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Abstract 

Background: In tropically-adapted beef heifers, application of genomic prediction for age at puberty has been 
limited due to low prediction accuracies. Our aim was to investigate novel methods of pre-selecting whole-genome 
sequence (WGS) variants and alternative analysis methodologies; including genomic best linear unbiased prediction 
(GBLUP) with multiple genomic relationship matrices (MGRM) and Bayesian (BayesR) analyses, to determine if predic-
tion accuracy for age at puberty can be improved.

Methods: Genotypes and phenotypes were obtained from two research herds. In total, 868 Brahman and 960 Tropi-
cal Composite heifers were recorded in the first population and 3695 Brahman, Santa Gertrudis and Droughtmaster 
heifers were recorded in the second population. Genotypes were imputed to 23 million whole-genome sequence 
variants. Eight strategies were used to pre-select variants from genome-wide association study (GWAS) results 
using conditional or joint (COJO) analyses. Pre-selected variants were included in three models, GBLUP with a single 
genomic relationship matrix (SGRM), GBLUP MGRM and BayesR. Five-way cross-validation was used to test the effect 
of marker panel density (6 K, 50 K and 800 K), analysis model, and inclusion of pre-selected WGS variants on prediction 
accuracy.

Results: In all tested scenarios, prediction accuracies for age at puberty were highest in BayesR analyses. The addi-
tion of pre-selected WGS variants had little effect on the accuracy of prediction when BayesR was used. The inclusion 
of WGS variants that were pre-selected using a meta-analysis with COJO analyses by chromosome, fitted in a MGRM 
model, had the highest prediction accuracies in the GBLUP analyses, regardless of marker density. When the low-den-
sity (6 K) panel was used, the prediction accuracy of GBLUP was equal (0.42) to that with the high-density panel when 
only six additional sequence variants (identified using meta-analysis COJO by chromosome) were included.

Conclusions: While BayesR consistently outperforms other methods in terms of prediction accuracies, reasonable 
improvements in accuracy can be achieved when using GBLUP and low-density panels with the inclusion of a rela-
tively small number of highly relevant WGS variants.
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Background
The lifetime reproductive capacity of tropically-adapted 
cows has a major impact on herd productivity and profit-
ability [1–4]. Application of genetic selection for lifetime 
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reproductive capacity has been limited because of its low 
heritability (0.04 and 0.16 in Tropical Composite and 
Brahman heifers, respectively) [1] and it is influenced by 
many environmental and biological factors [4, 5]. Consid-
ering associated traits that have a higher heritability and 
contribute to lifetime reproduction in tropically-adapted 
beef breeds may be an effective way to select for 
improved reproductive capacity in cows [1, 6].

Age at puberty is defined as the age at which an animal 
first ovulates [7, 8]. Age at puberty is moderately herit-
able (0.52 to 0.57) in tropically-adapted beef heifers [9] 
and is also favourably genetically correlated (− 0.40 and 
− 0.33 for Brahmans and Tropical Composites respec-
tively) to lifetime reproductive performance in cows [6], 
making it ideal for inclusion into selection programs. 
Moreover, late onset of puberty in beef cattle has a nega-
tive impact on a cow’s lifetime reproductive performance 
and reduces the rate of genetic gain within the herd by 
directly impacting the generation interval of breeding 
animals [7]. Selection for reduced age at puberty in cattle 
can have a favourable genetic impact on female lifetime 
reproductive performance [1, 10, 11]. A good estimate of 
age at puberty can be determined by ultrasound scanning 
the ovaries of heifers at approximately 4 to 6 week inter-
vals to determine age at first corpus luteum (AGECL) [9]. 
Since AGECL is a difficult and expensive trait to meas-
ure, its potential use in commercial herds is limited.

