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Abstract

The dynamics of local cortical networks are irregular, but correlated. Dynamic excitatory–

inhibitory balance is a plausible mechanism that generates such irregular activity, but it

remains unclear how balance is achieved and maintained in plastic neural networks. In par-

ticular, it is not fully understood how plasticity induced changes in the network affect bal-

ance, and in turn, how correlated, balanced activity impacts learning. How do the dynamics

of balanced networks change under different plasticity rules? How does correlated spiking

activity in recurrent networks change the evolution of weights, their eventual magnitude, and

structure across the network? To address these questions, we develop a theory of spike–

timing dependent plasticity in balanced networks. We show that balance can be attained

and maintained under plasticity–induced weight changes. We find that correlations in the

input mildly affect the evolution of synaptic weights. Under certain plasticity rules, we find an

emergence of correlations between firing rates and synaptic weights. Under these rules,

synaptic weights converge to a stable manifold in weight space with their final configuration

dependent on the initial state of the network. Lastly, we show that our framework can also

describe the dynamics of plastic balanced networks when subsets of neurons receive tar-

geted optogenetic input.

Author Summary

Animals are able to learn complex tasks through changes in individual synapses between

cells. Such changes lead to the coevolution of neural activity patterns and the structure of

neural connectivity, but the consequences of these interactions are not fully understood.

We consider plasticity in model neural networks which achieve an average balance

between the excitatory and inhibitory synaptic inputs to different cells, and display corti-

cal–like, irregular activity. We extend the theory of balanced networks to account for syn-

aptic plasticity and show which rules can maintain balance, and which will drive the

network into a different state. This theory of plasticity can provide insights into the rela-

tionship between stimuli, network dynamics, and synaptic circuitry.
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Introduction

Cortical neuronal activity is irregular, correlated, dominated by a low dimensional component

[1–6], and characterized by a balance between excitation and inhibition [7–12]. Such balance

is now widely thought to give rise to stable, irregular neural activity [1, 7, 12–18]. Early theoret-

ical work has focused on irregular asynchronous dynamics, with large networks exhibiting

vanishing correlations [13, 19]. However, more recent extensions have shown how correlated

dynamics can be generated both endogenously and exogenously, while preserving irregular

single cell activity [20–28], showing the existence of both asynchronous and correlated states

in balanced networks.

Correlated firing can also produce changes in synaptic weights [29, 30]. For instance spike–

time dependent plasticity (STDP), is driven by patterns in the timing of pre– and post–synap-

tic spikes [31, 32]. However, we still lack a theory that relates STDP to changes in neural activ-

ity, and the resulting neural computations. Hence, often the analysis of the effects of STDP

relies on simulations [29, 33–35]. Analytical treatments have been proposed for a number of

cases, starting with the description of mean synaptic dynamics of a single integrate–and–fire

neuron receiving feed–forward input from a collection of Poisson neurons [36]. These results

have been extended to small networks [34], and networks of Poisson neurons [37–40]. Other

work provided analytical treatments of specific plasticity rules, such as homeostatic inhibitory

plasticity [41, 42]. Using linear response and motif resumming techniques [43], Ocker et al.

developed a theory describing the evolution of mean weights in recurrent neural networks of

noisy integrate–and–fire neurons under STDP [44]. This approach relies on the assumption

that the input to individual cells is dominated by white noise, local synaptic input is weak, and

that the integral of the STDP function is small. Related results were obtained by treating neural

firing as a Poisson process [37–39, 45]. In particular, Ravid Tannenbaum et al. showed that in

networks of Poisson neurons synfire chains and self connected assemblies can emerge autono-

mously in recurrent networks [46]. Montangie et al. showed that a more realistic form of

STDP based on spike triplets also leads to autonomous emergence of assemblies [47].

Here, we develop a complementary theory describing the evolution of synaptic weights and

associated mean rates in tightly balanced networks in both correlated and asynchronous states.

We combine the mean–field theory of firing rates and correlations in balanced networks [13,

14, 23, 24, 48–50] with an averaging approach assuming a separation of timescales between

changes in spiking activity, and the evolution of synaptic weights [30]. We show how the

weights and the network dynamics co–evolve under different classical rules, such as Hebbian

plasticity, Kohonen’s rule, and a form of inhibitory plasticity [31, 32, 41, 51, 52]. In general, the

predictions of our theory agree well with empirical simulations. We also explain when the

mean–field theory fails, leading to disagreements with simulations, and we develop a semi–

analytic extension of the theory that explains these disagreements.

We find that spike train correlations, in general, have a mild effect on the synaptic weights

and firing rates, in agreement with previous work [44, 53]. We also show that for some STDP

rules, synaptic competition can introduce correlations between synaptic weights and firing

rates, resulting in the formation of a stable manifold of fixed points in weight space, and hence

asymptotic weight distributions that depend on the initial state. Finally, we apply this theory to

show how inhibitory STDP [41] can lead to a reestablishment of an asynchronous, balanced

state that is broken by optogenetic stimulation of a neuronal subpopulation [54]. We thus

extend the classical theory of balanced networks to understand how synaptic plasticity shapes

their dynamics.
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Materials and methods

Review of mean–field theory in balanced networks

In mammals, local cortical networks can be comprised of thousands of cells, with each neuron

receiving thousands of inputs from cells within the local network, and other cortical layers,

areas, and thalamus [55]. Predominantly excitatory, long–range inputs would lead to high, reg-

ular firing unless counteracted by local inhibition. To reproduce the sparse, irregular activity

observed in cortex, model networks often exhibit a balance between excitatory and inhibitory

inputs [13, 14, 19, 23, 48, 56–58]. This balance can be achieved robustly and without tuning,

when synaptic weights are scaled like Oð1=
ffiffiffiffi
N
p
Þ, where N is the network size [13, 14]. In this

balanced state mean excitatory and inhibitory inputs cancel one another, and the activity is

asynchronous [19]. Inhibitory inputs can also track excitation at the level of cell pairs, cancel-

ling each other in time, and produce a correlated state [1, 23].

We first review the mean–field description of asynchronous and correlated states in bal-

anced networks, and provide expressions for firing rates and spike count covariances averaged

over subpopulations that accurately describe networks of more than a few thousand neurons

[13, 14, 23, 24, 48–50]: Let N be the total number of neurons in a recurrent network composed

of Ne excitatory and Ni inhibitory neurons. Cells in this recurrent network also receive input

from Nx external Poisson neurons firing at rate rx, and with pairwise correlation cx (See Fig 1A,

and S1 Appendix for more details). We assume that qb ¼ Nb=N � Oð1Þ for b = e, i, x. Let pab
be the probability of a synaptic connection, and jab � Oð1Þ the weight of a synaptic connection

from a neuron in population b = e, i, x to a neuron in population a = e, i. For simplicity we

assume that both the probabilities, pab, and weights, jab � Oð1Þ, are constant across pairs of

subpopulations.

