre-synaptically active PLA2s produce

similar effects [118].

Although the molecular basis of pre-synaptic toxicity induced by

the PLA2s is still not completely understood [119–127], more

recent studies have added significantly to our current knowledge

[119–133]. They have shown that PLA2s from snake venom

neurotoxins produce similar but complex effects on the pre-

synaptic nerve terminal. These include entry into nerve terminals

after binding to specific receptors on the pre-synaptic membrane,

morphological changes such as nerve terminal bulging, changes in

mitochondrial morphology and permeability, increase in cytosolic

calcium levels, changes in expression and interactions of SNARE

proteins, increased vesicle fusion and neurotransmitter release, and

impaired vesicle recycling. Montecucco and colleagues have

shown that the effects produced by four different snake venom

PLA2s (beta-bungarotoxin, taipoxin, notexin, and textilotoxin)

were similar, suggesting a similar mechanism of action for pre-

synaptic neurotoxins. Hydrolysis of the phospholipids of the pre-

synaptic membrane and membrane destabilization by the products

of hydrolysis are likely to be key drivers in this process [122–

124,127,131,132].

The post-synaptically active neurotoxins (alpha-neurotoxins)

bind to the post-synaptic muscle nAChRs. Alpha-neurotoxins

belong to the group of ‘‘three-finger toxins’’ (3FTXs) characterized

by a shared toxin structure resembling three outstretched fingers of

a hand [134–137]. They are classified into three main groups—

long-chain, short-chain, and non-conventional alpha-neurotoxins

[134–137]. They resemble the action of d-tubocurarine (dTC),

and are therefore called ‘‘curare-mimetic’’ neurotoxins. dTC

classically produces a reversible, non-depolarising post-synaptic

block by competitive inhibition of ACh binding to the muscle

nAChR [97]. It also inhibits the pre-synaptic neuronal nAChRs,

producing the characteristic TOF or tetanic fade. However, there

can be significant variations in the effects of the so-called ‘‘curare-

mimetic’’ neurotoxins on the post-synaptic nAChR. Some toxins

(e.g., alpha-cobratoxin) have been shown to produce a compet-

itive, non-depolarising type of post-synaptic blockade similar to

dTC [138,139]. In this type of toxicity, antivenom may facilitate

dissociation of toxin from the ACh receptor and accelerate

recovery [11,110], and a clinical response to AChEIs, similar to

myasthenia, is more likely [140]. Most of the alpha-neurotoxins,

however, bind almost irreversibly to the post-synaptic nAChRs,

even though they produce a non-depolarising type of block

[106,134,136]. Their action, therefore, is not readily reversible by

antivenom or AChEIs. These include most of the long-chain

3FTXs such as alpha-bungarotoxin.

Lee et al. (1977) showed that alpha-bungarotoxin (a-BuTX)

produced a pure post-synaptic, non-depolarising, but almost

irreversible neuromuscular blockade [106]. This was characterized

by slow onset, persistent and dose-dependent progression, lack of

recovery for a long period, and lack of sustained reversibility to

AChEIs. Post-tetanic facilitation was prominent. Tetanic and

TOF fade were not seen, and therefore this differed from the type

of block seen with d-tubocurarine [106]. The lack of tetanic and

TOF fade is attributed to the failure of alpha-bungarotoxin to

block the pre-synaptic neuronal nAChRs [97–99].

The recent insights into NMJ transmission have enabled better

and more comprehensive characterization of the more recently

described toxins. Candoxin, a novel toxin isolated from the venom

of the Malayan or blue krait (Bungarus candidus), is a non-

conventional 3FTX with structural similarities to alpha-bungaro-

toxin [134–136]. However, in contrast to the nearly irreversible

blockade produced by alpha-bungarotoxin, candoxin produces a

readily reversible block of the post-synaptic nAChR. In addition,

candoxin also inhibits the pre-synaptic, neuronal AChRs and

produces tetanic and TOF fade on rapid repetitive stimulation

[134,136].

Although reversibility of blockade would be of crucial impor-

tance in the success of therapeutic interventions, what determines

reversibility seems unclear. Low receptor binding affinity and a

short polypeptide chain length of the toxin molecules have been

postulated as likely reasons, but it is more likely that substitution of

amino acid residues in regions that interact with the AChR may be

responsible [134,136].

Some snake venom toxins interfere with NMJ transmission

through various other mechanisms. Some pre-synaptic toxins,

such as the dendrotoxins from venoms of the Eastern green

mamba (Dendroaspsis angusticeps) and the black mamba (D. polylepis),

enhance ACh release from the nerve terminals by inhibiting

potassium channels and produce a neuromuscular block similar to
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depolarising block [114,141]. A different type of toxin from D.

angusticeps acts as an AChE inhibitor, thus increasing the

availability of ACh at the NMJ. They have been named fasciculins

due to their effect of producing generalized, long-lasting fascicu-

lations [136,142–144].

