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A B S T R A C T

Background: Although various molecular subtypes of bladder cancer (BC) have been investigated, most of
these studies have focused on muscle-invasive BC (MIBC). A few studies have investigated non-muscle-inva-
sive BC (NMIBC) or NMIBC and MIBC together, but none has classified progressive NMIBC or immune check-
point inhibitor (ICI)-based therapeutic responses in early-stage BC patients.
Methods: A total of 1,934 samples from seven patient cohorts were used. We performed unsupervised hierar-
chical clustering to stratify patients into distinct subgroups and constructed a classifier by applying SAM/
PAM algorithms. We then investigated the association between molecular subtypes and immunotherapy
responsiveness using various statistical methods.
Findings: We explored large-scale genomic datasets encompassing NMIBC and MIBC, redefining four distinct
molecular subtypes, including a subgroup containing progressive NMIBC and MIBC with poor prognosis that
would benefit from ICI treatment. This subgroup showed poor progression-free survival with the distinct fea-
tures of high mutation load, activated cell cycle, and inhibited TGFb signalling. Importantly, we verified that
BC patients with this subtype were significantly responsive to an anti-PD-L1 agent in the IMvigor210 cohort.
Interpretation: Our results reveal an immunotherapeutic option for ICI treatment of highly progressive NMIBC
and MIBC with poor prognosis.
Funding: This research was supported by the National Research Foundation of Korea grant funded by the
Korean government, a grant from the Korea Health Technology R&D Project through the Korea Health Indus-
try Development Institute, funded by the Ministry of Health and Welfare, Republic of Korea, and a grant from
the KRIBB Research Initiative Program.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
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Research in context

Evidence before this study

Bladder cancer (BC) is one of the most prevalent cancers in the
world and one of the cancers that is most difficult to treat; thus,
improving patient outcomes is an important challenge. Cancer immu-
notherapy, including immune checkpoint inhibitors (ICIs), has
emerged as an important therapeutic approach to treat BC and other
malignancies, but only a fraction of patients respond to treatment.
Although several potential predictive markers have been proposed,
the underlying mechanisms governing the response to ICIs, which
would be utilized to classify the most responsive subset of patients,
have not been fully elucidated.
Added value of this study

We identified four distinct molecular subtypes, including a sub-
group containing progressive non-muscle-invasive BC (NMIBC) and
muscle-invasive BC (MIBC) with poor prognosis that would benefit
from ICI treatment. We verified the independent utility of this sub-
type using a logistic regression model that included PD-L1 expression
and tumour mutational burden in the IMvigor210 cohort.
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Implications of all the available evidence

Our newly constructed classification system supports an immuno-
therapeutic option via ICI treatment for highly progressive NMIBC
and MIBC with poor prognosis. We believe that our results provide a
modality for developing new treatment strategies for both NMIBC
and MIBC.

1. Introduction

Bladder cancer (BC) is one of the most prevalent malignancies
worldwide, with an estimated 430,000 new cases and 165,000 deaths
annually [1]. BC continues to be one of the most difficult malignancies
to treat; thus, improving patient outcomes remains an important
challenge. BC is categorized into two subtypes according to tumour
stage: non-muscle-invasive BC (stage Ta or T1; NMIBC) and muscle-
invasive BC (stage T2, T3, or T4; MIBC). Upon initial diagnosis, the
majority of cases of BC are NMIBCs, which are treated with transure-
thral resection of the bladder tumour followed by intravesical Bacil-
lus Calmette-Gu�erin (BCG) therapy. Despite these treatments, many
patients with NMIBC, especially those with T1 high-grade tumours,
experience progression to MIBC [2]. MIBCs, which are treated with
cisplatin-based neoadjuvant chemotherapy followed by radical cys-
tectomy, have poor prognosis with a five-year survival <50% and
accompanying high rates of metastatic relapse after radical cystec-
tomy [3].

Recently, immune checkpoint inhibitors (ICIs), such as anti-PD-1/
PD-L1 inhibitors, have emerged as an important therapeutic
approach for advanced and metastatic BC [4] and for BCG-unrespon-
sive NMIBC [5�7]. Despite the success of immunotherapy, only a
fraction of patients benefit from treatment with ICIs. Although the
detection of tumour and/or immune cell PD-L1 by immunohis-
tochemistry has been investigated as a potential biomarker for
response to ICI [8], the prognostic value of PD-L1 has not been deter-
mined, and conflicting results have been reported regarding the rela-
tionship between PD-L1 protein expression and patient survival.
Thus, to increase the utility of ICIs, further development of the geno-
mic signature as a robust and predictive biomarker for potential
response to ICIs in concert with immunohistochemistry-based bio-
markers in BC is needed. Numerous investigations have been con-
ducted on predictive biomarkers [9,10], but the underlying
mechanisms governing the response to ICIs, which would be utilized
to classify the most responsive patient subset, have yet to be fully
elucidated.