We define the recurrent, and feedforward mean–field connectivity matrices as

W ¼
wee wei

wie w ii

" #

; and Wx ¼
wex

w ix

" #

; ð1Þ

where wab ¼ pabjabqb � Oð1Þ.
Let r = [re, ri]

T be the vector of mean excitatory and inhibitory firing rates. The mean exter-

nal input and recurrent input to a cell are then X ¼
ffiffiffiffi
N
p

W xrx and R ¼
ffiffiffiffi
N
p

Wr, respectively,

and the mean total synaptic input to any neuron is given by

I ¼
ffiffiffiffi
N
p
½Wr þW xrx�: ð2Þ

We next make the ansatz that in the balanced state the mean input and firing rates remain

finite as the network grows, i.e., I ; r � Oð1Þ [13, 14, 23, 48–50]. This is only achieved when

external and recurrent synaptic inputs are in balance, that is when

lim
N!1

r ¼ � W � 1W xrx ð3Þ

provided that also Xe=Xi > wei=wii > wee=wie [13, 14]. Eq (3) holds in both the asynchronous

and correlated states.

We define the mean spike count covariance matrix as:

C ¼
Cee Cei

Cie Cii

" #

ð4Þ

where Cab is the mean spike count covariance between neurons in populations a = e, i and
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b = e, i, respectively, counted over time windows of size Twin. Throughout all simulations and

theoretical predictions, we set Twin = 250 ms, however the theory is flexible to other time win-

dow sizes.

From [23, 24] it follows that in large networks, to leading order in 1/N (See [19, 59–61] for

similar expressions derived for similar models),

C �
1

N
TwinW

� 1GW � T �
1

N

reTwinFe

qe
0

0
riTwinFi

qi

2

6
6
6
4

3

7
7
7
5
: ð5Þ

In Eq (5), Fa is the Fano factor of the spike counts averaged over neurons in populations a = e,

i over time windows of size Twin. The second term in Eq (5) is Oð1=NÞ and accounts for intrin-

sically generated covariability [23] within excitatory or inhibitory populations (note that this

term does not refer to variances, but instead to mean covariances between spike trains in the

same subpopulations). The matrix Γ has the same structure as C and represents the covariance

Fig 1. A plastic, balanced network in asynchronous and correlated regimes. A: A recurrent network of excitatory, E, and inhibitory, I, neurons is driven

by an external feedforward layer, X, of correlated Poisson neurons. B: Raster plot of all neurons in a network of N = 5000 neurons in an asynchronous state.

E cells in blue, I neurons in red. C: Same as (B), but in a correlated state. D: Mean steady state EE synaptic weight, jee, in an asynchronous state. E: Mean E
and I firing rates for different network sizes, N, in an asynchronous state. F: Mean EE, II and EI spike count covariances in an asynchronous state. G–I:

Same as (D–F) but for a network in a correlated state. Solid lines represent simulations, and dashed lines are values obtained using Eqs (3), (5) and (21). All

empirical results were averaged over 10 realizations. In the asynchronous state cx = 0, and in the correlated state cx = 0.1. Unless otherwise stated, colors

carry the same meaning in all figures.

https://doi.org/10.1371/journal.pcbi.1008958.g001
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between external inputs (See Baker et al., 2019 Appendix A for a detailed derivation of this

term [23]).

If external neural activity is uncorrelated (cx = 0), then

G ¼W xWT
x

rx
qx
� Oð1Þ ð6Þ

so that C � Oð1=NÞ, and the network is in an asynchronous regime. If external neural activity

is correlated with mean pairwise correlation coefficient cx 6¼ 0, then in leading order N,

G ¼ NW xWT
x cxrx � OðNÞ; ð7Þ

so that C � Oð1Þ, and the network is in a correlated state. Eq (5) can be extended to cross–

spectral densities as shown in S1 Appendix and by Baker et al. [23].

Network model

For illustration, we used recurrent networks of N exponential integrate–and–fire (EIF) neu-

rons (See S1 Appendix), 80% of which were excitatory (E) and 20% inhibitory (I) [23, 24, 35,

54, 62]. The initial connectivity structure was random:

Jabjk ¼
1
ffiffiffiffi
N
p

( jab with probability pab;

0 otherwise:
ð8Þ

Initial synaptic weights were therefore independent. We set pab = 0.1 for all a, b = e, i, and

denote by Jabjk the weight of a synapse between presynaptic neuron k in population b = e, i, x

and postsynaptic neuron j in population a = e, i. We modeled postsynaptic currents using

an exponential kernel, KaðtÞ ¼ t� 1
a e� t=taHðtÞ for each a = e, i, x where H(t) is the Heaviside

function.

Synaptic plasticity rules. To model activity–dependent changes in synaptic weights we

used eligibility traces to define the propensity of a synapse to change [63–67]. The eligibility

trace, xa
j ðtÞ, of neuron j in population a evolves according to

tSTDP
dxa

j ðtÞ
dt
¼ � xa

j ðtÞ þ tSTDPS
a
j ðtÞ; ð9Þ

for a = e, i, where Sa
j ðtÞ ¼

P
ndðt � ta;jn Þ is the sequence of spikes of neuron j. The eligibility

trace, and the time constant, τSTDP, define a period following a spike in the pre– or post–syn-

aptic cell during which a synapse can be modified by a spike in its counterpart.

Our theory of synaptic plasticity allows any synaptic weight to be subject to constant drift,

changes due to pre– or post–synaptic activity only, and/or due to pairwise interactions in

activity between the pre– and post–synaptic cells (zero, first, and second order terms, respec-

tively, in Eq (10)). The theory can be extended to account for other types of interactions. Each

synaptic weight therefore evolves according to a generalized STDP rule:

dJabjk
dt
¼ Zab A0 þ

X

a¼fa;jg;fb;kg

AaSa þ
X

a;b¼fa;jg;fb;kg

Ba;bxaSb

 !

ð10Þ

where ηab is the learning rate that defines the timescale of synaptic weight changes, A0, Aα, Bαβ
are functions of the synaptic weight, Jabjk ; and a, b = e, i. For instance, the term Bðe;kÞ;ði;jÞxekS

i
j rep-

resents the contribution due to a spike in post–synaptic cell j in the inhibitory subpopulation,

at the value xek of the eligibility trace in the pre–synaptic cell k in the excitatory subpopulation.
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Higher order interactions are at the heart of triplet rules [47, 68–70], and other types of inter-

actions may also be important, e.g., for calcium–based update rules [71, 72]. For simplicity we

here focus on pairwise interactions between spikes and eligibility traces, and leave extensions

to more complex rules for future work.

This general formulation captures a range of classical plasticity rules as special examples:

Table 1 shows that different choices of parameters yield Hebbian [31, 32, 51], anti–Hebbian, as

well as Oja’s [73], and other rules (See Fig A in S1 Appendix for illustrations of the STDP func-

tion of each rule in Table 1). The BCM rule [68], and other rules [69, 70] that depend on inter-

actions beyond second order will be considered elsewhere.

