Crystal structures and supramolecular features of 9,9-dimethyl-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone, 3,7-diazaspiro[bicyclo[3.3.1]nonane-9,1'-cyclopentane]-2,4,6,8-tetraone and 9-methyl-9-phenyl-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone dimethylformamide monosolvate

Sergey Z. Vatsadze,^a* Marina A. Manaenkova,^a Evgeny V. Vasilev,^a Nikolai U. Venskovsky^b and Victor N. Khrustalev^b

^aDepartment of Chemistry, Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation, and ^bInorganic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation. *Correspondence e-mail: szv@org.chem.msu.ru

Compounds (I), $C_9H_{10}N_2O_4$, (II), $C_{11}H_{12}N_2O_4$, and (III), $C_{14}H_{12}N_2O_4 \cdot C_3H_7NO$ represent 9,9-disubstituted-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone derivatives with very similar molecular geometries for the bicyclic framework: the dihedral angle between the planes of the imide groups is 74.87 (6), 73.86 (3) and $74.83~(6)^{\circ}$ in (I)–(III), respectively. The dimethyl derivative (I) is positioned on a crystallographic twofold axis and its overall geometry deviates only slightly from idealized C_{2y} symmetry. The spiro-cyclopentane derivative (II) and the phenyl/ methyl analog (III) retain only internal C_s symmetry, which in the case of (II) coincides with crystallographic mirror symmetry. The cyclopentane moiety in (II) adopts an envelope conformation, with the spiro C atom deviating from the mean plane of the rest of the ring by 0.548 (2) Å. In compound (III), an N- $H \cdots O$ hydrogen bond is formed with the dimethylformamide solvent molecule. In the crystal, both (I) and (II) form similar zigzag hydrogen-bonded ribbons through double intermolecular N-H···O hydrogen bonds. However, whereas in (I) the ribbons are formed by two trans-arranged O=C-N-H amide fragments, the amide fragments are cis-positioned in (II). The formation of ribbons in (III) is apparently disrupted by participation of one of its N-H groups in hydrogen bonding with the solvent molecule. As a result, the molecules of (III) form zigzag chains rather than the ribbons through intermolecular $N-H \cdots O$ hydrogen bonds. The crystal of (I) was a pseudomerohedral twin.

1. Chemical context

Diazabicyclononane-tetraones are used in the synthesis of the sparteine subgroup of lupine alcaloids (Norcross *et al.*, 2008) and are precursors in obtaining 3,7-diazabicyclo[3.3.1]nonanes which have been studied in computer models as serine protease inhibitors (Vatsadze *et al.*, 2016). They also have value as building blocks in the design of other biologically active compounds (Kudryavtsev *et al.*, 2014), and in the synthesis of imaging agents for positron emission tomography (Medved'ko *et al.*, 2016). In addition, they are good chelating ligands for 3*d* transition metals (Vatsadze *et al.*, 2005) including Cu (Vatsadze *et al.*, 2014).

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 11 June 2017 Accepted 25 June 2017

Edited by S. V. Lindeman, Marquette University, USA

Keywords: crystal structure; alcaloides; diazabicyclo[3.3.1]nonanes; tetraones; supramolecular chemistry; hydrogen-bonding interactions; crystal structure.

CCDC references: 1558317; 1558316; 1558315

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Figure 2

The molecular structure of (II). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry code: (A) $x, \frac{1}{2} - y, z$.]

However, the crystal structures of this class of compounds have not been adequately characterized so far, as shown by a small number (eight) of similar structures found in the Cambridge Structural Database (CSD; Groom *et al.*, 2016). Moreover, their ability to form different supramolecular structures depending on the substituents at the 9-position in the heterocycle, which we report in this work, has not been not reported before. A search in the CSD for the substructure 3,7diaza-2,4,6,8-tetraoxobicyclo[3.3.1]nonane yielded eight hits. Although there is a similarity in chemical structure of known

related compounds (Horlein *et al.*, 1981; Norcross *et al.*, 2008), their supramolecular features are significantly different because of the impact of substituents and solvatation.

In this work, we have synthesized three 9,9-disubstituted-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraones and show how groups bound to C9 as well as the presence of solvate molecules affect their ability to form different hydrogen-bonding systems.

Figure 1

The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry code: (A) 1 + x, y, $-z + \frac{1}{2}$.]

The molecular structure of (III)·DMF. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed line indicates the intramolecular $N-H\cdots$ O hydrogen bond.

2. Structural commentary

Compounds (I), $C_9H_{10}N_2O_4$, (II), $C_{11}H_{12}N_2O_4$, and (III), C₁₄H₁₂N₂O₄·C₃H₇NO represent 9,9-disubstituted-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone derivatives and have very similar molecular geometries (Figs. 1-3). In general, the 3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone skeleton exhibits idealized C_{2v} (mm2) symmetry. The molecule of (I), containing two 9-methyl substituents, occupies a special position on a twofold axis $[C_2(2)]$, and its geometry deviates only slightly from the perfectly symmetrical $C_{2\nu}$. As a result of the presence of spiro-9-cyclopentane [in the case of (II)] and 9-phenyl and 9-methyl [in the case of (III)] substituents, the overall symmetry of these molecules decreases to $C_{\rm s}$ (m). However, in the crystal, the intrinsic C_s symmetry remains only for the molecule of (II), which occupies a special position on a mirror plane. Compound (III) crystallizes as a dimethyl formamide monosolvate, with the main molecule occupying a general position.