Snake Venom and Neuromuscular Block

Snake venoms do not contain a homogenous single toxin, but

are complex cocktails of enzymes, polypeptides, non-enzymatic

proteins, nucleotides, and other substances, many of which may

have different neurotoxic properties [91,112,113,116,134,

145,146] (Table 2). The studies of Chang and others of the

Chinese (or formerly Formosan) cobra (Naja atra) venom (1966,

1972) [138,139] highlighted the complexity of multiple actions of

different neurotoxins in the same venom. They demonstrated that

the main neuromuscular blocking effect was due to cobrotoxin,

which produced a curare-like non-depolarising, competitive post-

synaptic block, which was antagonised by neostigmine. It had no

effect on nerve conduction. However, the venom also contained

cardiotoxin, which interfered with axonal conduction and

produced muscle depolarisation [138,139].

Characterization of new toxins continues to add to the rich

diversity of snake venom, and many types of venom are now

known to contain both pre- and post-synaptically active toxins. For

example, a post-synaptic toxin (DNTx-I—Daboia Neurotoxin 1)

has been isolated from the venom of Russell’s viper (Daboia russelii)

[146], in addition to the well-known pre-synaptic PLA2 toxin

[147,148]. Venom of kraits (Bungarus spp.) consists of several

different types of neurotoxins. In addition to the alpha-bungaro-

toxin (post-synaptic block) and beta-bungarotoxin (pre-synaptic

block) already described, it also contains kappa-bungarotoxin

which binds to the neuronal nAChR at the post-synaptic level in

central cholinergic synapses in autonomic ganglia [109,149,150].

Experimental data on physiological, pathological, and ultra-

structural changes due to snake neurotoxins are derived from

studies in animal models, in vitro nerve-muscle preparations, or

preparations of nAChRs. However, such laboratory data may not

accurately reflect the effects of snake venom in humans. It is

known that the effects of envenoming can vary depending on the

bitten species, and this may be due to the snake’s prey preferences.

For example, candoxin from the Malayan or blue krait (B.

candidus), which feeds mainly on rodents and reptiles, preferentially

binds to murine nAChRs rather than to those of chick origin

Table 2. Some examples of toxin diversity in snake venom.

Snake type Toxin Species Type of toxin Neurotoxic effects References

Cobra (Naja spp.) Alpha-cobratoxin N. kaouthia; N.
siamensis

Long-chain
alpha-neurotoxin (3FTX)

1) Bind to post-synaptic muscle nAChRs—produce
reversible, non-depolarising block; 2) Bind to
neuronal a7 nAChRs

[136,137,234]

Cobrotoxin N. atra Short-chain
alpha-neurotoxin (3FTX)

Post-synaptic non-depolarising block [138,139]

Cardiotoxin N. atra 3FTX Blocks axonal conduction, cytotoxicity [138,139]

Toxin-alpha N. nigricollis Short-chain
alpha-neurotoxin (3FTX)

Post-synaptic non-depolarising block [136]

‘‘Weak toxin,’’ WTX N. kaouthia Non-conventional
alpha-neurotoxin (3FTX)

1) Bind to post-synaptic muscle nAChRs—produce
irreversible, non-depolarising block; 2) Bind to
neuronal a7 nAChRs

[136,235]

Krait (Bungarus
spp.)

Alpha-bungarotoxin B. multicinctus Long-chain
alpha-neurotoxin (3FTX)

Bind to post-synaptic muscle nAChRs—produce
irreversible, non-depolarising block

[106,136]

Beta- bungarotoxin Bungarus spp. Phospholipase A2 Pre-synaptic block [108,109,117]

Kappa-bungarotoxin B. multicinctus Kappa-neurotoxin (3FTx) Block neuronal nAChRs in autonomic ganglia [137,149,150,236,237]

Candoxin B. candidus Non-conventional
alpha-neurotoxin (3FTX)

1) Bind to post-synaptic muscle nAChRs—produce
reversible, non-depolarising block; 2) Bind to
neuronal a7 nAChRs

[134–136]

Russell’s viper
(Daboia spp.)

Phospholipase A2
activity

D. russelii Phospholipase A2 Pre-synaptic block [147,148]

Daboia Neurotoxin-1
(DNX-1)

D. russelii Short-chain neurotoxin Post-synaptic block [146]

Viperotoxin-F D. russelii Phospholipase A2 Pre-synaptic block [113,238]

Mamba
(Dendroaspis spp.)

Dendrotoxins—
alpha, delta, I, K

D. angusticeps, D.
polylepis

3FTX Block neuronal voltage-gated potassium
channels—pre-synaptic +/2post-synaptic
effects

[141,200]

Fasciculins D. angusticeps, D.
polylepis

3FTX Inhibit AChE [143,144]

Muscarinic toxins D. angusticeps 3FTX Muscarinic effects by binding to muscarinic AChRs [136,142,204]

Calciseptine D. polylepis Inhibit voltage-gated calcium channels [239]

Rattlesnake
(Crotalus spp.)