Dynamics of mean synaptic weights in balanced networks

To understand how the dynamics of the network, and synaptic weights co–evolve we derived

effective equations for the firing rates, spike count covariances, and synaptic weights using Eqs

(3) and (5). The following is an outline, and details can be found in S1 Appendix.

We assumed that changes in synaptic weights occur on longer timescales than the dynamics

of the eligibility traces and the correlation timescale, i.e., 1/ηab� Twin [30, 38–40, 45, 74]. Let

ΔT be a time increment larger than the timescale of eligibility traces, τSTDP, and Twin, but

smaller than 1/ηab, so that the difference quotient of the weights and time is given by [30]:

DJabjk
DT

¼
Zab
DT

Z DT

0

A0 þ
X

a¼fa;jg;fb;kg

AaSa þ
X

a;b¼fa;jg;fb;kg

Ba;bxaSb

" #

dt: ð11Þ

The difference in timescales allows us to assume that the firing rates and covariances are in

quasi–equilibrium. We used 1/ηab = 105 ms, and τSTDP = 200 ms, with correlation time win-

dow width Twin = 250 ms. Our derivations require τSTDP� ΔT� 1/ηab, however an exact

numerical value for ΔT is neither used nor needed (See S1 Appendix: “What happens when

timescales are not separated?”). Replacing the terms on the right hand side of Eq (11), with

their averages over time, and over different network subpopulations, we obtain the following

Table 1. Examples of STDP rules. A number of different plasticity rules can be obtained as special cases of the general form given in Eq (10).

STDP Rule Coefficients Equation

Classical EE Hebbian [31, 32, 51] B(e,j),(e,k) = −1

B(e,k),(e,j) = 1

dJeejk
dt ¼ Zee xekSej � xej Sek

� �

Classical EE Anti-Hebbian [31, 32] B(e,j),(e,k) = 1

B(e,k),(e,j) = −1

dJeejk
dt ¼ Zee � x

e
kSej þ xej Sek

� �

Weight–dependent EE Hebbian [31, 32, 51] Bðe;jÞ;ðe;kÞ ¼ � Jeejk
Bðe;kÞ;ðe;jÞ ¼ Jmax

dJeejk
dt ¼ Zee JmaxxekS

e
j � Jeejk x

e
j S

e
k

� �

Homeostatic Inhibitory [41] Ai;k ¼ ae
Jeijk

Jnorm

Bðe;jÞ;ði;kÞ ¼ �
Jeijk

Jnorm

Bði;kÞ;ðe;jÞ ¼ �
Jeijk

Jnorm

dJeijk
dt ¼ � Zei

Jeijk
Jnorm

ðxej � aeÞS
i
k þ xikS

e
j

h i

Oja’s Rule [73] Bðe;jÞ;ðe;jÞ ¼ � Jeejk
B(e,j),(e,k) = β

dJeejk
dt ¼ Zee bxej S

e
k � Jeejk x

e
j S

e
j

� �

Kohonen’s Rule [52] Ae;j ¼ � Jeejk
B(e,j),(e,k) = β

dJeejk
dt ¼ Zee bxej S

e
k � Jeejk S

e
j

� �

https://doi.org/10.1371/journal.pcbi.1008958.t001
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mean–field equation for the weights:

dJab
dt
¼ Zab A0 þ

X

a;b¼fa;bg

Ratea;b þ Cova;b

 !

; ð12Þ

where

Ratea;b ¼ Aara=2þ Ba;btSTDPrarb; ð13Þ

Cova;b ¼ Ba;b

Z 1

� 1

~Kðf ÞhSa; Sbiðf Þdf ; ð14Þ

and ~Kðf Þ is the Fourier transform of the synaptic kernel, K(t). Recall that hSα, Sβi(f) is the aver-

age cross spectral density of spike trains in populations α, β. The cross spectral density (CSD)

of a pair of spike trains is defined as the Fourier transform of the covariance function between

the two spike trains, and when evaluated at f = 0, the CSD is proportional to the spike count

covariance between the two spike trains (See S1 Appendix).

For example, classical Hebbian EE plasticity in Table 1 leads to the following mean–field

equation,

dJee
dt
¼ Zee Jmax � Jeeð Þ tSTDPr

2

e þ

Z 1

� 1

~Kðf ÞhSe; Seiðf Þdf
� �

: ð15Þ

Eqs (3), (5) and (12) thus self–consistently describe the macroscopic dynamics of the balanced

network. There are two approaches to analyzing this coupled system of ordinary differential

equations: (1) solve directly for the steady–states of the system; or (2) apply numerical integra-

tion to obtain the evolution of the system in time. To obtain the equilibria, we first find the fir-

ing rates and covariances (both in terms of plastic weight Jab) obtained using the mean–field

description of the balanced network, Eqs (3) and (5). We next substitute the results into Eq

(12), set
dJab
dt ¼ 0, and find the roots. We denote the solution by J�ab. We then use the mean syn-

aptic weight (root of Eq (12), J�ab) to obtain the corresponding rates and covariances using Eqs

(3) and (5). Alternatively, we can solve the system iteratively over time and obtain the time

evolution of rates, covariances, and weights. Starting at an arbitrary value of Jab(t), we proceed

in the same way as in the first approach, but instead of setting
dJab
dt ¼ 0, we use Jab(t) to compute

the value of the derivative at time t, dJab
dt jt, and use it to update the mean weight at the next time

step, Jab(t + ΔT). We then use Jab(t + ΔT) to update rates and covariances. We repeat this pro-

cess until convergence (See S1 Appendix: “Transient dynamics of synaptic weights” for sample

trajectories under different rules, and for our criterion to determine stationarity of synaptic

weights).

Perturbative analysis

We next show how rates and spike count covariances are impacted by perturbations in synap-

tic weights. At steady state the average firing rates in a balanced network with mean–field con-

nectivity matrix W 0 are given by

r0 ¼ � W � 1
0
W xrx ð16Þ

We assume that the mean–field connectivity matrix is perturbed to W perturb ¼W 0 þ DW .

Using Neumann’s approximation [75], (I + H)−1� (I −H), which holds for any square matrix
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H with kHk< 1, and ignoring terms of power 2 and larger, we obtain,

W � 1
perturb ¼ ðW 0 þ DWÞ

� 1
¼ ðW 0ðI þW � 1

0
DWÞÞ� 1

ð17Þ

� ðI � W � 1
0
DWÞW � 1

0
; ð18Þ

where I is the identity matrix of appropriate size. We use this approximation of the perturbed

weights to estimate the rates and spike count covariances using Eqs (3) and (5). The 2 × 2

mean–field connectivity matrix, W 0, must be non–singular for the balanced state to exist and

for Neumann’s approximation to hold [13]. While the non–singularity of W 0 is a non–restric-

tive condition for two neural populations, W 0 can become singular in some models with sev-

eral neural sub–populations [49, 54].