The two imide fragments in the molecules of (I)–(III) are almost planar (r.m.s. deviations are 0.013, 0.009 and 0.009/ 0.036 Å, respectively). The dihedral angles between the imide planes are 74.87 (6), 73.86 (3) and 74.83 (6)° for (I)–(III), respectively. Moreover, the four carbonyl carbon atoms in (I)– (III) are each coplanar with r.m.s. deviations of 0.018, 0.000, and 0.031 Å, respectively; the bridged carbon atom lies by 1.854 (3), 1.846 (1), and 1.858 (2) Å, respectively, above this plane in (I)–(III). The cyclopentane substituent in (II) adopts an envelope conformation, with the C6 spiro-carbon atom deviating from the mean plane through the other ring atoms by 0.548 (2) Å.

Importantly, in (III) the main molecule forms a strong N7-H7 \cdots O5 hydrogen bond with the dimethyl formamide solvate molecule (Table 3, Fig. 3).

3. Supramolecular features

In general, any compound of type (I)-(III) could form up to six intermolecular hydrogen bonds utilizing two hydrogen-

The crystal structure of (I), demonstrating the H-bonded zigzag-like ribbons propagating toward [001]. Dashed lines indicate the intermolecular $N-H\cdots O$ hydrogen bonds.

The crystal structure of (II), demonstrating the H-bonded zigzag-like ribbons propagating toward [010]. Dashed lines indicate the intermolecular $N-H\cdots O$ hydrogen bonds.

bond donor NH groups and four hydrogen-bond acceptor carbonyl oxygen atoms. In the literature, even the unsubstituted analogue (refcode GOHHER; Norcross *et al.*, 2008) shows only four intermolecular hydrogen bonds involving both imide fragments of bispidintetraone with the formation of an infinite three-dimensional hydrogen-bonded network. If

The crystal structure of (III)·DMF, demonstrating the H-bonded zigzaglike chains propagating toward [100]. Dashed lines indicate the intermolecular $N-H\cdots O$ hydrogen bonds.

research communications

Table 1				
Hydrogen-bond	geometry	(Å,	°) fo	or (I).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3 - H3 \cdots O2^i$	0.90 (3)	2.01 (3)	2.906 (2)	173 (3)
Symmetry code: (i)	-x + 1, -y, -z -	+ 1.		

Table 2

Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H3\cdotsO1^{i}$	0.855 (14)	2.021 (14)	2.8718 (11)	173.7 (13)

Symmetry code: (i) -x + 1, -y, -z + 1.

Table 3

Hydrogen-bond geometry (Å, °) for (III).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N3 - H3 \cdots O1^{i} \\ N7 - H7 \cdots O5 \end{array}$	0.861 (19)	2.12 (2)	2.9650 (19)	168.3 (18)
	0.90 (2)	1.86 (2)	2.7682 (19)	178.6 (18)

Symmetry code: (i) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

one of the nitrogen atoms is alkylated (for example, refcode BAHFIZ; Horlein *et al.*, 1981), the other one is involved in the formation of a doubly hydrogen-bonded dimer. When both nitrogen atoms are functionalized [refcodes JIMWUY (Hametner *et al.*, 2007), NAWLIH (Mereiter *et al.*, 2014), NAWLON *et al.*, 2014), PILXAK (Hametner *et al.*, 2007), XAZGAH (Blakemore, *et al.*, 2005)], no hydrogen-bonds are observed.

Despite the geometrical similarity of compounds (I)-(III), they form different supramolecular structures in the solid state. Thus, in the crystals of (I) and (II), the molecules form the zigzag hydrogen-bonded ribbons by double $N-H\cdots O$ hydrogen bonds (Tables 1 and 2, Figs. 4 and 5). The hydrogenbonded ribbons in (I) and (II) are distinguished by the binding sites of the 3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone skeleton. According to symmetry, the ribbons in (I) are formed by the two *trans*-arranged O=C-N-H amide fragments, whereas the binding O=C-N-H amide fragments in (II) are *cis* disposed. As one of the two NH groups in (III) is bonded to the dimethyl formamide solvate molecule, the N- $H\cdots O$ hydrogen bonds form the zigzag chains rather than ribbons (Table 3, Fig. 6).

Synthesis of (I)-(III) from 2-cyanoacetamide and ketones.

4. Synthesis and crystallization

The title compounds (I)–(III) were synthesized (Fig. 7) according to the procedure described earlier (Schon *et al.*, 1998).

Dinitrile subproducts were obtained by adding 2-cyanoacetamide to the corresponding ketone [(I) - acetone, (II) - acetone, (III) - cyclopentanone] in ethanol at roomtemperature. Then, the dinitriles were heated to 393–413 Kupon stirring in an acidic medium to complete dissolving.After 10–15 min, the mixture was poured into ice–water. Theprecipitated tetraoxo-compounds were filtered off by suction,recrystallized from ethanol solution and finally dried. Singlecrystals suitable for X-ray diffraction study were obtained byrecrystallization of the crude products from DMF solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The hydrogen atoms of the amino groups were localized in the difference-Fourier maps and refined isotropically with fixed displacement parameters $[U_{iso}(H) = 1.2U_{eq}(N)]$. The other hydrogen atoms were placed in calculated positions with C-H = 0.95-1.00 Å and refined in the riding/rotating model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)$ for the CH₃-groups and $1.2U_{eq}(C)$ for the other groups]. The crystal of (I) was a pseudo-merohedral twin. The twin matrix is ($\overline{1} \ 0 \ 0 \ \overline{1} \ 0 \ 0.775 \ 0$ 1), and BASF = 0.180 (1).

Acknowledgements

The synthesis, purification and crystallization of compounds (I)–(III) were funded by RSF (grant No. 16–13-00114). This work was financially supported in part by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.*a*03.21.0008).