Crotoxin C. durissus Phospholipase A2 1) Pre-synaptic block; 2) Post-synaptic effect by
desensitization of nAChR

[116,228,233,240,241]

Mojave toxin C. scutulatus Phospholipase A2 Pre-synaptic ion channel blocker [116,170,242]

doi:10.1371/journal.pntd.0002302.t002
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[135]. Irditoxin from the venom of the brown tree snake (Boiga

irregularis) shows taxa-specific lethal toxicity to birds and lizards,

but not toward mice. In vitro studies showed that it produced

potent post-synaptic toxicity similar to alpha-bungarotoxin at

avian NMJs, but not in mammalian NMJs [151]. Waglerin from

Wagler’s pit viper (Tropidolaemus wagleri) binds more tightly to

mouse nAChRs than to those from rats or humans [152].

Similarly, interspecies differences in sensitivity of nerve-muscle

preparations to pre-synaptic snake toxins have been well

documented [113].

Furthermore, some in vitro studies of toxins have been done

on nAChRs of abcd type, which is the foetal type of nAChR,

in contrast to the adult (or mature) type (abed) of nAChR

normally expressed in the NMJ [135]. It is known that the two

different types of receptors have different opening times and

speeds of ion conductance [97,98]. It is likely that the effects of

toxins on the two different types of receptor, and therefore the

in vivo effects on humans, may be different to what may be

observed in the laboratory. In this context, it is interesting to

note that waglerins from Wagler’s pit viper (Tropidolaemus

wagleri) and azemiopsin from Fea’s viper (Azemiops feae) have

shown specificity toward the ontogenetic state of the nAChR,

with higher binding affinity to the adult (or mature) form than

the foetal form [152–155].

Clinical Manifestations

Acute Neuromuscular Paralysis (Figures 2, 3, 4)
Reported prevalence rates of neuromuscular weakness vary

between series, and with different snake species and different study

settings. As seen from above, each toxin can have a multitude of

effects, venom of one snake species is a mix of multiple toxins, and

venom composition varies between species of same genus. In

addition, intraspecies variations in venom compositions are well

known. It is therefore not surprising that wide variation is seen in

the neurotoxic effects.

Possible methodological differences and lack of uniformity in

description contribute to the large variation between studies, and

make interpretation of data from different studies difficult. Ptosis is

reported in between 70–93% of patients in most series, and

extraocular muscle weakness in 68–82% [9–11,42,73,75,156].

Respiratory muscle weakness is reported in 27–87% [9–

11,25,42,45,156]. Case fatality rates with neurotoxic envenoming

again show wide variation, usually ranging between 4–11%

Figure 2. Respiratory paralysis in neurotoxic envenoming. Sri Lankan patient with severe neurotoxicity and respiratory paralysis being
ventilated following a cobra (Naja naja) bite. (Photograph courtesy of Prof. S. A. M. Kularatne, University of Peradeniya, Sri Lanka. The purpose of the
photograph has been explained to the patient, and consent obtained for potential publication.)
doi:10.1371/journal.pntd.0002302.g002
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[10,11,14,20,25,26,31,42,94,156], but rates as high as 37% have

been reported [20]. Variations in case fatality are likely to be

influenced by many factors including intensity of staff observa-

tion, development of respiratory failure, and availability of

ventilation. Intensive care units are more likely to admit more

severe patients with respiratory involvement [11,26,94,157],

and therefore may have higher mortality rates than less-biased

samples. Delays in accessing ICU care, and lack of adequate

facilities for optimal care in resource-limited areas where

snakebite is common, also would contribute to higher mortality

[20].

The envenoming snake species is highly likely to influence the

clinical presentation and outcome, but many studies have

considered together bites from different snake species

[9,14,26,37,94,156–158]. Such differences are perhaps unavoid-

able as confirming the identity of the envenoming snake is often

difficult. Only a few studies have reported snake identification by

detection of venom antigens [21,30,31,42,45,69,159]. A reason-

ably representative picture of neurotoxicity with different snakes

can only be obtained from studies with larger numbers of

unselected patients admitted to general care units, accurate

species identification, and a focus on bites by a single type of

snake (see Table 3).

Respiratory Muscle Weakness
Many patients with neurotoxicity develop ptosis and extraocular

muscle weakness, but only a few will develop respiratory muscle

weakness. Factors that determine development of respiratory

muscle weakness in some patients are not clear. The traditionally

held view that it is related to the dose of venom and the severity of

envenoming, perhaps modified by antivenom therapy, has not

been adequately addressed. The possibility that distinct patterns of

neuromuscular weakness exist in snake envenomation has not

been studied. A parallel may be drawn with myasthenia gravis

where two forms of weakness, ocular and generalized, are well

known. Extraocular muscles are developmentally, histologically,

ultrastructurally, immunologically, metabolically, and functionally

different to other skeletal muscle groups [160–166]. They have a

mixture of several different fibre types, including singly innervated

fast-twitch fibres and multiply innervated slow-twitch fibres

[160,161,165]. Their NMJs are different, with lower AChR

densities and lower quantal ACh contents [165]. Both adult (abed-)