Comparison of theory with numerical experiments

We define spike trains of individual neurons in the population as sums of Dirac delta func-

tions, Si(t) = ∑j δ(t − tij), where the tij is the time of the jth spike of neuron i. Assuming the sys-

tem has reached equilibrium, we partition the interval over which activity has been measured

into K equal subintervals, and define the spike count covariance between two cells as,

covðn1k; n2kÞ ¼
X

k

ðnk
1
� n1Þðn

k
2
� n2Þ; ð19Þ

where nik is the spike count of neuron i in subinterval, or time window, k, and ni ¼
1

K

P
knik is

the average spike count over all subintervals. In simulations we used subintervals of size Twin =

200 ms, although the theory applies to sufficiently long subintervals, and can be extended to

shorter intervals as well. The spike count covariance thus captures shared fluctuations in firing

rates between the two neurons [76].

Results

We next apply the theory described in the Methods to show how synaptic weights coevolve

with firing rates in balanced networks under different plasticity rules. We start with an exam-

ple of excitatory plasticity which has been the main focus of experimental and theoretical stud-

ies, and show that our theory can be used to determine the stability of balanced networks

under commonly used excitatory STDP rules. More recently, inhibitory plasticity has been

proposed to play an important role in regulating the dynamics of neural networks. Our

approach provides a theoretical foundation for some of these findings. Finally, we show that

our theory can be used to make experimental predictions by considering a plastic network

under optogenetic stimulation, and demonstrating that our framework can describe the

dynamics of networks in such biologically relevant regimes.

Balanced networks under excitatory plasticity

Excitatory plasticity plays a central role in theories of learning, but can lead to instabilities [31,

32, 34, 44]. Our theory predicts the stability of the balanced state, the fixed point of the system,

and the effect the plasticity rule on the dynamics of the network.

We consider a network in a correlated state with excitatory–to–excitatory (EE) weights that

evolve according to Kohonen’s rule [52, 77]. This rule was first introduced in artificial neural

networks [78], and was later shown to lead to the formation of self–organizing maps in model

biological networks. [78, 79] We use our theory to show that Kohonen’s rule leads to stable

asynchronous or correlated balanced states, and verify these predictions in simulations.
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Kohonen’s Rule can be implemented by letting EE synaptic weights evolve according to

[52] (See Table 1),

dJeejk
dt
¼ Zee bxej S

e
k � Jeejk S

e
j

� �
; ð20Þ

where β> 0 is a parameter that can change the fixed point of the system (See S1 Appendix:

“Saddle–node bifurcation of excitatory weights in Kohonen’s STDP rule”). This STDP rule is

competitive as weight updates only occur when the pre–synaptic neuron is active, so that the

most active pre–synaptic neurons change their synapses more than less active pre–synaptic

cells.

The mean–field approximation describing the evolution of synaptic weights given in Eq

(12) has the form:

dJee
dt
¼ ZeeðbtSTDPr2

e � Jeere þ b
Z 1

� 1

~Kðf ÞhSe; Seidf Þ: ð21Þ

The fixed point of Eq (21) can be obtained by using the expressions for the rates and covari-

ances obtained in the balanced state (Eqs (3) and (5)). The rates and covariances at steady–

state can then be obtained from the resulting weights.

Equilibria of correlated balanced networks under excitatory STDP. Our theory predicts

that the network attains a stable balanced state, and the average rates, weights, and covariances

at this equilibrium (Fig 1) (See S1 Appendix: “Statistics and dynamics of balanced networks

under pairwise STDP rules” for empirical distributions under Kohonen’s and other rules).

These predictions agree with numerical simulations in both the asynchronous and correlated

states (Fig 1B and 1C). As expected, predictions improve with network size, N, and spike count

covariances scale as 1/N in the asynchronous state (Fig 1D–1F). Similar agreement holds in the

correlated state, including the impact of the correction introduced in Eq (21) (Fig 1G–1I).

The predictions of the theory hold in all cases we tested (See S1 Appendix: “Asymptotic

behavior in weight–dependent Hebbian STDP”). Understanding when plasticity will support a

stable balanced state allows one to implement Kohonen’s rule in complex contexts and tasks,

without the emergence of pathological states (See S1 Appendix: “Classical Hebbian STDP

leads to unstable dynamics”).

Dynamics of correlated balanced networks under excitatory STDP. We next asked

whether and how the equilibrium and its stability are affected by correlated inputs to a plastic

balanced network. In particular, we used our theory to determine whether changes in synaptic

weights are driven predominantly by the firing rates of the pre– and post–synaptic cells, or

correlations in their activity. We also asked whether correlations in neural activity can change

the equilibrium, the speed of convergence to the equilibrium, or both?

We first address the role of correlations. As shown in the previous section, our theory pre-

dicts that a plastic balanced network remains stable under Kohonen’s rule, and an increase in

the mean EE weights by 10–20% when input correlations are increased. Both predictions were

confirmed by simulations (Fig 2A and 2B). The theory also predicted that this increase in syn-

aptic weights results in negligible changes in firing rates, which simulations again confirmed

(Fig 2C).

How large is the impact of correlations in plastic balanced networks more generally? To

address this question, we assumed that only pairwise interactions affect EE synapses, as first

order interactions depend only on rates after averaging. We thus set Bα,β� 1, and all other

coefficients to zero in Eq (10). While the network does not reach a stable state under this arbi-

trary plasticity rule, it allows us to estimate the contribution of rates and covariances to the

PLOS COMPUTATIONAL BIOLOGY Balanced networks under spike-time dependent plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008958 May 12, 2021 9 / 23

https://doi.org/10.1371/journal.pcbi.1008958


evolution of synaptic weights. Here Bα, β can have any nonzero value, since it scales both the

rate and covariance terms. Under these conditions, our theory predicts that the rate term is at

least an order of magnitude larger than the correlation term (even when rates themselves are

small, i.e., when jee is small), and so correlations only have a low impact on the dynamics of

synaptic weights (Fig 2D). Therefore, our theory predicts that, in general, changes in synaptic

weights will largely be driven by changes in firing rate patterns, rather than changes in pairwise

correlations.

We next ask the opposite question: How do changes in synaptic weights impact firing rates,

and covariances? The full theory (see Eqs (3) and (5), and perturbative analysis in Materials

and Methods) predict that the potentiation of EE weights leads to large increases in rates and

spike count covariances. This prediction was again confirmed by numerical simulations (Fig

2E and 2F). This observation holds generally, and STDP rules that result in large changes in

synaptic weights will produce large changes in rates and covariances.

Our theory thus shows that in general weight dynamics can be moderately affected by corre-

lations when these are large enough (See S1 Appendix: “General impact of correlations in

weight dynamics” for a similar analysis on Classical Hebbian STDP). In turn, changes in syn-

aptic weights will generally change the structure of correlated activity in a balanced network.