Several studies have revealed that the molecular subtypes MIBC
[11�14] and NMIBC [15] resemble breast cancer subtypes. Although
the molecular differences between MIBC and NMIBC are reportedly
distinct, some studies suggest that transcriptional subtypes might be
independent of conventional stages or grades [16�18]. While molec-
ular subtypes associated with response [14] or resistance [11] to neo-
adjuvant chemotherapy have been suggested, distinct subtypes that
can predict a potential response to ICIs in NMIBC and MIBC have not
been investigated. Although a previous investigation [19] reported an
association between ICI responsiveness and subtype classification
using a system that addresses NMIBC and MIBC, namely, Lund taxon-
omy [17], this study was unable to classify progressive NMIBC or ICI-
based therapeutic clues in early-stage BC patients. Considering these
limitations and recent publications of large-scale BC cohorts, such as
The Cancer Genome Atlas (TCGA; ref. 13) and UROMOL [15], there is
a great need to explore the landscape of BC to recharacterize its
molecular subtypes.

In this study, we report that BC can be sub-grouped into four
major classes with different molecular and clinical characteristics,
regardless of the histopathological classification system. The four
subtypes of BC exhibited distinct features: (1) the presence of FGFR3
or TP53 mutations, (2) the activity of immune response pathways, (3)
the expression of cell cycle genes, and (4) the epithelial-mesenchy-
mal transition (EMT). Integrative analysis of mutation and gene
expression data revealed that class 3, exhibiting similar proportions
of high-grade NMIBC and MIBC, showed distinct biological features
associated with response to ICIs. Using gene expression profiles from
the IMvigor210 cohort [19], we also verified a significant association
between class 3 and response to ICIs, suggesting an immunothera-
peutic option via ICI treatment for high-risk NMIBCs with progressive
disease and for a subset of MIBCs that are responsive to ICI.

2. Materials and methods

2.1. Patients and gene expression data

Microarray datasets related to gene expression in BC were
obtained from the GEO database. Datasets with clinical information
including follow-up time data were included in this study. Gene
expression and clinical data from 165 primary BC patients from the
Chungbuk National University Hospital were used as the discovery
cohort (GSE13507; the CNUH cohort, n = 102 NMIBC and 63 MIBC;
ref. 20). Collection and analysis of all samples was approved by the
institutional review board of Chungbuk National University, and
informed consent was obtained from each subject. Gene expression
datasets for BC from the Yonsei University Severance Hospital
(GSE120736; the YUSH cohort, n = 78 NMIBC and 61 MIBC), Univer-
sity Hospital of Lund (GSE19915; the UHL cohort, n = 97 NMIBC and
45 MIBC; ref. 16), and Swedish southern healthcare region
(GSE32894; the SSH cohort, n = 213 NMIBC and 93 MIBC; ref. 17)
were used for subtype validation. For more critical validations, RNA-
seq datasets from the TCGA (GSE62944; n = 408 MIBC; ref. 21), Euro-
pean UROMOL consortium (E-MTAB-4321; n = 460 NMIBC and 16
MIBC; ref. 15), and IMvigor210 (n = 298 MIBC; ref. 19) were down-
loaded from GEO, ArrayExpress, and the Supplementary data of
Mariathasan et al. [19], respectively. To characterize mutation pro-
files of BC patients, variant data from the TCGA and UROMOL cohorts
were also collected from the UCSC Xena Browser and European
Genome-Phenome Archive, respectively.

Clinical data were obtained from the Supplementary Information
of the corresponding literature or were requested from the authors.
Cancer-specific survival was defined as the time from surgery to
death caused by cancer, and progression-free survival was defined as
the time elapsed between treatment initiation and tumour progres-
sion. In this study, disease progression was defined as an increase in
stage from either Ta or T1 to T2 or higher after disease relapse.
Patients with available survival time data were subjected to survival
analysis. The clinicopathologic characteristics of the study subjects
are provided in the Supplementary Tables 1, 4, 5, 6 and 7.