References

- Blakemore, P. R., Kilner, C., Norcross, N. R. & Astles, P. C. (2005). Org. Lett. 7, 4721–4724.
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Hametner, C., Dangl, D., Mereiter, K., Marchetti, M. & Fröhlich, J. (2007). *Heterocycles*, **71**, 2331.
- Horlein, U., Schroder, T. & Born, L. (1981). *Liebigs Ann. Chem.* pp. 1699–1704.
- Kudryavtsev, K. V., Shulga, D. A., Chupakhin, V. I., Sinauridze, E. I., Ataullakhanov, F. I. & Vatsadze, S. Z. (2014). *Tetrahedron*, **70**, 7854–7864.
- Medved'ko, A. V., Egorova, B. V., Komarova, A. A., Rakhimov, R. D., Krut'ko, D. P., Kalmykov, S. N. & Vatsadze, S. Z. (2016). ACS Omega, 1, 854-867.
- Mereiter, K., Dangl, D. & Frohlich, J. (2014). Private communication (refcodes NAWLIH, NAWLON). CCDC, Cambridge, England.
- Norcross, N. R., Melbardis, J. P., Solera, M. F., Sephton, M. A., Kilner, C., Zakharov, L. N., Astles, P. C., Warriner, S. L. & Blakemore, P. R. (2008). J. Org. Chem. 73, 7939–7951.

Table 4Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$C_{0}H_{10}N_{2}O_{4}$	$C_{11}H_{12}N_2O_4$	$C_{14}H_{12}N_2O_4 \cdot C_3H_7NO$
M_r	210.19	236.23	345.35
Crystal system, space group	Monoclinic, C2/c	Orthorhombic, Pnma	Orthorhombic, Pbca
Temperature (K)	100	120	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.4321 (17), 6.6263 (10), 12.4819 (19)	12.8058 (6), 11.4850 (6), 6.9058 (3)	7.7876 (5), 19.4656 (12), 21.7879 (13)
α, β, γ (°)	90, 110.788 (3), 90	90, 90, 90	90, 90, 90
$V(\dot{A}^3)$	884.0 (2)	1015.67 (8)	3302.8 (4)
Z	4	4	8
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.13	0.12	0.10
Crystal size (mm)	$0.30 \times 0.20 \times 0.15$	$0.30 \times 0.20 \times 0.20$	$0.22\times0.20\times0.18$
Data collection			
Diffractometer	Bruker SMART 1K CCD	Bruker SMART 1K CCD	Bruker SMART 1K CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2003)	Multi-scan (SADABS; Sheldrick, 2003)	Multi-scan (SADABS; Sheldrick, 2003)
T_{\min}, T_{\max}	0.950, 0.970	0.960, 0.970	0.970, 0.975
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4993, 1289, 1165	15297, 2181, 1782	41691, 5056, 3210
R _{int}	0.027	0.031	0.090
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.703	0.802	0.716
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.062, 0.184, 1.06	0.043, 0.119, 1.03	0.051, 0.124, 1.01
No. of reflections	1289	2181	5056
No. of parameters	74	85	235
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ A^{-5})$	0.55, -0.54	0.42, -0.23	0.33, -0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), SHELXTL (Sheldrick, 2008).

Schön, U., Antel, J., Brückner, R., Messinger, J., Franke, R. & Gruska, A. (1998). J. Med. Chem. 41, 318–331.

- Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Vatsadze, S. Z., Semashko, V. S., Manaenkova, M. A., Krut'ko, D. P., Nuriev, V. N., Rakhimov, R. D., Davlyatshin, D. I., Churakov, A. V.,

Howard, J. A. K., Maksimov, A. L., Li, W. & Yu, H. (2014). *Russ. Chem. Bull.* 63, 895–911.

- Vatsadze, S. Z., Shulga, D. A., Loginova, Y. D., Vatsadze, I. A., Wang, L., Yu, H. & Kudryavtsev, K. V. (2016). *Mendeleev Commun.* 26, 212–213.
- Vatsadze, S. Z., Tyurin, V. S., Zyk, N. V., Churakov, A. V., Kuz'mina, L. G., Avtomonov, E. V., Rakhimov, R. D. & Butin, K. P. (2005). *Russ. Chem. Bull.* 54, 1825–1835.

Acta Cryst. (2017). E73, 1097-1101 [https://doi.org/10.1107/S2056989017009458]

Crystal structures and supramolecular features of 9,9-dimethyl-3,7-diaza-

bicyclo[3.3.1]nonane-2,4,6,8-tetraone, 3,7-diazaspiro[bicyclo-

[3.3.1]nonane-9,1'-cyclopentane]-2,4,6,8-tetraone and 9-methyl-9-phenyl-3,7-

diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone dimethylformamide monosolvate

Sergey Z. Vatsadze, Marina A. Manaenkova, Evgeny V. Vasilev, Nikolai U. Venskovsky and Victor N. Khrustalev

Computing details

For all compounds, data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(I) 9,9-Dimethyl-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone

Crystal data

 $C_{9}H_{10}N_{2}O_{4}$ $M_{r} = 210.19$ Monoclinic, C2/c a = 11.4321 (17) Å b = 6.6263 (10) Å c = 12.4819 (19) Å $\beta = 110.788 (3)^{\circ}$ $V = 884.0 (2) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART 1K CCD diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.950, T_{\max} = 0.970$ 4993 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.184$ F(000) = 440 $D_x = 1.579 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3269 reflections $\theta = 3.5-30.0^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.30 \times 0.20 \times 0.15 \text{ mm}$

1289 independent reflections 1165 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -16 \rightarrow 16$ $k = -9 \rightarrow 9$ $l = -17 \rightarrow 17$