Balanced networks under inhibitory plasticity

Next, we show that in its basic form our theory can fail in networks subject to inhibitory

STDP, and how the theory can be extended to capture such dynamics. The failure is due to

correlations between weights and pre–synaptic rates which are typically ignored [13, 14, 23,

48–50], but can cause the mean–field description of network dynamics to become inaccurate.

Fig 2. Spike count covariances mildly impact the fixed point of synaptic weights and firing rates. A: The rate of change of EE weights as function of the

weight, jee, at different levels of input correlations, cx. B: Mean steady–state EE synaptic weight for a range of input correlations, cx. C: Mean E and I firing

rates as a function of input correlations. D: Same as (A) but for an EE STDP rule with all coefficients involving order 2 interactions set equal to 1, and all

other coefficients set equal to zero. E: Mean E and I firing rates as a function of mean EE synaptic weights. F: Mean spike count covariances between E spike

trains, I spike trains, and between E–I spike trains as a function of EE synaptic weight, jee. Solid lines represent simulations (except in A, D), dashed lines are

values obtained from theory (Eqs (3), (5) and (21)), and dotted lines were obtained from the perturbative analysis. Note that in all panels, ‘Exc weight’ refers

to jee rather than Jee, as the former does not depend on N.

https://doi.org/10.1371/journal.pcbi.1008958.g002
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This is similar to the breakdown of balanced state theory in the presence of correlations

between in– and out–degrees discussed by Vegué and Roxin, 2019 [80].

To illustrate this, we consider a balanced network subject to homeostatic plasticity [41].

This type of plasticity has been shown to stabilize the asynchronous balanced state and conjec-

tured to play a role in the maintenance of memories [35, 41, 81]. Following [41] we assume

that EI weights evolve according to:

dJeijk
dt
¼ � Zei

Jeijk
Jnorm

ðxej � aeÞS
i
k þ xikS

e
j

h i
ð22Þ

where αe is a constant that determines the target firing rates of E cells and Jnorm � Oð1=
ffiffiffiffi
N
p
Þ is

a normalization constant. Note that Jnorm < 0 so the fraction in Eq (22) is positive assuming

Jeijk < 0. In a departure from the rule originally proposed by Vogels et al. [41], we chose to mul-

tiply the time derivative by the current weight value. This modification creates an unstable

fixed point at zero, prevents EI weights from changing signs, and keeps the analysis mathemat-

ically tractable (See S1 Appendix: “Modification to the inhibitory STDP rule” for details). An

alternative way to prevent weights from changing sign would be to place a hard bound at zero,

but this would create a discontinuity in the vector field of Jei, complicating the analysis.

Under the rule described by Eq (22) a lone pre–synaptic spike depresses the synapse, while

near–coincident pre– and post–synaptic spikes potentiate the synapse (See Fig A in S1 Appen-

dix). Changes in EI weights steer the rates of individual excitatory cells to the target value

re≔
ae

2tSTDP
. Indeed, individual EI weights are potentiated if post–synaptic firing rates are higher

than ρe, and depressed if the rate is below ρe. Our theory predicts that the network converges

to a stable balanced state (Fig 3A). Correlations again have only a mild impact on the evolution

of synaptic weights (Fig 3A).

Although our theory predicts a single stable fixed point for the average EI weight, simula-

tions show that weights converge to a different average depending on the initial EI weights

(Fig 3B–3E solid lines). A manifold of stable fixed points emerges due to synaptic competition,

which is a consequence of heterogeneity in inhibitory firing rates in the network: Weights of

highly active pre–synaptic inhibitory cells are potentiated more strongly compared to those of

lower firing cells (Fig 3E). Thus while inhibitory rates and EI weights are initially uncorrelated,

correlations emerge as the excitatory rates approach their target. Networks with different ini-

tial EI synaptic weights, converge to different final distributions, and the emergent correlations

between weights and rates drive the system to different fixed points (Fig 3C and 3D).

We used a semi–analytical approach to confirm that correlations between weights and rates

explain the discrepancy between predictions of the mean field theory, and simulations. To do

so we introduced a correlation dependent correction term into the expression for the rates:

lim
N!1

~r ¼ � W � 1ðW xrx þ covðJei; riÞÞ; ð23Þ

where covðJei; riÞ≔½hhJeijkrikik � hJeijkikhrikikij; 0�
T
. The average covariances between weights and

rates obtained numerically explain the departure from the mean–field predictions (Fig 3C).

Using the corrected equation (Eq (23)) predicts mean equilibrium weights that agree well with

simulations (Fig 3C dashed line).

We next asked whether the mean–field theory provides a good description of network

dynamics in the absence of correlations between weights and rates. Such correlations disap-

pear in a network with homogeneous inhibitory firing rates. Finding an initial distribution of

weights that result in a balanced state with uniform inhibitory firing rates is non–trivial, and

may not be possible outside of unstable regimes exhibiting rate–chaos where mean–field
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theory ceases to be valid [82]. However, allowing II synapses to evolve under the same plastic-

ity rule we used for EI synpases can homogenize inhibitory firing rates: If we let

dJ iijk
dt
¼ � Zii

J iijk
Jnorm

ðxij � aiÞS
i
k þ xikS

i
j

h i
; ð24Þ

all inhibitory responses approach a target rate ri ¼
ai

2tSTDP
, effectively removing the variability in

I rates. The evolution of the mean II and EI synaptic weights is now given by

dJei
dt
¼ � Zei

Jei
Jnorm

ð2tSTDPre � aeÞri þ 2

Z 1

� 1

~Kðf ÞRe½hSe; Sii�df
� �

;

dJii
dt
¼ � Zii

Jii
Jnorm

ð2tSTDPri � aiÞri þ 2

Z 1

� 1

~Kðf ÞhSi; Siidf
� �

:

ð25Þ

We conjectured that if inhibitory rates converge to a common target, synaptic competition

would be eliminated, and no correlations between weights and rates would emerge. This in

turn would remove the main obstacle to the validity of a mean–field description. The fixed

point of these equations can again be obtained using Eqs (3) and (5) which predict that the

Fig 3. Correlations between synaptic weights and inhibitory rates lead to the formation of a manifold in weight space. A: The rate of change of EI
weights as a function of the weights themselves. The contributions of the covariance (blue) is considerably smaller than the contribution of the rate (red),

and the theory predicts a stable fixed point. B: Evolution of inhibitory weights showing that different initial weights converge to different fixed points. Also,

weights starting at different initial conditions converge to equilibrium at different times for fixed 1/ηei = 105 ms. C: A manifold of fixed points in j�ei � j0ei
space emerges due to correlations between weights and rates. Solid line represents simulations, dashed line are values obtained from the modified theory