2.2. Gene expression analysis

A summary of the methodology is shown in Supplementary Fig. 1.
All gene expression datasets were separately log2 transformed and
quantile normalized. Before clustering, we selected 3938 genes with
an expression level that exhibited at least a two-fold difference rela-
tive to the median value in greater than 15% of the samples in the dis-
covery cohort (the CNUH cohort). Cluster analysis with 3938 genes
revealed four distinct BC subtypes (data not shown). To select small
genes retaining molecular characteristics of the subtypes, we applied
the identical procedures for gene expression data of other cohorts
that were generated by the same experimental platform (Illumina) as
the CNUH cohort, identifying 3235 and 2990 genes in the YUSH and
SSH cohorts, respectively. Only the expression of 1627 genes was
commonly varied in all three cohorts (Supplementary Fig. 2). Unsu-
pervised clustering of the gene expression matrix consisting of 1627
genes in the discovery cohort revealed four clusters with distinct
gene expression patterns. Hierarchical cluster analysis was
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conducted using Gene Cluster 3.0 (median centring of genes, centroid
linkage) and visualized using Java TreeView. Silhouette width was
calculated to determine the accuracy of clustering assignment [22].
Only samples with positive silhouette values were retained for fur-
ther analysis because they best represented each subtype (R-pack-
age: Cluster).

2.3. Building a gene-based classifier

We applied significance analysis of microarrays (SAM) to identify
significantly differentially expressed genes in each subtype (class
1 vs. the rest, class 2 vs. the rest, class 3 vs. the rest, and class 4 vs. the
rest; R-package: SAMR). Subsequently, we selected genes with the
greatest difference in expression level among the four subtypes in
the CNUH cohort (239, 251, 275, and 471 genes for classes 1, 2, 3, and
4 subtypes, respectively). The resulting four gene sets were combined
to yield 851 subtype-specific gene sets. Among these gene sets, genes
without the “approved symbol” from the HUGO Gene Nomenclature
Committee were removed. The remaining 826 genes were trained
using prediction analysis of microarrays (PAM) to build a gene-based
classifier (R-package: PAMR). We performed 10-fold cross-validation
to select the optimal threshold for centroid shrinkage and selected
the value D = 2.555, yielding good performance with the 786 genes
(Supplementary Fig. 3).

2.4. Subtype classification on validation cohorts

For RNA-seq datasets, genes with a value of zero were set to the
missing value after log2 transformation (following the addition of 1
to the FPKM values), and genes were removed if they had missing
data in >30% of the samples. After quantile normalization, expression
levels of each gene in each dataset were independently standardized
to a mean of zero and a standard deviation of 1 and then merged to
yield a large, pooled RNA-seq validation cohort consisting of 884 BC
samples.

The validation cohorts were independently assigned to BC sub-
types using the PAM classifier built based on the discovery cohort.
YUSH and the SSH cohorts were generated by the same microarray
platform as the discovery cohort (Illumina microarray platform). For
each dataset, expression profiles were median centred across all sam-
ples and subjected to classification using the classifier built based on
the discovery cohort.

The gene expression data from the UHL (Swegen microarray plat-
form), TCGA, UROMOL, and IMvigor210 cohorts do not contain all of
the gene symbols in the discovery cohort. Thus, we used signature
genes that were contained in both the discovery and validation
cohorts. We trained a classifier on the discovery cohort and used it to
predict the tumour subtype in the validation cohort as mentioned
above. Finally, a heat map was generated using predicted class and
subtype-specific genes.

2.5. Mutation significance analysis

Using somatic variant data from the TCGA cohort, the mutation
profiles of the 485 genes with total mutation frequency �5% and the
genes involved in the oncogenic signature (64 genes) and DNA dam-
age response and repair (DDR; 165 genes) were investigated. Like-
wise, the mutation profiles of FGFR3, genes involved in the oncogenic
signature (64 genes) and DDR (165 genes) were investigated in the
UROMOL cohort.

2.6. Analysis of an association between class 3 and response to ICIs

To investigate the association between the class 3 subtype and ICI
response, we examined tumours from the IMvigor210 cohort of
patients with metastatic urothelial cancer who were treated with an
anti-PD-L1 agent (atezolizumab). RNA-seq data and clinical informa-
tion from 298 patients with metastatic urothelial cancer were
obtained from IMvigor210CoreBiologies, a fully documented soft-
ware and data package for the R statistical computing environment.
The four subtypes of BC were assigned as mentioned above. To assess
the independent utility of BC subtype for predicting ICI response,
generalized linear models were used for fitting a binary response
(responder vs. nonresponder) as the dependent variable, while PD-L1
expression on tumour cells (TC), PD-L1 expression on immune cells
(IC), or tumour mutation burden, and BC subtypes were used as inde-
pendent variables.