In contrast to AGECL, reproductive maturity score 
(RMS), a proxy trait for AGECL, is a categorical trait 
measured on a 0 to 5 scale where 0 = infantile reproduc-
tive tract, 1 = small ovarian follicles, 2 = ovarian follicles 
with a diameter larger than 10 mm, 3 = presence of cor-
pus luteum, 4 = pregnancy to 10  weeks, and 5 = preg-
nancy longer than 10 weeks [12, 13]. Unlike AGECL, for 
which multiple measurements are taken, RMS is meas-
ured only once, at approximately 600  days of age [12, 
13]. Recent studies have shown that RMS is moderately 
heritable  (h2 = 0.23) and is highly genetically correlated 
 (rg = − 0.83) to AGECL in tropically-adapted heifers 
[13], which suggests that it could be used as a proxy for 
AGECL in genomic evaluations. The advantage of using 
RMS as a proxy indicator of age at puberty, compared 
to the highly heritable AGECL trait, is that it is a sin-
gle measurement that is taken at a similar age as many 
scanned carcase traits [14]. This reduces the number 
of times that animals need to be handled, and in turn, 
reduces associated labour requirements and limits wel-
fare concerns associated with unnecessary handling of 
stock, both of which can result in significant cost savings 
in the extensive northern Australian pastoral industry.

Genomic selection can be used to select for difficult 
and expensive to measure traits, such as age at puberty 
[15–17]. The accuracy of prediction in genomic selection 

is related to the number of animals in the reference popu-
lation for which recorded phenotypes are available [18], 
the heritability of the trait [19] and relatedness of the 
populations that have been measured [19, 20]. The beef 
industry in northern Australia consists primarily of B. 
indicus and B. indicus × B. taurus crossbred cattle [20, 
21]. To accommodate the cross-breeding strategies that 
are practised in this production system, genomic selec-
tion strategies for age at puberty need to be analysed 
across these breeds and crosses [20]. Recent studies have 
shown that multi-breed genomic selection is possible in 
tropically-adapted beef heifers, with no adverse impact 
on prediction accuracies [20]. However, this study has 
demonstrated that high-density panels of single nucleo-
tide polymorphisms (SNPs) are required to accurately 
predict genomic estimated breeding values (GEBV) in 
these multi-breed populations [20].

Genomic prediction accuracies for single-scan puberty 
indicators are currently quite low (0.03–0.42) even when 
high-density SNP panels are used [13, 20]. In order to 
improve the prediction accuracy of RMS in tropically-
adapted beef heifers, improved methodologies of analy-
sis need to be developed. The use of whole-genome 
sequence (WGS) data has been investigated as a method 
to improve the accuracy of genomic prediction for some 
traits [22–24]. However, the use of imputed whole-
genome sequence in its entirety does not improve predic-
tion accuracy of genomic selection [23, 24] because the 
accuracy of estimating millions of SNP effects is limited 
with the current datasets, and the millions of small errors 
in the SNP effects compromise accuracy. In addition, 
the limited improvement of prediction accuracy may be 
because the currently available high-density panels are 
sufficient to capture a large proportion of the genetic 
variance in traits, which may limit the benefit of using 
whole-genome sequence data in genomic evaluations 
[23, 24]. However, several recent studies have suggested 
that the inclusion of pre-selected sequence variants into 
genomic evaluations may help to improve the prediction 
accuracy of genomic selection, especially in multi-breed 
populations [25–27].

In the dairy industry, recent research has investigated 
the use of novel methods to identify or ‘prune’ WGS 
variants for inclusion in genomic selection models [25–
28]. Raymond et al. [26] showed that the conditional or 
joint (COJO) WGS pruning methodology successfully 
improved the prediction accuracy for height in dairy cat-
tle. In contrast, another study reported that COJO WGS 
pruning reduced prediction accuracy and increased bias 
in a dairy population, but it was hypothesised that this 
may be due to the structure of the population used [28]. 
Multi-genomic relationship matrix (MGRM) analyses 
have also been used to improve the prediction accuracy 
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of numerically small breeds in and across dairy popula-
tions [26]. Compared to a conventional single-genomic 
relationship matrix (SGRM), the use of a MGRM model 
where pre-selected SNPs were fit in a separate genomic 
relationship matrix (GRM), was hypothesised to reduce 
the effect of bias of individuals from numerically small 
populations that are incorporated into a GRM popu-
lated by a large number of unrelated individuals [26]. 
Furthermore, in another dairy industry study, non-linear 
Bayesian analyses were shown to increase the predic-
tion accuracy of genomic evaluations in multi-breed 
populations [29]. The BayesR models allow SNPs to 
belong to four different distributions [30], which may 
help to improve prediction accuracies in multi-breed 
populations compared to GBLUP models [29]. These 
three methodologies, use of pre-selected WGS variants, 
MGRM analyses and BayesR analyses, led to improve-
ments in prediction accuracy in multi-breed populations 
of dairy cattle [25, 26, 29].