S = 1.061289 reflections 74 parameters 0 restraints

Primary atom site location: difference Fourier map	H atoms treated by a mixture of independent and constrained refinement
Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0846P)^2 + 3.9571P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and	' isotropic or equive	alent isotropic disi	placement parameters ($(Å^2)$	
				/	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.39535 (15)	0.3325 (3)	0.25497 (14)	0.0103 (4)	
H1	0.3243	0.4158	0.2595	0.012*	
C2	0.43977 (16)	0.1911 (3)	0.35793 (14)	0.0110 (4)	
O2	0.36911 (13)	0.1256 (2)	0.40357 (12)	0.0156 (3)	
N3	0.56404 (14)	0.1339 (2)	0.39595 (13)	0.0119 (4)	
H3	0.591 (3)	0.054 (4)	0.458 (2)	0.014*	
C4	0.65231 (16)	0.1966 (3)	0.35040 (14)	0.0109 (4)	
O4	0.75961 (13)	0.1393 (2)	0.39060 (12)	0.0161 (4)	
C5	0.5000	0.4737 (4)	0.2500	0.0107 (5)	
C6	0.54703 (18)	0.6086 (3)	0.35697 (16)	0.0147 (4)	
H6A	0.6154	0.6941	0.3532	0.022*	
H6B	0.5774	0.5239	0.4257	0.022*	
H6C	0.4783	0.6939	0.3603	0.022*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0104 (7)	0.0099 (8)	0.0096 (7)	-0.0002 (5)	0.0026 (6)	0.0002 (5)
C2	0.0117 (8)	0.0105 (7)	0.0094 (7)	-0.0007 (6)	0.0021 (6)	-0.0012 (6)
O2	0.0148 (6)	0.0192 (7)	0.0135 (6)	-0.0021 (5)	0.0058 (5)	0.0027 (5)
N3	0.0131 (7)	0.0114 (7)	0.0106 (7)	0.0004 (5)	0.0035 (6)	0.0024 (5)
C4	0.0119 (8)	0.0105 (7)	0.0093 (7)	0.0000 (6)	0.0026 (6)	-0.0020 (6)
O4	0.0131 (7)	0.0200 (7)	0.0139 (7)	0.0037 (5)	0.0031 (5)	0.0006 (5)
C5	0.0107 (10)	0.0100 (10)	0.0114 (10)	0.000	0.0039 (8)	0.000
C6	0.0148 (8)	0.0129 (8)	0.0160 (8)	-0.0011 (6)	0.0049 (6)	-0.0039 (6)

Geometric parameters (Å, °)

C1—C2	1.525 (2)	N3—H3	0.90 (3)
C1—C4 ⁱ	1.527 (2)	C4—O4	1.210 (2)
C1—C5	1.537 (2)	C5—C6	1.537 (2)
C1—H1	1.0000	С6—Н6А	0.9800

C2—O2 C2—N3 N3—C4	1.221 (2) 1.382 (2) 1.386 (2)	C6—H6B C6—H6C	0.9800 0.9800
C2-C1-C4 ⁱ C2-C1-C5 C4 ⁱ -C1-C5 C2-C1-H1 C4 ⁱ -C1-H1 C5-C1-H1 O2-C2-N3 O2-C2-C1 N3-C2-C1 C2-N3-C4 C2-N3-H3 C4-N3-H3 O4-C4-N3	105.89 (14) 112.14 (13) 111.67 (12) 109.0 109.0 109.0 120.80 (17) 122.27 (16) 116.90 (15) 125.92 (15) 117.3 (18) 116.7 (18) 120.97 (17)	$\begin{array}{c} 04C4C1^{i} \\ N3C4C1^{i} \\ C6^{i}C5C6 \\ C6C5C1^{i} \\ C6C5C1 \\ C1^{i}C5C1 \\ C5C6H6A \\ C5C6H6B \\ H6AC6H6B \\ C5C6H6C \\ H6BC6H6C \\ H6BC6H6C \\ H6BC6H6C \\ \end{array}$	122.81 (16) 116.17 (14) 108.8 (2) 110.59 (9) 110.87 (10) 105.1 (2) 109.5 109.5 109.5 109.5 109.5 109.5
C4 ⁱ —C1—C2—O2 C5—C1—C2—O2 C4 ⁱ —C1—C2—N3 C5—C1—C2—N3 O2—C2—N3—C4 C1—C2—N3—C4 C2—N3—C4—O4	-86.7 (2) 151.29 (17) 91.29 (17) -30.7 (2) 179.35 (16) 1.3 (3) 179.26 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.3 (3) 178.06 (14) 59.40 (19) -61.11 (19) -179.77 (14) 58.38 (11) -60.28 (11)

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O2 ⁱⁱ	0.90 (3)	2.01 (3)	2.906 (2)	173 (3)

Symmetry code: (ii) -x+1, -y, -z+1.

(II) 3,7-Diazaspiro[bicyclo[3.3.1]nonane-9,1'-cyclopentane]-2,4,6,8-tetraone

Crystal data

$C_{11}H_{12}N_2O_4$	$D_{\rm x} = 1.545 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 236.23$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Orthorhombic, Pnma	Cell parameters from 4118 reflections
a = 12.8058 (6) Å	$\theta = 3.2 - 33.9^{\circ}$
b = 11.4850 (6) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 6.9058 (3) Å	T = 120 K
V = 1015.67 (8) Å ³	Prism, colourless
Z = 4	$0.30 \times 0.20 \times 0.20$ mm
F(000) = 496	