Figure 3. Bilateral ptosis and facial weakness in neurotoxic envenoming. Sri Lankan patient with bilateral ptosis and facial weakness
following a Krait (Bunagrus caeruleus) bite. (Photograph courtesy of Prof. S. A. M. Kularatne, University of Peradeniya, Sri Lanka. The purpose of the
photograph has been explained to the patient, and consent obtained for potential publication.)
doi:10.1371/journal.pntd.0002302.g003
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and foetal (dbcd-) isoforms of nAChR are expressed in adult

extraocular muscles, unlike in other skeletal muscles

[163,165,166]. It is not surprising that they are involved

differently in various pathological processes. They are prefer-

entially affected in some diseases such as myasthenia and

chronic progressive ophthalmoplegia, and selectively spared in

Duchenne muscular dystrophy and amyotrophic lateral sclerosis

[161,163,164]. There needs to be further study at the molecular

level of the effect of different snake venom neurotoxins on

development of respiratory muscle weakness.

Ptosis and extraocular weakness are commonly reported in Sri

Lankan Russell’s viper envenoming [9,69,72,73,75], but reports of

respiratory involvement are sketchy [9,75].

It is known that different toxins have different affinities to the

two isoforms of muscle nAChRs [152–155] (as described earlier),

but whether this can explain the different patterns of selective

muscle group involvement needs further study.

The natural history of neurotoxic envenomation is likely to

vary with the degree of envenoming and snake species, and

between patients. There are little data on the natural course, as

it can be affected by treatment. In a rare case series of 60

patients with envenoming by the many-banded krait (Bungarus

multicinctus) in Vietnam for whom antivenom was not available,

87% needed mechanical ventilation for a mean of 8 days, the

mean duration of the ICU stay was 12 days, and hospital

mortality was 7% [11].

Neurotoxicity, Type of Snake, and Possible
Geographical Variation

There is a clear variation in the propensity of similar species of

snakes to produce different patterns of neuromuscular weakness in

different geographical locations. For example, the Philippine cobra

(Naja philippinensis) produces more neurotoxicity and less local

swelling [31] compared to other Asian cobras [21,32,38]. There

are several reports of neurotoxicity due to envenoming by Russell’s

viper (Daboia russelii) in Sri Lanka and South India, in contrast to

reports of bites by Russell’s viper from other countries

[7,9,68,69,72–75].

These geographical differences may be due, at least in part, to

interspecies and intraspecies differences in venom compositions.

The venom composition in Russell’s viper in Sri Lanka (Daboia

russelii) and South India (D. russelii) was found to be different from

that found in Pakistan (D. russelii), Thailand (D. siamensis), and

Taiwan (D. siamensis) [167]. However, even with similar venom

compositions, the difference between clinical reports from Sri

Lanka and India are striking. While neurotoxicity has been

reported in a majority (,80%) of Sri Lankan patients with

Figure 4. Neurotoxicity in Russell’s viper envenoming. Sri Lankan farmer with Russell’s viper (Daboia russelii) envenoming: tissue necrosis at
bite site, haematuria, and bilateral ptosis. (Photographs courtesy of Prof. S. A. M. Kularatne, University of Peradeniya, Sri Lanka. The purpose of the
photographs has been explained to the patient, and consent obtained for potential publication.)
doi:10.1371/journal.pntd.0002302.g004
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Russell’s viper envenoming [69,73,75], there are only isolated case

reports from India [7,74]. Although these differences may be

attributed to poor reporting, a prospective case series of viper bites

from India did not report any neurotoxicity [168]. In addition,

there are several reports of fascinating regional variations in

venom composition and potency from the same species (intraspe-

cies variation) within the same country, e.g., Russell’s viper (Daboia

russelii) in India [147,169], the Mojave rattlesnake (Crotalus

scutulatus) in the United States [170], the asp viper (Vipera aspis)

in France [76,81], and tiger snakes (Notechis scutatus) in Australia

[171].

Neurophysiological Changes in Neuromuscular
Paralysis

Surprisingly few human data are available on the acute

neurophysiological changes after snakebite. The available data

mainly examine the defective transmission at the neuromuscular

junction, with evidence for both pre-synaptic and post-synaptic

defects (see Table 4). Interpretation of the findings from these

studies is difficult, as different methodologies have been used (e.g.,

different rates of repetitive stimulation). Several articles describe

neurophysiological changes, but carry insufficient details of the

neurophysiological assessments [172]. There are very little data on

single-fibre EMG findings, which would best document defective

NMJ transmission.