Given the promising results observed for dairy cattle, 
there may be opportunity to adapt similar methodologies 
for the north Australian beef industry. Currently, the cost 
of genotyping large numbers of cattle with high-density 
genotypes can be considerable and, as such, one of the 
aims of this research was to investigate if pre-selected 
whole-genome sequence variants can be incorporated 
into genomic evaluation models to improve the predic-
tion accuracy of the more cost-effective, low-density 
panels. We hypothesised that pre-selected WGS vari-
ants can be used to improve prediction accuracy for RMS 
in a multi-breed population of tropically-adapted beef 
heifers. We tested several WGS pruning techniques in 
SGRM, MGRM and BayesR models to determine if the 
accuracy of genomic breeding values for RMS could be 
improved.

Methods
Animals
Fertility records were obtained from two research popu-
lations, the Northern Breeding Project research herd 
from the Beef Cooperative Research Centre for Beef 
Genetic Technologies (Beef CRC) [9] and the Queens-
land Smart Futures (SMF) population assembled through 
the Next Generation Beef Breeding Strategies project 
[12, 13]. Briefly, 868 Brahman heifers and 960 Tropi-
cal Composite heifers with both AGECL phenotype and 
genotype data were obtained from the Beef CRC. In these 
herds, AGECL was defined as age (in days) at first corpus 
luteum, obtained by regular ultrasound scanning of heif-
ers every 4 to 6 weeks. Detailed herd structure, manage-
ment and data recording are outlined in Johnston et  al. 
[9].

In total, 3695 reproductive maturity scores (RMS) were 
obtained from the SMF database on heifers from three 
breeds, Brahman (n = 979), Santa Gertrudis (n = 1802) 
and Droughtmaster (n = 914). Full information on herd 
structure, management and data recording is described 
in Burns et al. [12] and Engle et al. [13].

Genotypes
Beef CRC heifers were genotyped with the BovineSNP50 
BeadChip (Illumina, San Diego, CA) [31] and SMF heif-
ers were genotyped with the 24,121 SNPs from the Gen-
eseek GGP-LD array [20]. Full details on genotype quality 
control are described in Hayes et al. [20]. Genotypes were 
imputed up to 728,785 SNPs (Bovine HD array) using 
the FImpute software [32], and a panel of 1500 individu-
als from relevant breeds that were genotyped with the 
Bovine HD array. All genotypes were then imputed to 23 
million whole-genome sequence variants using the 1000 
Bull Genomes Run6 data base [33] using Eagle [34] for 
phasing and Minimac3 software [35] for imputation.

Genomic predictions were estimated using three base 
SNP densities: 6 K (BovineLD array), 50 K (BovineSNP50 
BeadChip) and 800  K (BovineHD array). Since animals 
were genotyped at different SNP densities, the genotypes 
for the 6 K and 50 K array datasets were constructed by 
extracting only the SNPs that were present on the com-
mercial BovineLD or BovineSNP50 BeadChip array from 
the imputed 800 K data.

Statistical analysis
Three datasets were used in these analyses. The Beef 
CRC data was split into Brahman and Tropical Compos-
ite data, which were used for the discovery of variants 
associated with AGECL, whereas the SMF heifers were 
treated as a single population that was used for genomic 
prediction. The analysis proceeded in two steps:

1. Identification of variants associated with AGECL 
in Beef CRC populations (Brahman and Tropical 
Composites) using genome-wide association studies 
(GWAS) of imputed WGS data in each population 
separately.