(Eqs (23) and (5), and mean–field equation for weights under iSTDP in Table 1). Inset: Final distribution of EI weights for a network with initial weights

j0ei ¼ � 150 (yellow), and j0ei ¼ � 50 (blue). Modified theory predicts the manifold of fixed points. D: Same as A, but obtained from simulations. Lines

represent trajectories from different initial weights (red dots). Inset: Total recurrent input to E neurons, Re;total ¼ hhJeejk r
e
j ij þ hJ

ei
kl r

i
lilik for a range of initial

weights. Mean recurrent input to E cells, Re;mean ¼ weere þ weiri. The mean input deviates from the total input due to emergent correlations between weights

and rates, Cov(Jei, ri) = Re,total − Re,mean. E: The weights of individual EI synapses corresponding to the same post–synaptic E cell as a function of the

equilibrium firing rates of pre–synaptic I neurons. Each color represents a different simulation of the network with different initial EI weight. Equilibrium

inhibitory weights and pre–synaptic rates are correlated (Blue: R2 = 0.952, Red: R2 = 0.9865, Yellow: R2 = 0.979). F: Sample trajectories of the jei − jii system

for a network of N = 104 neurons in an asynchronous state. Simulations with different initial weights (dashed lines), converge to a fixed point close to the

one predicted by the theory (solid line).

https://doi.org/10.1371/journal.pcbi.1008958.g003
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network remains in a stable balanced state (asynchronous or correlated). We also require

ηei� ηii, since when ηei is much slower than ηii, the network becomes unstable as homoge-

neous inhibitory weights and rates are not able to stabilize the heterogeneous distribution of E
activity (See S1 Appendix: “Stability of iSTDP in EI and II connections.”). We chose the same

STDP timescale for both EI and II synapses, and our predictions agree with the results of simu-

lations (Fig 3F). The stable manifold of fixed points is replaced by a single stable fixed point,

and the average weights and rates approach a state that is independent of the initial weight

distribution.

This model of inhibitory plasticity is likely a large oversimplification. Synapses of different

interneuron subtypes are likely subject to different plasticity rules operating on different time-

scales [17, 83], and would therefore not lead to uniform inhibitory firing rates. The mean–field

theory we presented here can be extended to account for multiple inhibitory subtypes with dif-

ferent plasticity rules.

We next show that the balanced network subject only to EI plasticity is robust to perturba-

tory inputs. Our theory predicts, and simulations confirm, that this learning rule maintains

balance when non–plastic networks do not, and it can return the network to its original state

after stimulation.

Inhibitory plasticity adapts response to stimuli

Thus far, we analyzed the dynamics of plastic networks in isolation. However, cortical net-

works are constantly driven by sensory input, as well as feedback from other cortical and sub–

cortical areas. We next ask whether and how balance is restored if a subset of pyramidal neu-

rons are stimulated [54].

In experiments using optogenetics not all target neurons express the channelrhodopsin 2

(ChR2) protein [84–87]. Thus stimulation separates the target, e.g., pyramidal cell population

into stimulated and unstimulated subpopulations. Although classical mean–field theory pro-

duced singular solutions, Ebsch et al. showed that the theory can be extended, and that a non–

classical balanced state is realized: Balance at the level of population averages (E and I) is main-

tained, while balance at the level of the three subpopulations is broken [54]. Since local connec-

tivity is not tuned to account for the extra stimulation (optogenetics), local synaptic input

cannot cancel external input to the individual subpopulations. However, the input averaged

over the stimulated and unstimulated excitatory population is cancelled.

We show that inhibitory STDP, as described by Eq (22), can restore balance in the inputs to

the stimulated and unstimulated subpopulations. Similarly, Vogels et al. showed numerically

that such plasticity restores balance in memory networks [41]. Here, we present an accompa-

nying theory that describes the evolution of rates, covariances, and weights before, during, and

after stimulation, and confirm the prediction of the theory numerically.

We assume that a subpopulation of pyramidal neurons in a correlated balanced network

receives a transient excitatory input. This could be a longer transient input from another sub-

network, or an experimentally applied stimulus. To model this drive, we assume that the net-

work receives input from two populations of Poisson neurons, X1 and X2. The first population

drives all neurons in the recurrent network, and was denoted by X above. The second popula-

tion, X2, provides an additional input to a subset of excitatory cells in the network, for instance

ChR2 expressing pyramidal neurons (Eexpr in Fig 4). The resulting connectivity matrix

between the stimulated (e1), unstimulated (e2) and inhibitory (i) subpopulations, and the feed–
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forward input weight matrix have the form:

W ¼

we1e1
we1e2

we1 i

we2e1
we2e2

we2 i

w ie1
w ie2

w ii

2

6
6
6
4

3

7
7
7
5
; and Wx ¼

we1x1
we1x2

we2x1
0

w ix1
0

2

6
6
6
4

3

7
7
7
5
; ð26Þ

where wab ¼ pabjabqb � Oð1Þ, as before.

The mean–field equation relating firing rates to average weights and input (Eq (3)) holds,

with the vector of rates r ¼ ½re1
; re2

; ri�
T
, and input vector rx ¼ ½rx1

; rx2
�
T
. Similarly, mean spike

count covariances are now represented by a 3 × 3 matrix that satisfies Eq (5). The mean E1 I
and E2 I weights evolved according to

dJe1 i

dt
¼ � Ze1 i

Je1 i

Jnorme1 i

ð2tSTDPre1
� aeÞri þ 2

Z 1

� 1

~Kðf ÞRe½hSe1
; Sii�df

� �

ð27Þ

dJe2 i

dt
¼ � Ze2 i

Je2 i

Jnorme2 i

ð2tSTDPre2
� aeÞri þ 2

Z 1

� 1

~Kðf ÞRe½hSe2
; Sii�df

� �

: ð28Þ

We simulated a network of N = 104 neurons in an asynchronous state with cx1
¼ cx2

¼ 0. A

subpopulation of 4000 E cells receives transient input. Solving Eqs (27) and (28) predicts that

inhibitory plasticity will alter EI synaptic weights so that the firing rates of both the Eexpr and

the Enon-expr approach the target firing rate before, during, and after stimulation. Once the

Fig 4. Framework for STDP in balanced networks describes the dynamics of networks receiving optogenetic input. A: A recurrent network of

excitatory, E, and inhibitory, I, neurons is driven by an external feedforward layer X1 of uncorrelated Poisson neurons. Neurons that express ChR2 are

driven by optogenetic input, which is modeled as an extra layer of Poisson neurons denoted by X2. B: Evolution of mean synaptic weights over the course of

the experiment. C: Evolution of mean firing rates. Inhibitory STDP maintains E rates near the target,
ae

2tSTDP
. D: Evolution of mean excitatory, external,

inhibitory, and total currents. Balance is transiently disrupted at stimulus onset and offset, but it is quickly restored by iSTDP. E: Mean spike count

correlations before, during, and after stimulation remain very weak for all pairs. F: The distribution of spike count correlations also remains nearly

unchanged with weak mean correlations before, during, and after stimulation. Solid lines represent simulations, dashed lines are values obtained from

theory (Eqs (3), (5), (27) and (28)).

https://doi.org/10.1371/journal.pcbi.1008958.g004
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network reaches steady state the mean inputs to each subpopulation cancel. Thus changes in

EI weights restore balance at the level of individual subpopulations or “detailed balance,” con-

sistent with previous studies [41, 81]. Simulations confirm these predictions (Fig 4B–4D).