Treatment of Neuromuscular Paralysis in Snake
Envenoming (Table 5)

Antivenom in Neurotoxicity
There are many unresolved questions regarding the use of

antivenom in snake envenomation–related neurotoxicity, and

available reports show conflicting results. Differences in study

methodology (species of snake, single snake type or ‘‘mixed bag,’’

presence of respiratory paralysis, severity of envenoming, delays to

treatment) are likely to contribute significantly to the reported

variations in response to treatment. In addition, such variations

may well be related to the differences between pre-synaptic and

post-synaptic types of toxin in snake venom, and also to the

specificity of antivenom to the envenoming snake species. How

much of the reported recovery may be attributable to spontaneous

recovery is not clear, and there are a number of reports of recovery

from neuromuscular paralysis without antivenom [11,173,174].

There are few well-documented reports of benefit with antivenom

[18,48]. Even in such reports, benefits have not been consistent

and were seen only in some patients. In contrast, many of the well-

documented case series report no benefit with antivenom in

neuromuscular failure [10,21,27,30,42,61]. However, several

studies have observed improvement in neurotoxicity when

antivenom had been administered very early [40,42,54,69].

Antivenom cannot neutralise bound venom, and can be effective

only if given early enough to neutralise circulating venom before it

binds to target sites [42,94]. It is likely that early administration is

critical for success. Placebo-controlled randomized clinical trial

data of antivenom in neurotoxicity are lacking. In a randomized

double-blind trial in Philippine cobra (Naja philippinensis) enven-

oming, antivenom was not found to be effective [30]. However, in

a recent non-randomized trial from Vietnam, antivenom was

reported to be beneficial in patients with envenoming by the

many-banded krait (B. multicinctus) [175]. A key limitation in this

study was that patients given antivenom were compared with a

group of patients treated during an earlier period for whom

antivenom was not available (historical control). In experimental
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conditions, toxin-specific antibodies have been shown to reverse

neurotoxic effects. Gatineau et al. (1988) reported that specific

antibodies against Naja nigricollis toxin-alpha were able to reverse

toxin binding to the AChRs and the resultant neuromuscular

paralysis [176].

Acetylcholinesterase Inhibitors (AChEIs,
Anticholinesterases) in Neurotoxicity

Neuromuscular weakness, especially due to non-depolarising

post-synaptic blockade, has similarities to myasthenia in pathophys-

iology, and it is theoretically plausible that AChEIs are effective in

this type of neurotoxic envenoming. However, the evidence for

benefit of AChEI is conflicting. This may well be due to the

confounding effects of any natural recovery, co-administered

antivenom, and different types of envenomation by different species.

There are several reports of benefit from AChEIs

[18,20,30,35,51,54,177–181]. Some reports suggest that an

edrophonium test (Tensilon test) can be used to predict the

response to treatment with the longer-acting neostigmine [35].

Two small clinical trials have shown benefit with edrophonium,

and both were in Philippine cobra (Naja philippinensis) envenoming

[30,35]. There are several reports of lack of benefit with AChEIs

in envenoming by kraits [15,21,24,27], taipans [46], and coral

snakes [47].

It is likely that a good response to AChEIs is seen only in the

competitive, reversible type of post-synaptic toxicity [51]. Reports

of benefit with AChEIs in envenoming by snakes producing

predominant pre-synaptic toxicity are unusual [18]. Similarly,

antivenom is likely to be effective only in the competitive,

reversible type of post-synaptic toxicity. Well-controlled clinical

trials with proper snake identification are urgently needed to

identify which patient groups will benefit from these potentially

beneficial treatments, and equally importantly, to identify patients

for whom they should not be given. Currently, it is routine practice

to administer antivenom to all patients with neurotoxic envenom-

ing, with little evidence of benefit, perhaps based on anecdotal

reports of persistent neuromuscular problems in those not

receiving antivenom [42]. Antivenoms used in developing

countries are known to produce adverse reactions in 30–80% of

patients [159,182], and reactions can be seen in up to 25% even in

Table 4. Some human studies with neurophysiological findings in snake neurotoxicity.

Author; year; no. of patients;
[reference] Snake spp. Neurophysiological findings Interpretation

Watt et al.; 1986; n = 2 (out of 10); [35] N. philippensis Decremental response with 5 Hz RNS Non-depolarising, competitive post-
synaptic block

Singh et al.; 1999; n = 12; [23] B. caeruleus Reduction in CMAP amplitudes on motor nerve
stimulation; decremental response to 3 Hz RNS

Both pre-synaptic and post-synaptic
effects

Connolly et al.; 1995; n = 3; [44] O. scutellatus Reduction in CMAP amplitudes on motor nerve
stimulation; decremental response to 5 Hz RNS with
post-activation potentiation followed by exhaustion;
blocking and increased jitter with single-fibre EMG

Pre-synaptic defect

Trevett et al.; 1995; n = 24; [45] O. scutellatus Reduction in CMAP amplitudes on motor nerve
stimulation; reduction in SNAP amplitudes on sensory
nerve stimulation; decremental response to 3 Hz RNS;
post-tetanic potentiation followed by exhaustion

Pre-synaptic defect

(CMAP, compound muscle action potential; RNS, repetitive nerve stimulation; EMG, electromyography; SNAP, sensory nerve action potential).
doi:10.1371/journal.pntd.0002302.t004

Table 5. Summary of studies on interventions in neurotoxic envenoming.