Data collection

Bruker SMART 1K CCD diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.960, T_{\max} = 0.970$ 15297 measured reflections <i>Refinement</i>	2181 independent reflections 1782 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 34.8^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -19 \rightarrow 19$ $k = -17 \rightarrow 18$ $l = -10 \rightarrow 10$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: mixed
$wR(F^2) = 0.119$	H atoms treated by a mixture of independent
S = 1.03	and constrained refinement
2181 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 0.338P]$
85 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: difference Fourier	$\Delta\rho_{max} = 0.42$ e Å ⁻³
map	$\Delta\rho_{min} = -0.23$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.40454 (6)	0.09843 (6)	0.57775 (10)	0.01863 (16)
O2	0.56727 (6)	0.10479 (6)	-0.00332 (11)	0.02057 (17)
C1	0.35046 (9)	0.2500	0.35970 (17)	0.0114 (2)
H1	0.2831	0.2500	0.4330	0.014*
C2	0.41314 (6)	0.14320 (7)	0.41787 (12)	0.01265 (16)
N3	0.48223 (6)	0.10060 (7)	0.28341 (11)	0.01450 (16)
H3	0.5177 (10)	0.0407 (13)	0.3159 (19)	0.017*
C4	0.49953 (7)	0.14512 (8)	0.09885 (13)	0.01376 (16)
C5	0.43357 (9)	0.2500	0.04181 (17)	0.0130 (2)
Н5	0.4232	0.2500	-0.1017	0.016*
C6	0.32636 (9)	0.2500	0.14282 (17)	0.0130 (2)
C7	0.25898 (8)	0.14463 (9)	0.08181 (14)	0.01871 (19)
H7A	0.3034	0.0757	0.0571	0.022*
H7B	0.2078	0.1251	0.1842	0.022*
C8	0.20315 (9)	0.18259 (12)	-0.10339 (15)	0.0277 (2)
H8A	0.1307	0.1525	-0.1051	0.033*
H8B	0.2403	0.1525	-0.2187	0.033*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0241 (3)	0.0172 (3)	0.0146 (3)	0.0043 (2)	0.0040 (2)	0.0046 (2)
02	0.0232 (3)	0.0186 (3)	0.0199 (3)	0.0043 (2)	0.0081 (3)	-0.0004(3)
C1	0.0116 (4)	0.0102 (4)	0.0124 (4)	0.000	0.0003 (4)	0.000
C2	0.0135 (3)	0.0113 (3)	0.0131 (3)	-0.0001 (3)	0.0003 (3)	0.0000 (3)
N3	0.0172 (3)	0.0123 (3)	0.0140 (3)	0.0038 (2)	0.0023 (2)	0.0015 (2)
C4	0.0160 (4)	0.0120 (3)	0.0133 (3)	-0.0006 (3)	0.0010 (3)	-0.0007 (3)
C5	0.0149 (5)	0.0135 (5)	0.0105 (4)	0.000	-0.0001 (4)	0.000
C6	0.0130 (5)	0.0137 (5)	0.0124 (5)	0.000	-0.0017 (4)	0.000
C7	0.0170 (4)	0.0213 (4)	0.0179 (4)	-0.0047 (3)	-0.0031 (3)	-0.0026 (3)
C8	0.0248 (5)	0.0397 (6)	0.0187 (4)	-0.0066 (4)	-0.0075 (4)	-0.0015 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C2	1.2230 (11)	C5—C6	1.5399 (17)
O2—C4	1.2103 (11)	С5—Н5	1.0000
C1—C2	1.5200 (11)	C6—C7	1.5448 (12)
C1—C6	1.5292 (17)	C7—C8	1.5287 (14)
C1—H1	1.0000	C7—H7A	0.9900
C2—N3	1.3727 (11)	C7—H7B	0.9900
N3—C4	1.3910 (11)	C8—C8 ⁱ	1.549 (3)
N3—H3	0.855 (14)	C8—H8A	0.9900
C4—C5	1.5231 (11)	C8—H8B	0.9900
C2 ⁱ —C1—C2	107.61 (9)	C1—C6—C5	105.29 (10)
C2—C1—C6	111.43 (6)	C1—C6—C7	112.32 (7)
C2	108.8	C5—C6—C7	111.99 (7)
C6—C1—H1	108.8	C7 ⁱ —C6—C7	103.14 (10)
O1-C2-N3	121.26 (8)	C8—C7—C6	105.43 (9)
01—C2—C1	122.03 (8)	C8—C7—H7A	110.7
N3-C2-C1	116.69 (8)	С6—С7—Н7А	110.7
C2—N3—C4	126.26 (8)	C8—C7—H7B	110.7
C2—N3—H3	116.9 (9)	С6—С7—Н7В	110.7
C4—N3—H3	116.8 (9)	H7A—C7—H7B	108.8
O2—C4—N3	120.51 (8)	C7—C8—C8 ⁱ	106.57 (6)
O2—C4—C5	123.33 (9)	C7—C8—H8A	110.4
N3—C4—C5	116.06 (8)	C8 ⁱ —C8—H8A	110.4
C4 ⁱ C5C4	104.54 (10)	C7—C8—H8B	110.4
C4—C5—C6	112.17 (7)	C8 ⁱ —C8—H8B	110.4
C4—C5—H5	109.3	H8A—C8—H8B	108.6
С6—С5—Н5	109.3		
C2 ⁱ —C1—C2—O1	89.14 (11)	C2 ⁱ —C1—C6—C7 ⁱ	-62.03 (11)
C6-C1-C2-01	-148.42 (9)	$C2-C1-C6-C7^{i}$	177.76 (8)
C2 ⁱ —C1—C2—N3	-89.33 (10)	$C2^{i}$ — $C1$ — $C6$ — $C7$	-177.76 (8)
C6-C1-C2-N3	33.11 (11)	C2—C1—C6—C7	62.03 (11)