2.7. Statistical analysis

The chi-squared test and the two-sample t-test were used to
assess differences between groups for categorical and continuous
variables, respectively. A log-rank test was used to estimate associa-
tions between subtypes and survival outcomes. Statistical analyses
were performed in the R language environment and were considered
to be significant with a P-value <0¢05 (two-sided).

3. Results

3.1. Identification of BC subtypes by hierarchical clustering

To identify distinct molecular subtypes of BC regardless of previ-
ously known clinicopathological factors (stage or grade), we per-
formed an unsupervised hierarchical cluster analysis using gene
expression profile data from the Chungbuk National University Hos-
pital (CNUH; GSE13507) cohort [20]. With 1627 genes commonly
varied among the three microarray cohorts (Supplementary Fig. 2),
the clustering analysis revealed four distinct BC subtypes (Supple-
mentary Fig. 3a). The PAM algorithm was applied to samples reflect-
ing the molecular characteristics of each subtype along with subtype-
specific genes (Supplementary Fig. 3b and 3c) and retained a final
subtype-specific signature consisting of 786 genes with the lowest
prediction error (Supplementary Fig. 3d). We applied this genomic
subtype predictor defined by 786 genes, namely, GSP786, to all 165
patients from the CNUH cohort and obtained consequent subtype
stratifications, in which 49 (30%), 44 (27%), 43 (26%), and 29 (18%)
patients were noted in classes 1, 2, 3, and 4, respectively (Fig. 1a; Sup-
plementary Table 1).

To understand the biological characteristics of each subtype, we
applied a functional enrichment test to each subtype-specific gene
list (Supplementary Table 2). These analyses provided substantial
insight into the biological understanding of subtypes (Supplementary
Fig. 4; Supplementary Table 3). Tumour samples involved in class 1
mainly included low-grade NMIBCs (Fig. 1a). Class 1 is characterized
by decreased expression of genes involved in cell proliferation (Sup-
plementary Fig. 4a), signifying the less aggressive characteristics of
class 1. Class 2 included both low-grade NMIBCs and a small number
of MIBCs (Fig. 1a). Class 2 displayed the downregulation of immune
response pathways, such as antigen processing and presentation and
T cell receptor signalling pathways (Supplementary Fig. 4b). All veri-
fied human leukocyte antigen (HLA) genes, which were associated
with clinical prognosis in cancer patients [23], exhibited a specifically
inhibited pattern in class 2 (Supplementary Fig. 5a). We also exam-
ined activated functions in class 2, observing increased expression of
the oncogenes FGFR3 and CCND1 (Supplementary Fig. 5b; ref. 24).
Class 3 exhibited similar involvement of high-grade NMIBC and MIBC
(Fig. 1a). In particular, most T1 high-grade tumours (11 out of 16,
69%) were classified into class 3, indicating that class 3 might be capa-
ble of detecting high-risk NMIBC with progressive disease. Class 3
displayed the activation of cell cycle-associated functions (Supple-
mentary Fig. 4c) and the inhibition of genes involved in the Notch sig-
nalling pathway (Supplementary Fig. 5c). These processes are



Stage
■ Ta
■ T1
■ T2-T4

Grade
■ G1
■ G2
■ G3

Size
■ <3 cm
■ ≥3 cm

unknown

■ Class 1 (n = 49)
■ Class 2 (n = 44)
■ Class 3 (n = 43)
■ Class 4 (n = 29)

a

Stage
Grade
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Stage
■ Ta
■ T1
■ T2-T4
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Tx/ND

Grade
■ Low
■ High
■ PUNLMP

Histologic subtype
■ Papillary
■ Non-papillary
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UROMOL
■ Class 1
■ Class 3
■ Class 2

Lund taxonomy
■ Urobasal A
■ Genomically unstable
■ Infiltrated

TCGA 2017
■ Luminal
■ Luminal-infiltrated
■ Basal-squamous
■ Neuronal
■ Luminal-papillary

b
■ Class 1 (n = 285)
■ Class 2 (n = 128)
■ Class 3 (n = 256)
■ Class 4 (n = 215)