When the input is removed, the inhibitory weights onto cells in the Eexpr subpopulation

converge to their pre–stimulus values, returning Eexpr rates to the target value, and reestablish-

ing balance (Fig 4B–4D). Correlations remain low (O � 10� 4) before, during, and after stimu-

lation (Fig 4E and 4F), suggesting that at equilibrium the network is in the asynchronous state.

Our theory thus describes how homeostatic inhibitory STDP increases the stability and

robustness of balanced networks to perturbations by balancing inputs at a level of individual

cells, maintaining balance in regimes in which non–plastic networks cannot maintain balance.

We presented an example in which only one subpopulation is stimulated. However, the theory

can be extended to any number of subpopulations in asynchronous or correlated balanced net-

works receiving a variety of transient stimulus.

Discussion

We have developed an analytical framework that predicts the impact of a general class of

STDP rules on the weights and dynamics of balanced networks. The balanced state is generally

maintained under synaptic weight changes, as long as the rates remain bounded. Additionally,

we found that correlations in spiking activity can introduce a small shift in the steady state,

and change how quickly the fixed point is reached.

One of the most important issues in understanding neural dynamics is establishing condi-

tions under which the network remains active, yet stable as synaptic weights change. The the-

ory we developed can help us address these questions, but it does have limitations. Since we

used a mean–field approach, we can only capture first moments. While mean weight stability

may not imply stable network dynamics (consider the case when weight variance diverges in

Classical Hebbian STDP in S1 Appendix), instability in the mean weights does imply that the

network is also unstable.

As we mentioned, our theory can be used to show that small modifications to weight

updates can stabilize different STDP rules. The question remains whether Hebbian EE plastic-

ity can be stabilized through an interaction with STDP rules at different synapses? For

instance, Litwin–Kumar and Doiron used a triplet voltage STDP rule that was stabilized by

hard constraints and weight normalization to produce network assemblies [35]. This rule by

itself lead to stable but pathological behavior, and they introduced iSTDP to restore a balanced,

asynchronous network state. While such voltage–based triplet rules are outside the scope of

the present study, we could use extensions of the mean–field theory to describe the impact of

second and higher order moments on the evolution of weights, and network dynamics [88].

Our theory suggests that the classical pairwise Hebbian STDP cannot be stabilized by other

STDP rules such as iSTDP.

In the tight balance regime, large excitatory and inhibitory inputs cancel on average [15],

resulting in a fluctuation–driven state exhibiting irregular spiking. This cancellation is

achieved when synaptic weights are scaled by 1=
ffiffiffiffi
N
p

and external input is strong [13, 14, 19,

89]. Our main assumption was that synaptic weights change slowly compared to firing rates.

As this assumption holds generally, we believe that our approach can be extended to other

dynamical regimes. For instance supralinear stabilized networks (SSNs) operate in a loosely

balanced regime where the net input is comparable in size to the excitatory and inhibitory

inputs, and firing rates depend nonlinearly on inputs. Balanced networks and SSNs can behave

differently, as they operate in different regimes. However, as shown in [56], SSNs and balanced

networks may be derived from the same model under appropriate choices of parameters. In
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other words, the tight balanced solution can be realized in an SSN, and SSN–like solutions can

be attained in a balanced network. This suggests that an extension of our theory of plasticity

rules to SSNs should be possible.

We obtained a mean–field description of the balanced network by averaging over the entire

inhibitory and excitatory subpopulation, and a single external population providing correlated

inputs. As shown in the last section, the theory can naturally be extended to describe networks

consisting of multiple physiologically or functionally distinct subpopulations, as well as multi-

ple input sources.

The mean–field description cannot capture the effect of some second order STDP rules as

synaptic competition can correlate synaptic weights and pre–synaptic rates. We have shown

that this can lead to different initial weight distributions converging to different equilibria.

This can be interpreted as the maintenance of a previous state of the network over time.

The present theory relies on a separation of timescales between spiking dynamics and

weight changes. Such timescale separation is supported by a number of experiments [30–32,

90, 91]. We show in the Appendix (see S1 Appendix: “What happens when timescales are not

separated?’) that reducing this timescale separation, and increasing weight updates leads to a

breakdown of the theory, and can result in network instability.

In mammalian brains, timescales of weight changes may not always be separated from rate

and correlation timescales. The size and timescale of weight updates is likely to depend on

many factors that can modulate STDP, such as spiking patterns, synapses type, brain area, net-

work state, neuromodulation, and others. Separation of timescales may not be pronounced in

certain non–cortical areas, such as the hippocampus, which can be rapidly modified [91]. For

example, Petersen et al., 1998 and Froemke et al., 2006 found significant changes in putative

synaptic weights over short timescales in hippocampal CA1/CA3 slices [92] and in visual corti-

cal slices subject to multispike pre–and post–synaptic bursts [93], respectively. However, it is

possible that the rate of change of synaptic weights may be overestimated in vitro [91].

How is our separation of timescales assumption affected when rapid compensatory pro-

cesses are needed for homeostasis, given that experiments show that homeostasis is a process

that is even slower than the timescale of STDP? Experimental evidence suggests that homeo-

static processes can take hours or days [42, 81, 90, 91, 94–98]. On the other hand, theoretical

models show that synaptic plasticity can be unstable in the presence of such slow homeostasis,

and needs to be coupled with rapid compensatory processes such as inhibitory STDP [91, 94].

The separation of timescales in our theory still puts synaptic dynamics on the “fast” side of the

spectrum, as it separates network dynamics that occur over milliseconds from weight dynam-

ics that take place over seconds or minutes. Hence, the assumption of timescale separation is

still valid in our implementation of homeostatic inhibitory plasticity.

In plastic networks, correlations between weights and other features such as in–degrees, or

out–degrees can emerge [80]. We have shown how the theory can capture the case in which

synaptic weights and pre–synaptic rates are correlated. While we were not able to find analyti-

cal expressions for these correlations, we showed that a second–order correction is sufficient

to explain the observed dynamics. Eventually, the mean–field theory would need to be

extended to account for higher order network motifs and their potential correlations with syn-

aptic weights and firing rates. This might be possible by extending our approach, but we leave

these extensions for future work.

We have assumed that connection probabilities are homogeneous which translates to a nar-

row distribution of in–degrees. Cortical networks are heterogeneous, and a broad distributions

of in–degrees can break the classical balanced state [49, 50]. Balance can be restored with the

introduction of homeostatic plasticity [49], or by including heterogeneous out–degrees corre-

lated with in–degrees [50]. As we mentioned previously, in such cases our theory would need
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to be extended to account for possible emerging correlations between weights and in-degrees

or out–degrees. We relegate such extensions to future work.