O1—C2—N3—C4	-179.14 (8)	$C4^{i}$ — $C5$ — $C6$ — $C1$	-58.65 (7)	
C1—C2—N3—C4	-0.66 (13)	C4—C5—C6—C1	58.65 (7)	
C2—N3—C4—O2	175.36 (9)	$C4^{i}$ — $C5$ — $C6$ — $C7^{i}$	63.69 (12)	
C2—N3—C4—C5	-1.04 (13)	C4C5C6C7 ⁱ	-179.00 (8)	
O2-C4-C5-C4 ⁱ	-84.18 (12)	C4 ⁱ —C5—C6—C7	179.00 (8)	
N3-C4-C5-C4 ⁱ	92.10 (10)	C4—C5—C6—C7	-63.70 (12)	
O2—C4—C5—C6	154.04 (9)	C1—C6—C7—C8	155.71 (9)	
N3—C4—C5—C6	-29.68 (11)	C5—C6—C7—C8	-86.05 (10)	
C2 ⁱ —C1—C6—C5	60.10 (7)	C7 ⁱ —C6—C7—C8	34.55 (12)	
C2—C1—C6—C5	-60.11 (7)	C6-C7-C8-C8 ⁱ	-21.58 (8)	

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O1 ⁱⁱ	0.855 (14)	2.021 (14)	2.8718 (11)	173.7 (13)

Symmetry code: (ii) -x+1, -y, -z+1.

(III) 9-Methyl-9-phenyl-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone dimethylformamide monosolvate

Crystal data	
$C_{14}H_{12}N_{2}O_{4}\cdot C_{3}H_{7}NO$ $M_{r} = 345.35$ Orthorhombic, <i>Pbca</i> $a = 7.7876 (5) \text{ Å}$ $b = 19.4656 (12) \text{ Å}$ $c = 21.7879 (13) \text{ Å}$ $V = 3302.8 (4) \text{ Å}^{3}$ $Z = 8$ $F(000) = 1456$	$D_x = 1.389 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2856 reflections $\theta = 2.3-26.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 120 K Prism, colourless $0.22 \times 0.20 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART 1K CCD diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.970, T_{\max} = 0.975$ 41691 measured reflections	5056 independent reflections 3210 reflections with $I > 2\sigma(I)$ $R_{int} = 0.090$ $\theta_{max} = 30.6^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -11 \rightarrow 11$ $k = -27 \rightarrow 27$ $l = -31 \rightarrow 30$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.124$ $S = 1.01$ 5056 reflections235 parameters0 restraintsPrimary atom site location: difference Fouriermap	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 1.1286P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33$ e Å ⁻³ $\Delta\rho_{min} = -0.26$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.91018 (15)	0.32972 (6)	0.24687 (5)	0.0195 (3)
O2	1.28067 (16)	0.39316 (7)	0.39546 (6)	0.0277 (3)
O3	1.05101 (18)	0.54938 (6)	0.41859 (6)	0.0284 (3)
O4	0.71389 (17)	0.48551 (6)	0.25953 (6)	0.0247 (3)
C1	0.7904 (2)	0.39619 (8)	0.33006 (7)	0.0154 (3)
H1	0.6777	0.3746	0.3193	0.019*
C2	0.9331 (2)	0.35860 (8)	0.29593 (7)	0.0156 (3)
N3	1.09219 (18)	0.36122 (7)	0.32247 (6)	0.0169 (3)
H3	1.178 (2)	0.3463 (10)	0.3014 (9)	0.020*
C4	1.1346 (2)	0.39341 (9)	0.37714 (7)	0.0176 (3)
C5	0.9888 (2)	0.42888 (8)	0.41126 (8)	0.0159 (3)
Н5	1.0146	0.4280	0.4562	0.019*
C6	0.9822 (2)	0.50346 (9)	0.38999 (8)	0.0197 (4)
N7	0.89576 (19)	0.51620 (7)	0.33590 (7)	0.0196 (3)
H7	0.902 (3)	0.5588 (10)	0.3194 (9)	0.024*
C8	0.7939 (2)	0.46953 (9)	0.30509 (8)	0.0177 (3)
C9	0.8163 (2)	0.39217 (8)	0.40019 (7)	0.0157 (3)
C10	0.8217 (2)	0.31744 (8)	0.42225 (7)	0.0157 (3)
C11	0.7451 (2)	0.26429 (9)	0.38892 (8)	0.0200 (4)