Intervention
Author; year;
[reference] Snake spp. No. of pts Method Outcome

Antivenom Agarwal et al.;
2005; [94]

mixed 55—needing
ventilation

Low-dose vs. high-dose
antivenom

No difference between high and low
doses

Antivenom Ha et al.; 2010; [175] B. multicinctus 81 Non-randomized,
controlled trial
(historical control)

Antivenom effective—reduces
duration of weakness, ventilation, and
ICU stay

Antivenom vs.
edrophonium

Watt et al.; 1989; [30] N. philippensis 8 Randomized,
double-blind trial

Antivenom not effective;
Edrophonium effective

Antivenom;
edrophonium

Phillips et al.; 1988; [69] D. russelii 23 Descriptive case series Antivenom not effective;
Edrophonium not effective

Antivenom and
neostigmine

Anil et al.; 2010; [27] B. caeruleus 54 Descriptive case series Antivenom not effective; Neostigmine
not effective

Edrophonium Watt et al.; 1986; [35] N. philippensis 10 Randomized, placebo-
controlled, double-blind,
cross-over trial

Edrophonium effective—with
improvement in clinical and
neurophysiological parameters

Edrophonium and
3,4-DAP

Trevett et al.; 1995; [46] O. scutellatus 50 Placebo-controlled trial No significant improvement with
edrophonium or 3,4-DAP

doi:10.1371/journal.pntd.0002302.t005
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developed countries [182]. Although symptoms are mild in most

cases, severe systemic anaphylaxis may develop, and further

understanding of their harm-benefit balance is important.

Acute Neurotoxicity—Other Neurological
Manifestations

Several other interesting acute neurological features have been

reported after snake envenomation, which are likely to be direct

neurotoxic effects. The mechanisms of many of these acute

manifestations are not clear, and there has been no systematic

study of these in a large series.

Myokymia has been reported mainly from the United States

following rattlesnake (Crotalus spp.) envenoming, providing

further evidence of variation in neurotoxicity with species and

geographical differences [60–64,66]. Respiratory failure devel-

oped in some patients who had myokymia involving the

shoulders or chest, perhaps due to underlying diaphragmatic

involvement [60]. Myokymia is believed to be due to a

biochemical effect on axonal ion channels leading to increased

peripheral nerve excitability [60,64]. Crotamine in South

American rattlesnake (Crotalus spp.) venom has been shown to

act on voltage-gated sodium and potassium channels [183–189],

and similar molecules may be responsible for the myokymia in

envenoming by North American rattlesnakes (Crotalus spp.).

Inhibition of pre-synaptic voltage-gated potassium channels is

seen in neuromyotonia, which is an autoimmune disorder

presenting with continuous fasciculations. It would be interesting

to see whether a similar mechanism exists in myokymia due to

rattlesnake envenoming [114].

There are several reports of central effects such as drowsiness,

coma, and loss of brainstem reflexes following snakebite. Many of

them are isolated case reports with poor snake identification [190–

192]. Assessment of central effects due to direct neurotoxicity can

be difficult, as similar effects can be produced by cerebral

haemorrhage and ischaemia in snake envenoming, seen especially

with viperid bites. Appropriate neuroimaging would be important

to exclude these effects.

A large series of common krait envenoming has reported

altered consciousness in 64% of patients, and deep coma in 17%

[10]. Drowsiness was common among children with cobra bites

[37]. Seizures have been noted in several reports [9,73,94].

Alterations in smell and taste have been reported in envenoming

by several snake species [67,193,194], and whether these are

central effects or due to peripheral cranial nerve involvement is

not clear.

New studies shed light on the possible diverse effects of snake

neurotoxins beyond the neuromuscular junction, and there are

several reports of their actions on central nervous system neurones

in animal studies; e.g., kappa-bungarotoxin is known to block

central post-synaptic nAChRs [149], alpha-cobratoxin can pro-

duce central pain-relieving actions, probably via cholinergic

pathways [195], beta-bungarotoxin affects neurotransmitter stor-

age and release in central synaptosomes [196,197], waglerin-1

inhibits GABAergic transmission [198,199], and dendrotoxins

have been shown to produce electrocortical convulsions, EEG

discharges, and neuronal damage [200–203]. In addition, several

muscarinic toxins have been identified from Dendroaspis spp.

[142,204]. While the pathological significance of these toxic effects

in humans is not clear, these findings clearly demonstrate the

possibility of neurotoxins affecting the central nervous system.

There are several reports of snake neurotoxins interacting with the

blood-brain barrier, which increase the likelihood of in vivo direct

central neurotoxic effects [205–210].

Autonomic involvement, especially parasympathetic denerva-

tion effects, are reported in several case series and case reports,

and almost all these reports are following krait bites [10,11,15,18].