A natural question that arises is why do correlations between weights and pre–synaptic

rates only seem to play a role in iSTDP? In the examples of excitatory STDP we analyzed

(Kohonen’s rule and weight–dependent Hebbian rule), weights at equilibrium are determined

by other parameters (Weight–dependent Hebbian rule) or rates (Kohonen’s rule). Therefore

weights are updated until those steady state values are achieved, yielding values independent of

initial conditions. On the other hand, in the case of the inhibitory plasticity rule, inhibitory

weights at equilibrium are determined by the firing rates alone. Since the firing rate vectors are

lower–dimensional than the weight matrices, the equilibrium solution does not fully deter-

mine the weight matrices. This is shown in Fig 3C inset, where different distributions of

weights can result in the same equilibrium firing rate when weights and pre–synaptic rates

become correlated.

We have shown that different plasticity rules can result in distinct firing rate distributions

in different subpopulations. As shown by Mongillo et al. this can result in an increase or

decrease in sensitivity of activity patterns and memories to perturbation of different synapse

classes [99].

Partial stimulation of a population of E neurons has been shown to break balance due to the

inability of the network in cancelling inputs when weights are static [54]. Ebsch et al. showed

how classical balanced network theory can be modified to account for effects of input pertur-

bations that break the classical balanced state [54]. Vogels et al. [41] (in addition to subsequent

studies [35, 42, 81, 100–102]) showed empirically using simulations that inhibitory iSTDP can

restore balance. We here provide a theoretical framework that describes the evolution of rates

and weights before, during, and after a perturbation that breaks balance.

A number of mathematical theories have been proposed to describe the coevolution of

weights, rates, and the structure of correlations under STDP in recurrent neural networks

[37–39, 44–47, 74]. All of these approaches require knowledge of neurons’ transfer functions

(f-I curves and/or correlation susceptibility functions). Often neurons are assumed to be

Poissonian, and their responses to inputs (f-I curves) are prescribed [37–39, 45–47, 74].

Other work [44] uses Fokker–Planck techniques to compute transfer functions. These

approaches rely on an assumption that the input to each neuron is relatively weak or domi-

nated by Gaussian white noise [103, 104]. Efficient, direct Fokker–Planck approaches are not

available for two–dimensional integrate–and–fire models such as those with adaptation cur-

rents, though one–dimensional approximations have been derived [105, 106]. Some previous

work [44] also assumes that STDP curves are approximately anti–symmetric, i.e., there is a

cancellation between the positive and negative parts of the curves (as in Panel A in Fig A in

S1 Appendix).

Our approach uses balanced network theory to avoid the computation of transfer functions.

As such, the resulting theory does not require an assumption of weak synaptic interactions or

dominant Gaussian white noise input, but can be applied to networks with highly non–Gauss-

ian, temporally correlated input (such as the networks in the correlated state considered here).

Moreover, the balanced network theory we used is accurate for a range of neuron models,

including those with adaptation currents [54, 107], and different STDP curves (as in Panels B–

F in Fig A in S1 Appendix). However, balanced network theory relies on large N asymptotics,

which yielded accurate approximations for N* 10, 000 in our case (Fig 1), but become less

accurate in smaller networks. Our approach is not appropriate for modeling neural circuits

that do not exhibit excitatory–inhibitory balance, such as observed in some disease states,

some developmental stages, and in some sub–cortical neuronal networks. Finally, we used a

mean–field approach that only yields approximations to population–averaged firing rates,

PLOS COMPUTATIONAL BIOLOGY Balanced networks under spike-time dependent plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008958 May 12, 2021 17 / 23

https://doi.org/10.1371/journal.pcbi.1008958


synaptic weights, and covariances, while other approaches [37–39, 44–47, 74] give approxima-

tions to these quantities at the level of individual neurons. Despite these limitations, our ana-

lytical approach was sufficient for answering the questions related to the interaction between

excitatory–inhibitory balance, correlated neuronal activity, and plasticity that we considered.

We found that even in the correlated state, when the network receives temporally correlated

input, changes in synaptic weights are dominated by firing rates, with correlations playing a

secondary role (See Fig 2A and 2B). These findings are in agreement with previous work on

STDP already mentioned before [44, 53]. Results by Ocker et al. were obtained in recurrent

neural networks in different dynamical regimes and under different assumptions (See above

for more details), while Graupner et al. used networks of two neurons with varying natural fir-

ing patterns.

The theoretical framework we presented is flexible, and can describe more intricate dynam-

ics in circuits containing multiple inhibitory subtypes, and multiple plasticity rules, as well as

networks in different dynamical regimes. Moreover, the theory can be extended to plasticity

rules that depend on third order interactions [69, 70], such as the BCM rule [68]. This may

produce richer dynamics, and change the impact of correlations.

Conclusion

We developed a second order theory of spike–timing dependent plasticity for classical asyn-

chronous, and correlated balanced networks [13, 14, 19, 23]. Assuming that synaptic weights

change slowly, we derived a set of equations describing the evolution of firing rates, correla-

tions as well as synaptic weights in the network. We showed that, when the mean–field

assumptions are satisfied, these equations accurately describe the network’s state, stability, and

dynamics. However, some plasticity rules, such as inhibitory STDP, can introduce correlations

between synaptic weights and rates. Although these correlations violate the assumptions of

mean–field theory, we showed how to account for, and explain their effects. Additional plastic-

ity rules can decorrelate synaptic weights and rates, reestablishing the validity of classical

mean–field theory. Lastly, we showed that inhibitory STDP allows networks to maintain bal-

ance, and preserves the network’s structure and dynamics when subsets of neurons are tran-

siently stimulated. Our approach is flexible and can be extended to capture interactions

between multiple populations subject to different plasticity rules.

Supporting information

S1 Appendix. Review of mean–field theory in balanced networks and supporting results.

This supplementary text contains (1) a review of classical mean–field theory of firing rates and

spike count covariances in balanced networks; (2) the derivation of the equation that describes

mean synaptic weights, a derivation of conditions under which synaptic weights do not change

signs when undergoing inhibitory STDP, and general remarks on how synaptic weights can be

affected by changes in rates or covariances; and (3) supporting results on separation of time-

scales, synaptic weight transient dynamics, stability of weights under Kohonen’s rule, statistics

and stability of synaptic weights under several STDP rules, the general impact of correlations

in synaptic weights, a network undergoing iSTDP where synaptic weights change signs, and

stability of iSTDP on EI and II synaptic weights. Fig A. STDP windows of different plasticity

rules. a: Change in synaptic weights as a function of the relative timing of pre– and post–syn-

aptic spikes in Classical Hebbian STDP (same as weight–dependent Hebbian). b: Same as a,

but for inhibitory STDP. c: Same as a, but for Kohonen’s rule when weights are below
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parameter β. d: Same as c, but for the case when weights are above β. e: Same as a, but for

Oja’s rule when weights are below parameter β. f: Same as e, but for the case when weights are

above β.

(PDF)
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Software: Alan Eric Akil, Robert Rosenbaum.

Supervision: Robert Rosenbaum, Krešimir Josić.
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