Stage
Grade
Histologic subtype
UROMOL
Lund taxonomy
TCGA

Fig. 1. Prediction of four molecular subtypes of BC using the GSP786 classifier in the CNUH and RNA-seq cohorts. (a) Heat map of the subtype-specific signature consisting of 786
genes and associations with clinicopathological features in the CNUH cohort. Class 1 contained many low-grade NMIBCs. Class 2 included both low-grade NMIBCs and a small num-
ber of MIBCs. Class 3 exhibited similar involvement in high-grade NMIBC and MIBC. Class 4 contained the most MIBC cases. (b) Heat map of the GSP786 classifier profiled in the
RNA-seq cohort combined with TCGA and UROMOL. Samples are ordered according to the four classes with pathological features together with their previous subtype assignment
information from the UROMOL, SSH, and TCGA cohorts. Class 1 included many low-stage and low-grade tumours with more MIBCs (71 out of 275 in class 1, 25%) compared with
the CNUH cohort (1 out of 49 in class 1, 2%). The sample compositions of classes 2 and 3 were similar to those in the CNUH cohort. Class 4 tumours consist of high-grade invasive
tumours with more NMIBCs (76 out of 215, 35%) compared with the CNUH cohort (6 out of 29, 20%). The heat map ranks genes based on fold-change, and genes with the largest
fold-change appear at the top. Data are presented in a matrix format in which each row represents an individual gene and each column represents a tissue sample. Each cell in the
matrix represents the expression level of a gene feature in an individual sample. The colouring in the cells reflects relativity high (red) and low (green) expression levels as indicated
in the scale bar (log2 transformed scale).
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associated with tumour progression [25�27]. Based on our findings
and the previously reported crucial role of cell cycle-related genes in
BC prognosis, such as E2F1, FOXM1, CCNB1, and CCNE1 [20,27,28], we
examined expression levels of these genes in NMIBC and MIBC.
Increased expression of these genes in class 3 was observed in both
the NMIBC and MIBC subgroups (Supplementary Fig. 5d). These
results indicate that class 3 may have distinct molecular characteris-
tics suitable for predicting the aggressive clinical behaviour of
tumours, regardless of the pathological subtypes of NMIBC and MIBC.
Finally, class 4, which contains the most MIBC cases, exhibited clear
upregulation of genes implicated in extracellular matrix organization
along with strong activation of the immune response (Supplementary
Fig. 4d). Additionally, the overexpression of genes associated with
EMT or myofibroblasts was noted in class 4 (Supplementary Fig. 5e),
which displayed similar features to the infiltrated subtype [17].

3.2. GSP786-based subtype classification in independent cohorts

We applied our classifier to four validation cohorts to verify
whether the identification of the four subtypes was reproducible.
When GSP786 was applied to the RNA-seq cohort (total n = 884) com-
bined with TCGA [13] and UROMOL [15], all four subtypes were rep-
resented (Fig. 1b; Supplementary Table 4). Despite the increased
involvement of invasive tumours compared to the CNUH cohort, class
1 demonstrated consistent inhibition of genes involved in cell prolif-
eration compared to other subtypes (Supplementary Fig. 6a). Further-
more, many of the high-grade invasive tumours in class 1 were
histologically papillary tumours (36 out of 71, 51%), which exhibit a
better prognosis compared with nonpapillary tumours. Moreover,
class 1 tumours classified into the luminal-papillary subgroup, a sub-
type with good prognosis reported by the TCGA consortium [13],
were more numerous compared with those in other subclasses (Sup-
plementary Table 4), indicating that class 1 reflects the good prognos-
tic molecular characteristics of BC. The sample compositions of
classes 2 and 3 in the RNA-seq cohort were similar to those in the
CNUH cohort, and the overall molecular characteristics were retained
(Supplementary Fig. 6b and 6c). NMIBC tumours in class 3 were pre-
dominantly associated with UROMOL class 2, which was character-
ized by concomitant carcinoma in situ (CIS), high expression of late
cell cycle genes, and the worst progression-free survival (PFS; ref.
15). Although UROMOL class 2 is stratified into infiltrated or genomi-
cally unstable (GU) subtypes from the Lund taxonomy [17], the infil-
trated subtype might not represent a distinct cancer subtype given
that the infiltrated subtype exhibited heterogeneous molecular char-
acteristics [17], and UROMOL class 2 reportedly exhibited a solid
characteristic [15]. In contrast to previous investigations, GSP786 suc-
cessfully classified UROMOL class 2 tumours into two molecular sub-
groups. Specifically, most tumours with GU were classified into class
3, whereas many tumours with the infiltrated subtype were classified
into class 4 (Fig. 1b). These results emphasize the relevance of the
predictor in accurately reflecting the molecular differences between
GU and the infiltrated subtypes. Class 4 displayed the homogeneous
upregulation of genes involved in EMT or myofibroblasts, regardless
of tumour stage or grade (Supplementary Fig. 6d), which is consistent
with other discovery and validation cohorts. Moreover, the majority
of MIBCs in class 4 were associated with the basal-squamous subtype,
and the remaining samples corresponded to the luminal-infiltrated
subtype. We also identified four subtypes in the Yonsei University
Severance Hospital (YUSH; Supplementary Fig. 7a and 8a; Supple-
mentary Table 5), University Hospital of Lund (UHL; Supplementary
Fig. 7b; Supplementary Table 6), and Swedish southern healthcare
region (SSH; Supplementary Fig. 7c and 8b; Supplementary Table 7)
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cohorts, indicating the consistency and confidence of the GSP786
classification. Taken together, our classifier demonstrated a consis-
tent molecular classification pattern despite different sample compo-
sitions and heterogeneous distributions of histological factors across
multiple patient cohorts. More details regarding subtype classifica-
tion based on the GSP786 in independent cohorts are provided in the
Supplementary Results.
3.3. Prognostic significance of subtypes