This is likely to be related to defective ACh transmission at

parasympathetic nerve terminals, but the exact mechanisms have

not been identified. Neurotoxins have been shown to bind to

nAChRs in autonomic ganglia but the significance of this in

humans is not clear [149,150]. In addition, a few cases of acute

neuropathy have been reported following envenoming by Russell’s

viper (Daboia russelii) [72,74] and Eastern coral snake (Micrurus

fulvius) [48].

Delayed Neurological Manifestations

There are several reports of delayed neurological manifestations

after snake envenomation. Some are reports of persistence of

neurological deficits which first developed during the acute stage.

Distinction from critical illness neuropathy and myopathy may be

difficult when symptoms are first noticed soon after recovery from

the acute phase, especially with a background of ventilation, ICU

care, or sepsis [28,211]. There are several other reports of

neurological deficits developing at variable time points after

recovery from the acute phase of envenoming. Some of the reports

are confined to reporting of prolonged symptoms [11], and

objective documentations with neurophysiological assessments are

rare. In a series of 210 patients bitten by the common krait

(Bungarus caeruleus), 38 patients had delayed neurological deficits.

Fourteen of them had nerve conduction defects that lasted for 2

weeks to 6 months before complete recovery [10]. There are

several reports suggestive of polyneuropathy after the acute phase

of envenoming, with persistence of symptoms for several months

[9,65]. Several cases of possible Guillain-Barré syndrome (GBS)

have been reported. One patient developed motor and sensory

neuropathy 2 weeks after an unidentified snakebite and treatment

with antivenom and tetanus toxoid. His clinical, biochemical, and

electrophysiological features were suggestive of GBS [212].

Another report is of a patient who had acute neurotoxicity and

respiratory arrest after a krait bite and developed quadriparesis 3

weeks later with elevated CSF protein and evidence of a

sensorimotor axonal-type polyneuropathy [22]. However, GBS

seems unlikely here as he had a coma with dilated pupils. Perhaps

the most interesting report is by Neil et al. (2012) who describe a

case of GBS after a bite by Vipera aspis. They have demonstrated a

potential immunological basis for the syndrome, with cross-

reactivity shown between glycosidic epitopes of venom proteins

and neuronal GM2 ganglioside, without evidence of direct

neurotoxicity of the venom [80].

There are few robust studies of long-term neurological effects.

In the first detailed clinical and neurophysiological study of long-

term neurological deficits, Bell et al. studied 26 asymptomatic

survivors who had evidence of neurotoxicity during acute

envenomation one year earlier [213]. Significant differences were

noted in some neurophysiological parameters compared with

controls. These included prolongation of sensory, motor, and F-

wave latencies, and reduction of conduction velocities. The

changes were more marked in the upper limbs than the lower

limbs, suggesting a systemic effect related to envenoming rather

than local neurological damage, as all cases in the study were

bitten on the lower limb. No abnormalities were seen on repetitive

nerve stimulation, indicating lack of residual deficits in neuro-

muscular junction transmission. Taken together, the results were

suggestive of a non-length-dependent demyelinating-type poly-

neuropathy. The neurophysiological abnormalities were not

typical of a toxin-mediated neuropathy, which usually would be

PLOS Neglected Tropical Diseases | www.plosntds.org 12 October 2013 | Volume 7 | Issue 10 | e2302



associated with axonal damage. Interestingly, abnormalities in

nerve conduction were only seen in those with presumed elapid

bites [213].

The factors responsible for the causation of long-term neuro-

logical effects need further study. Persistent axonal damage due to

neurotoxins, and delayed immune-mediated reactions to toxins or

antivenom are possible explanations. There is also some experi-

mental evidence for delayed neuropathic effects. In their report of

beta-bungarotoxin–induced toxicity in rats, Prasarnpun et al.

observed loss of myelinated axons at 6 months after inoculation

[109].

Discussion

Although the clinical manifestations of acute neuromuscular

weakness with respiratory involvement are well recognised, it is

surprising how many questions remain unanswered regarding

neurotoxicity. This lack of clarity may at least partly be explained

by the emerging evidence that has led to an increased

understanding of neuromuscular transmission. This suggests that

previously held traditional models of two different types of

neurotoxicity (pre-synaptic or post-synaptic) are inadequate to

explain all of the differences seen in symptom evolution and

recovery, patterns of weakness, respiratory involvement, and

responses to antivenom or AChEI therapy. For example, it is

becoming clear that many of the post-synaptic toxins produce

nearly irreversible binding, and long-lasting effects. The impor-

tance of the reversibility of post-synaptic toxicity, and the potential

for blockage of pre-synaptic nAChRs by ‘‘post-synaptic’’ toxins

after envenoming have not been addressed in adequate detail.

This variability in toxicity may partly explain the differences in the

pattern of envenomation by different species in different

geographical regions, and it is highly likely that the presence of

a number of different toxins in one venom also contributes.