H11	0.6928	0.2740	0.3505	0.024*
C12	0.7444 (2)	0.19734 (9)	0.41138 (8)	0.0229 (4)
H12	0.6912	0.1618	0.3883	0.027*
C13	0.8208 (2)	0.18232 (9)	0.46704 (8)	0.0226 (4)
H13	0.8210	0.1365	0.4821	0.027*
C14	0.8969 (2)	0.23430 (9)	0.50061 (8)	0.0218 (4)
H14	0.9496	0.2242	0.5389	0.026*
C15	0.8965 (2)	0.30139 (9)	0.47846 (8)	0.0196 (4)
H15	0.9482	0.3368	0.5021	0.024*
C16	0.6721 (2)	0.43004 (9)	0.43480 (8)	0.0205 (4)
H16A	0.6658	0.4777	0.4205	0.031*
H16B	0.6965	0.4295	0.4789	0.031*
H16C	0.5623	0.4071	0.4270	0.031*
05	0.91561 (18)	0.64557 (7)	0.28362 (6)	0.0289 (3)
N1	0.84929 (19)	0.65410 (7)	0.18198 (7)	0.0212 (3)
C17	0.8439 (2)	0.67440 (9)	0.24001 (8)	0.0232 (4)
H17	0.7793	0.7146	0.2489	0.028*
C18	0.9381 (3)	0.59137 (10)	0.16458 (9)	0.0284 (4)
H18A	1.0181	0.5782	0.1972	0.043*
H18B	1.0020	0.5991	0.1265	0.043*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H18C	0.8541	0.5545	0.1583	0.043*
C19	0.7595 (3)	0.69190 (10)	0.13395 (9)	0.0273 (4)
H19A	0.6956	0.7301	0.1523	0.041*
H19B	0.6795	0.6611	0.1128	0.041*
H19C	0.8431	0.7099	0.1044	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0215 (6)	0.0208 (6)	0.0164 (6)	0.0008 (5)	-0.0011 (5)	-0.0023 (5)
O2	0.0151 (6)	0.0414 (8)	0.0265 (7)	-0.0016 (6)	-0.0042 (5)	-0.0007 (6)
03	0.0373 (8)	0.0194 (7)	0.0286 (7)	-0.0081 (6)	-0.0075 (6)	-0.0011 (5)
O4	0.0294 (7)	0.0235 (7)	0.0213 (6)	0.0040 (5)	-0.0068 (5)	0.0021 (5)
C1	0.0142 (8)	0.0162 (8)	0.0160 (8)	-0.0006 (6)	-0.0027 (6)	0.0005 (6)
C2	0.0166 (8)	0.0145 (8)	0.0156 (8)	-0.0004 (6)	0.0002 (6)	0.0030 (6)
N3	0.0127 (7)	0.0211 (7)	0.0168 (7)	0.0026 (6)	0.0007 (5)	0.0004 (6)
C4	0.0176 (8)	0.0189 (8)	0.0162 (8)	-0.0033 (6)	-0.0018 (6)	0.0029 (7)
C5	0.0155 (8)	0.0174 (8)	0.0148 (8)	-0.0029 (6)	-0.0014 (6)	-0.0001 (6)
C6	0.0189 (8)	0.0194 (8)	0.0207 (9)	-0.0007 (7)	-0.0009 (7)	-0.0003 (7)
N7	0.0235 (8)	0.0153 (7)	0.0200 (7)	-0.0010 (6)	-0.0029 (6)	0.0019 (6)
C8	0.0168 (8)	0.0186 (8)	0.0177 (8)	0.0036 (6)	0.0010 (6)	-0.0019 (7)
C9	0.0140 (8)	0.0190 (8)	0.0141 (8)	-0.0015 (6)	-0.0009 (6)	-0.0009 (6)
C10	0.0140 (8)	0.0178 (8)	0.0152 (8)	-0.0023 (6)	0.0037 (6)	0.0002 (6)
C11	0.0221 (9)	0.0217 (9)	0.0162 (8)	-0.0031 (7)	-0.0002 (7)	0.0002 (7)
C12	0.0269 (9)	0.0203 (9)	0.0216 (9)	-0.0052 (7)	0.0030 (7)	-0.0032 (7)
C13	0.0255 (10)	0.0193 (9)	0.0231 (9)	0.0006 (7)	0.0050 (7)	0.0023 (7)
C14	0.0220 (9)	0.0249 (9)	0.0185 (8)	0.0002 (7)	-0.0006 (7)	0.0027 (7)
C15	0.0198 (9)	0.0208 (9)	0.0183 (8)	-0.0028 (7)	-0.0003 (7)	-0.0007 (7)
C16	0.0168 (8)	0.0246 (9)	0.0200 (8)	0.0004 (7)	0.0015 (7)	-0.0014 (7)
05	0.0420 (8)	0.0229 (7)	0.0218 (7)	-0.0009 (6)	-0.0041 (6)	0.0037 (5)
N1	0.0230 (8)	0.0195 (7)	0.0210 (7)	0.0020 (6)	-0.0005 (6)	0.0007 (6)
C17	0.0286 (10)	0.0169 (8)	0.0240 (9)	-0.0006 (7)	0.0012 (8)	0.0011 (7)
C18	0.0328 (11)	0.0249 (10)	0.0276 (10)	0.0060 (8)	0.0064 (8)	-0.0001 (8)
C19	0.0317 (11)	0.0259 (10)	0.0244 (9)	-0.0014 (8)	-0.0075 (8)	0.0049 (8)