To investigate the ability of molecular subtypes to predict the clin-
ical behaviours in BC patients, we compared patient survival rates
among these subtypes in the independent cohorts. We found a statis-
tically significant difference in cancer-specific survival among the
four subtypes in the CNUH, YUSH, UHL, and SSH cohorts (each
P < 0¢05, log-rank test, Fig. 2a�d). In addition, we estimated the PFS
rates of the NMIBC patients in three independent cohorts (the UHL,
SSH and RNA-seq cohorts). As expected from our molecular charac-
terization of class 3, the frequency of NMIBC progression was higher
in class 3 compared to other subclasses (each P < 0¢05, log-rank test,
Fig. 2e�g). These results support a distinct molecular feature of class
3, reflecting tumour aggressiveness due to cell cycle disorder and its
predictive value in classifying high-risk NMIBC patients with progres-
sive disease.
3.4. Mutational landscape of the four BC subtypes

We next sought to identify mutations that were specifically asso-
ciated with the four subtypes using somatic variant data from the
TCGA cohort. We found that the somatic mutation rate was signifi-
cantly increased in class 3 compared with the other subclasses (P <

0¢001, two-sample t-test, Fig. 3), suggesting that the DNA repair sys-
tem is highly impaired in class 3 tumours [29]. Although we identi-
fied differences in the mutation frequency among the subtypes, we
did not observe unique and recurrent mutations that were solely
associated with a particular subtype. The vast majority of class 3
Fig. 2. Prognostic significance of BC subtypes. (a�d) Kaplan-Meier curves showing time to
compared with other subclasses. Class 2 exhibited an intermediate level in patient survival,
subtypes. (e�g) Kaplan-Meier curves showing time to progression in the UHL, SSH, and RNA
compared with the other subclasses. P-values were obtained by log-rank tests. The + symbols
(70%) or class 4 (52%) patients harboured mutations in TP53, which
was previously reported as the most frequently mutated gene in
MIBC [12,13]. Along with these findings, RB1 mutations, which fre-
quently co-occur with TP53 mutations [13,30] and have adverse
prognostic importance [31], were profoundly enriched in classes 3 or
4, demonstrating that classes 3 and 4 exhibit more adverse biological
and clinical features of MIBC. On the other hand, the mutation fre-
quency of FGFR3, which is mutually exclusive with TP53 [13] and fre-
quently occurs in NMIBC [32], was significantly increased in classes 1
or 2 compared with classes 3 or 4 (P < 0¢001, chi-squared test, Fig. 3),
indicating that classes 1 and 2 have less aggressive characteristics
and more favourable prognosis. Taken together with our gene
expression data, these results imply that MIBC patients could be
stratified into distinct subgroups comprising more or less aggressive
features.