Detailed analysis of venoms from different snake species from

different regions may help further elucidate these.

In addition to neuromuscular failure, several other interesting

acute and delayed neurological manifestations have been de-

scribed after snake envenomation, and there is very little

understanding of their pathophysiological basis. These are further

pointers to the diversity of the types of neurotoxicity produced by

different snake species. There is no agreed time cut-off for

classifying neurological manifestations into ‘‘acute’’ and ‘‘delayed/

late.’’ There is a clear need for a uniform classification of delayed

neurological manifestations. We propose that changes be classified

as acute (onset within the first 2 weeks after snakebite, which may

persist until late stages), delayed (onset within 2–8 weeks), and late

(onset after 8 weeks of envenoming).

Improved case definitions are the key to a better understanding

of neurotoxicity from different snakes. This can only be achieved

by either the identification of dead snakes or the use of laboratory

or near-patient detection of venom antigen. Further development

of such techniques for developing countries where snakebites are

common is vital to allow accurate and meaningful clinical

descriptions of neurotoxicity.

Given the high morbidity and mortality, better treatment

options are clearly needed in neurotoxic envenoming. There are

several exciting reports of the use of plant extracts in the treatment

of neurotoxicity [214–222]. Although promising, much more

research is needed before these may become therapeutic options.

Until such innovative treatments are available, much can be

achieved by public health measures such as better education with

emphasis on early hospitalization, improved availability of

antivenom and intensive care facilities in areas where snakebite

is common, and international collaborative efforts to develop such

strategies in these resource-limited settings. Development of more

effective and safer antivenoms including monospecific antivenoms

and Fab fragments, and a better understanding of the cross-

neutralisations possible with available antivenom, may help to

optimize the use of antivenom in neurotoxicity [182,223–226].

Given the lack of clarity over mechanisms of neurotoxicity, the

lack of consensus on the value of antivenom or AChEI therapy in

snake envenoming is not surprising. Conflicting reports of their

efficacy are likely to reflect different mechanisms of neurotoxicity

produced by different snake species, and potentially, variations in

antivenom efficacy and time of administration. Models to predict

type of toxicity, and a better understanding of the type of toxicity

produced by different species, would perhaps enable better use of

these treatment strategies. More data are needed on their efficacy,

and may be obtained only from clinical trials in envenomation by

different snake species. Electrophysiological studies may also be

Key Learning Points

1. Snake venoms are complex mixtures of different toxins,
and each neurotoxin has diverse neurotoxic effects.

2. There is considerable geographical, interspecies, intra-
species, as well as possibly ontogenetic variation in
neurotoxicity with snake envenoming.

3. Accurate identification of envenoming snakes and
uniform case definitions are needed to improve compa-
rability of different reports of neurotoxic envenoming.

4. There are many interesting acute and delayed neurotoxic
manifestations other than neuromuscular weakness, and
these may reveal valuable information that may lead to a
better understanding of other neurological diseases.

5. The evidence for antivenom and AChEIs in treatment of
neurotoxic envenoming is not strong, and large ran-
domized trials are urgently needed.

Five Key Papers in the Field

1. Prasarnpun S, Walsh J, Awad SS, Harris JB (2005)
Envenoming bites by kraits: the biological basis of
treatment-resistant neuromuscular paralysis. Brain 128:
2987–2996.

2. Lee C, Chen D, Katz RL (1977) Characteristics of
nondepolarizing neuromuscular block: (I) post-junctional
block by alpha-bungarotoxin. Can Anaesth Soc J 24: 212–
219.

3. Kularatne SA (2002) Common krait (Bungarus caeruleus)
bite in Anuradhapura, Sri Lanka: a prospective clinical
study, 1996–98. Postgrad Med J 78: 276–280.

4. Lalloo DG, Trevett AJ, Korinhona A, Nwokolo N,
Laurenson IF, et al. (1995) Snake bites by the Papuan
taipan (Oxyuranus scutellatus canni): paralysis, hemostatic
and electrocardiographic abnormalities, and effects of
antivenom. Am J Trop Med Hyg 52: 525–531.

5. Watt G, Theakston RD, Hayes CG, Yambao ML, Sangalang
R, et al. (1986) Positive response to edrophonium in
patients with neurotoxic envenoming by cobras (Naja
naja philippinensis). A placebo-controlled study. N Engl J
Med 315: 1444–1448.
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valuable in helping us to understand the complex processes in

human neurological envenoming.

Snake neurotoxins have contributed significantly to our

understanding of neuromuscular transmission and receptor

function, and recent studies have highlighted many of their

other properties, e.g., the ability to enter actively proliferating

cells, nuclear localization, preferential binding in specific cell

division phases, inhibition of apoptosis, anti-inflammatory and

analgesic actions, and antimicrobial effects [183,195,227–232].

More research into these fascinating molecules and their diverse

actions would not only help us improve management of

neurotoxic envenoming, but may also enable their use as

potential treatments for infections, cancer, and various neuro-

logical disorders.
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