Geometric parameters (Å, °)

O1—C2	1.2209 (19)	C11—H11	0.9500
O2—C4	1.205 (2)	C12—C13	1.382 (3)
O3—C6	1.214 (2)	C12—H12	0.9500
O4—C8	1.213 (2)	C13—C14	1.382 (2)
C1—C2	1.524 (2)	C13—H13	0.9500
C1—C8	1.528 (2)	C14—C15	1.392 (2)
C1—C9	1.543 (2)	C14—H14	0.9500
C1—H1	1.0000	C15—H15	0.9500
C2—N3	1.368 (2)	C16—H16A	0.9800
N3—C4	1.386 (2)	C16—H16B	0.9800
N3—H3	0.861 (19)	C16—H16C	0.9800

C4—C5	1.523 (2)	O5—C17	1.237 (2)
C5—C6	1.525 (2)	N1—C17	1.325 (2)
C5—C9	1.541 (2)	N1—C18	1.454 (2)
С5—Н5	1.0000	N1—C19	1.458 (2)
C6—N7	1.380(2)	C17—H17	0.9500
N7—C8	1.380 (2)	C18—H18A	0.9800
N7—H7	0.90(2)	C18—H18B	0.9800
C9-C10	1533(2)	C18 - H18C	0.9800
C_{0} C_{16}	1.535(2) 1.540(2)	C19 $H194$	0.9800
C_{10} C_{15}	1.340(2) 1.302(2)		0.9800
$C_{10} = C_{13}$	1.392(2)	C10_1119B	0.9800
	1.398 (2)	С19—п19С	0.9800
	1.392 (2)		
C2—C1—C8	105.18 (13)	C12—C11—C10	120.78 (16)
C2—C1—C9	111.30 (13)	C12—C11—H11	119.6
C8—C1—C9	113.43 (13)	C10-C11-H11	119.6
C2—C1—H1	108.9	C13—C12—C11	120.33 (17)
C8—C1—H1	108.9	C13—C12—H12	119.8
C9-C1-H1	108.9	$C_{11} - C_{12} - H_{12}$	119.8
01-C2-N3	121 31 (15)	C_{12} C_{13} C_{14}	119.61 (17)
01 - C2 - C1	121.31(15) 122.78(15)	C12 - C13 - H13	120.2
$N_3 C_2 C_1$	115.87(14)	C14 $C13$ $H13$	120.2
$C_2 = N_3 = C_4$	126 58 (15)	$C_{14} = C_{15} = 1115$	120.2 120.16 (17)
$C_2 = N_3 = C_4$	120.36(13) 117.7(12)	$C_{13} = C_{14} = C_{13}$	120.10(17)
C_2 —N3—H3	117.7(13) 115.2(12)	C15_C14_H14	119.9
C4—N3—H3	115.2 (13)	C15-C14-H14	119.9
02 - C4 - N3	120.51 (16)	C10-C15-C14	121.10(16)
02	122.95 (15)	C10—C15—H15	119.5
N3-C4-C5	116.53 (14)	С14—С15—Н15	119.5
C4—C5—C6	107.97 (14)	C9—C16—H16A	109.5
C4—C5—C9	111.32 (13)	C9—C16—H16B	109.5
C6—C5—C9	111.39 (14)	H16A—C16—H16B	109.5
C4—C5—H5	108.7	C9—C16—H16C	109.5
С6—С5—Н5	108.7	H16A—C16—H16C	109.5
С9—С5—Н5	108.7	H16B—C16—H16C	109.5
O3—C6—N7	121.43 (16)	C17—N1—C18	120.96 (15)
O3—C6—C5	122.02 (15)	C17—N1—C19	121.26 (15)
N7—C6—C5	116.55 (15)	C18—N1—C19	117.71 (15)
C6—N7—C8	125.29 (15)	O5—C17—N1	125.66 (17)
C6—N7—H7	118.5 (13)	O5—C17—H17	117.2
C8—N7—H7	116.2 (13)	N1—C17—H17	117.2
O4—C8—N7	121.65 (16)	N1—C18—H18A	109.5
O4—C8—C1	121.45 (15)	N1-C18-H18B	109.5
N7—C8—C1	116.88 (14)	H18A—C18—H18B	109.5
C10—C9—C16	108.70 (13)	N1—C18—H18C	109.5
C10—C9—C5	111.53 (13)	H18A—C18—H18C	109.5
C16—C9—C5	109.69 (13)	H18B—C18—H18C	109.5
C10-C9-C1	111.25 (13)	N1-C19-H19A	109.5
C16—C9—C1	111.43 (13)	N1-C19-H19B	109.5

C5—C9—C1	104.20 (13)	H19A—C19—H19B	109.5
C15—C10—C11	118.01 (15)	N1—C19—H19C	109.5
C15—C10—C9	120.04 (14)	H19A—C19—H19C	109.5
С11—С10—С9	121.86 (14)	H19B—C19—H19C	109.5
C8—C1—C2—O1	-88.55 (18)	C4—C5—C9—C16	-179.36 (13)
C9—C1—C2—O1	148.23 (15)	C6—C5—C9—C16	-58.79 (18)
C8—C1—C2—N3	89.02 (16)	C4—C5—C9—C1	-59.96 (16)
C9—C1—C2—N3	-34.20 (19)	C6—C5—C9—C1	60.61 (16)
O1—C2—N3—C4	178.71 (15)	C2-C1-C9-C10	-58.45 (17)
C1—C2—N3—C4	1.1 (2)	C8—C1—C9—C10	-176.82 (13)
C2—N3—C4—O2	-178.77 (16)	C2-C1-C9-C16	-179.93 (13)
C2—N3—C4—C5	0.6 (2)	C8—C1—C9—C16	61.69 (18)
O2—C4—C5—C6	87.7 (2)	C2-C1-C9-C5	61.86 (16)
N3—C4—C5—C6	-91.58 (17)	C8—C1—C9—C5	-56.52 (17)
O2—C4—C5—C9	-149.71 (16)	C16—C9—C10—C15	-77.40 (18)
N3—C4—C5—C9	31.0 (2)	C5—C9—C10—C15	43.7 (2)
C4—C5—C6—O3	-96.53 (19)	C1—C9—C10—C15	159.54 (15)
C9—C5—C6—O3	140.95 (17)	C16—C9—C10—C11	99.18 (17)
C4—C5—C6—N7	82.61 (18)	C5-C9-C10-C11	-139.75 (16)
C9—C5—C6—N7	-39.9 (2)	C1—C9—C10—C11	-23.9 (2)
O3—C6—N7—C8	-170.25 (17)	C15-C10-C11-C12	-0.2 (2)
C5—C6—N7—C8	10.6 (2)	C9—C10—C11—C12	-176.84 (16)
C6—N7—C8—O4	175.77 (16)	C10-C11-C12-C13	-0.4 (3)
C6—N7—C8—C1	-5.8 (2)	C11—C12—C13—C14	0.5 (3)
C2-C1-C8-O4	87.35 (18)	C12—C13—C14—C15	0.0 (3)
C9—C1—C8—O4	-150.80 (15)	C11—C10—C15—C14	0.7 (2)
C2-C1-C8-N7	-91.04 (16)	C9-C10-C15-C14	177.42 (15)
C9—C1—C8—N7	30.8 (2)	C13—C14—C15—C10	-0.6 (3)
C4—C5—C9—C10	60.15 (17)	C18—N1—C17—O5	3.0 (3)
C6—C5—C9—C10	-179.28 (13)	C19—N1—C17—O5	179.89 (18)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3···O1 ⁱ	0.861 (19)	2.12 (2)	2.9650 (19)	168.3 (18)
N7—H7…O5	0.90 (2)	1.86 (2)	2.7682 (19)	178.6 (18)

Symmetry code: (i) x+1/2, y, -z+1/2.