To illustrate the mutation pattern associated with the four sub-
types in patients with NMIBC, we analysed variant data from the
UROMOL cohort (Supplementary Fig. 9). Consistent with our findings
in MIBC, the mutation frequency of TP53 was significantly increased
in classes 3 and 4 compared with classes 1 and 2. The frequency of
FGFR3 was higher in class 1 (61%) than in the other subclasses, but
the difference was not statistically significant. This observation may
be due to the prevalence of FGFR3 mutations in NMIBC (60�80%; ref.
33). Among the genes involved in DNA damage response and repair
(DDR), the frequency of BRCA1 mutations was increased in class 3
compared with the other subtypes in both TCGA and UROMOL
cohorts, demonstrating that class 3 exhibits more aggressive charac-
teristics associated with DDR.
3.5. Association between the class 3 subtype and response to ICIs

By identifying the four subtypes by GSP786 and exploring their
prognostic associations in BC patients, we observed that class 3 had
distinct biological features associated with potential responses to
ICIs, such as a high somatic mutation rate (Fig. 3; refs. 34, 35) and
alterations of genes involved in DDR (Fig. 3; Supplementary Fig. 9;
death in the CNUH, YUSH, UHL, and SSH cohorts. Class 1 exhibited a better prognosis
whereas classes 3 and 4 patients exhibited reduced survival rates compared with other
-seq cohorts. The frequency of NMIBC progression in class 3 was significantly increased
in the panels indicate censored data.



Fig. 3. Mutational landscape of BC subtypes in the TCGA cohort. Frequently mutated genes (�5%, top panel), genes involved in the oncogenic signature (middle panel) and DNA
damage response and repair (bottom panel). Samples are sorted according to mutation frequency within each class. Chi-squared tests for differences in frequency pattern between
the classes are presented on the left together with total mutation frequency. The mutation frequency for each subtype is presented on the right. The mutation load for each sample
is presented above the mutation plot.
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refs. 36�38). To verify an association between the class 3 subtype and
response to ICIs, we applied GSP786 to the IMvigor210 cohort from
298 BC patients treated with an anti-PD-L1 agent (atezolizumab; ref.
19). As expected, a higher response rate was observed in patients
with class 3 tumours, exhibiting increased expression of genes asso-
ciated with the cell cycle and DDR (Figs. 4a and 4b). Importantly, the
class 3 subtype displayed a better survival rate than the other sub-
types (P = 0¢028, log-rank test, Fig. 4c), implying that MIBC patients
with class 3 might have a superior response to ICI treatment.

Although a previous investigation reported that the GU subtype
from Lund taxonomy was enriched for response to ICIs [19], the GU
subtype might not represent a potential biomarker for ICIs given that
the GU subtype did not show a higher complete response rate than
the other subtypes. Furthermore, samples in the class 3 subtype with
a complete response were stratified into GU or SCC-like (Fig. 4a), and
these subtypes showed similar biological features, such as activation
of genes involved in the cell cycle and DDR. This observation further
emphasizes the significance of our subtype as a potential biomarker
for predicting response to ICIs.

In gene set enrichment analysis, class 3 was negatively associated
with the TGFb signalling pathway (Supplementary Fig. 10a), corre-
sponding to TGFb attenuating the response to an anti-PD-L1 agent
[19]. We also observed decreased expression of TGFb signalling path-
way-associated genes in class 3 (Supplementary Fig. 10b). To assess
the independent utility of BC subtypes for predicting the response to
ICIs, we fit a logistic regression model to our data and used PD-L1
expression on tumour cells, PD-L1 expression on immune cells, TMB,
and BC subtype as potential explanatory factors. In this test, class 3
exhibited a statistically significant relationship with response to ICIs,
suggesting the independent utility of subtype for classifying the best
responsive patient subset (Table 1). Taken together, these results pro-
pose a potential benefit of ICIs as a more aggressive treatment option
in class 3 tumours containing high-risk NMIBC that could progress to
MIBC.
4. Discussion

The clinical heterogeneity of BC suggests that biologically relevant
subtypes may exist within and between NMIBC and MIBC. Using a
series of unsupervised learning approaches, we demonstrated that
patients with BC could be sub-grouped into four major classes with
distinct molecular characteristics, regardless of previously known
clinicopathological factors. By constructing the genomic subtype pre-
dictor based on 786 genes (GSP786), we demonstrate the robustness
of GSP786 for classifying these four subtypes, and its reproducibility
was validated in six independent cohorts with a total of 1934 sam-
ples. Furthermore, our data clearly demonstrated the prognostic sig-
nificance of the four subtypes of BC, particularly the aggressive
clinical behaviour of class 3 with ICI responsiveness.

One of the most prominent biological characteristics of classes 1
and 2 was significant alterations in FGFR3, including both mutations
and overexpression (Fig. 3; Supplementary Fig. 5b). This finding sug-
gests that FGFR3 is a candidate therapeutic target in these subgroups.
Although many studies have reported FGFR3 dysregulation as a
promising therapeutic target in multiple preclinical trials [33], further
studies are needed to verify the benefit of FGFR3 inhibitors in these
subgroups. The main biological difference between classes 1 and 2
was the significant downregulation of immune response pathways in
class 2. We demonstrated that HLA gene expression was significantly
reduced in class 2 (Supplementary Fig. 5a), and this downregulation
is associated with poor prognosis in cancer [23]. Detection and fur-
ther characterization of class 2 may potentially result in optimized
therapy options for patients.

One of the distinct biological characteristics of class 3 tumours
was the concordant activation of cell cycle-associated functions in
both the NMIBC and MIBC subgroups, suggesting that a subset of
patients with high-grade NMIBC or MIBC may share molecular char-
acteristics associated with more aggressive clinical behaviour. Fur-
thermore, class 3 also exhibited high rates of somatic mutations and



Fig. 4. Class 3 subtype is associated with response to ICI. (a) Heat map of the GSP786 classifier profiled in the IMvigor210 cohort. Rows of the heat map show gene expression
grouped by specific functions or pathways. IC, immune cells; TC, tumour cells; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (b) Response
versus predicted subtype based on the GSP786 classifier, demonstrating that class 3 had a significantly increased response rate (P < 0¢001, two-sided Fisher’s exact test). The num-
bers in parentheses specify sample numbers in each class. (c) Class 3 exhibited a better survival rate compared with other subtypes (P = 0¢028, log-rank test).
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alterations in DDR genes (Fig. 3; Supplementary Fig. 9). These fea-
tures suggest a potential benefit for immunotherapy via treatment of
class 3 patients with ICIs [37], which is also supported by our findings
demonstrating an association between class 3 and ICI responses
(Fig. 4). As expected, class 3 was strongly correlated with the
response to ICIs. We also found that class 3, which showed poor prog-
nosis in the discovery and validation cohorts, exhibited better sur-
vival rates compared with other subclasses in the IMvigor210 cohort.

TMB was shown to be useful in predicting the treatment response
to ICIs, and the class 3 subtype has a statistically significant
Table 1
Logistic regression analysis for prediction of response to ICI.

Variable Estimated b Std. Error Z-value P (> Z)

PD-L1 expression on TC �0¢2252 0¢2321 �0¢97 0¢33198
PD-L1 expression on IC 0¢3746 0¢221 1¢695 0¢09003
Tumour mutation burden 1¢3138 0¢4517 2¢909 0¢00363
BC subtype 0¢9663 0¢3241 2¢981 0¢00287

Regression coefficients (Estimated b) represent the mean change in the response
variable for one unit of change in the predictor variable while holding other predic-
tors in the model constant.
TC = tumour cell; IC = immune cell; BC = bladder cancer.
relationship with the response to ICIs (Table 1), suggesting that TMB
is not the only contributing factor for higher response in class 3. Fur-
thermore, whole-exome sequencing for the determination of muta-
tion load is expensive and time-consuming, hindering its application
in clinical practice, and disease-specific TMB thresholds for the effec-
tive prediction of a response in BC are not well-established [39].
Taken together, these results propose our classifier, in concert with
TMB, as a potential biomarker for ICI selection across NMIBC and
MIBC; however, further prospective validation studies are required
to confirm these conclusions.

Although the class 3 subtype has molecular characteristics
similar to the previously recognized GU subtype from the Lund
taxonomy [17] with respect to activation of cell cycle-related
functions, we showed that the class 3 subtype, exhibiting similar
involvement of high-grade NMIBC and MIBC, had the worst PFS
compared with the other subtypes. Since the urobasal B or SCC-
like subtypes showed higher complete response rates than the
GU subtype [19], the GU subtype might not be appropriate for
identifying patients who are likely to respond to treatment with
ICI. On the other hand, we demonstrated the independent utility
of our classifier for predicting patient response to ICIs in the
IMvigor210 cohort. These results emphasize this approach’s
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predictive value by classifying high-risk NMIBC and MIBC patients
who might benefit from ICI therapy.

In conclusion, we identified four molecular subtypes of BC that
display discriminative biological and clinical features, even consider-
ing all pathological subtypes of BC. Our newly constructed classifica-
tion system suggests biological activity and potential treatment
guidelines for each subclass of BC, especially the prognostic and pre-
dictive significance of class 3 with ICI responsiveness. Our findings
may contribute to precision medicine in BC by classifying optimal
patient subgroups and determining an appropriate therapeutic
course. A close relationship between the class 3 subtype and the
response to ICIs may present an appropriate treatment option for
highly progressive NMIBC and MIBC with a poor prognosis.
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