2. Assessment of the accuracy of genomic predictions 
for RMS in the SMF population when WGS variants 
pre-selected from the Beef CRC GWAS analyses are 
added to each analysis.

Genome-wide association studies were per-
formed using the GCTA software [36]. The GWAS 
model used for the Brahman population was 
AGECL ∼ animal+ group+ dam age+ variant+ error 
and the model used for the Tropical Composites was 
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AGECL ∼ animal+ group+ B.indicus content+ variant

+error , where animal is the random animal effect fit-
ted with a GRM, group is contemporary group fitted 
as a fixed effect, dam  age is the age of dam when each 
test animal was born fitted as a categorical fixed effect, 
B.indicus content is a continuous covariate of B. indicus 
percentage of each Tropical Composite animal, variant 
is the association between the WGS variant being tested 
and phenotype and error is the random residual effects 
of the model. Eight strategies were then applied to pre-
select WGS variants associated with AGECL in GWAS 
for inclusion in genomic prediction models (Table 1). All 
sequence variants were included in pre-selection models 
and any WGS variant that had a minor allele frequency 
(MAF) lower than 0.01 were excluded from pre-selection 
models. Pre-selected WGS variants that were already 
included on the commercially available SNP panels were 
excluded from the WGS analysis but continued to be 
analysed as panel SNPs.

Conditional or joint analyses (COJO) were performed 
in GCTA [37] to pre-select WGS variants using the out-
put from the single cohort GWAS (GWAS) or meta-anal-
ysis GWAS output (META). Significance thresholds used 
to pre-select WGS variants were arbitrarily defined as 
the most stringent P-value threshold that could be used 
to identify variants. Initially, a significance threshold of 
P ≤ 5.0e−08 (whole-genome significance) was tested and 
if no WGS variants met this threshold it was sequentially 
and arbitrarily lowered (Table  1). For ease of compari-
son, significance thresholds were equivalent between the 
TOP GWAS and TOP META analyses and also between 

the COJO CHR GWAS and COJO CHR META analyses 
(Table 1).

Single cohort GWAS COJO was performed on each of 
the Beef CRC datasets and any significant WGS variant 
identified in either of the datasets was used in genomic 
predictions. Meta-analyses on the Beef CRC datasets were 
performed using the program Metal [38]. The P-value 
threshold model was applied to pre-select WGS variants in 
the TOP META analyses (see Table 1, for full description). 
The standard error analysis option was used to perform a 
meta-analysis in the META COJO analyses. In order to use 
the standard error analysis in the program Metal, data from 
each of the META COJO analyses were standardised so that 
the variant effect ( b ) had a mean of 0 and a standard devia-
tion of 1. This was performed using the following equations:

Genomic best linear unbiased prediction (GBLUP)
Genomic relationship matrices were constructed for each 
of the datasets and each marker panel using GCTA [36]. 
Pre-selected variants were incorporated into each analy-
sis using one of two methods: first, by adding the signifi-
cant WGS variants and panel SNPs into a single GRM for 
each analysis (SGRM); and second, by using a multi GRM 

b =
variant effect

trait mean
,

z = −0.862+
√(

0.743− 2.404 × log(P-value)
)
,

se =
b

z
.

Table 1 Description of whole genome sequence (WGS) SNP pre-selection methods

From both single cohort genome wide association study (GWAS) and meta-analysis genome wide association study (META) output
a CONTROL = marker panel analysis only, with no WGS variants included in analyses
b COJO = conditional or joint analysis in GCTA 

Analysis Description

CONTROLa Analysis of marker panel only, 6 K, 50 K or 800 K

GWAS SNP pre-selection

 TOP GWAS All significant variants (P ≤ 5.0e−06) from the WGS from each of the beef CRC populations

 COJOb GWAS 100 COJO selecting the 100 most significant variants from each of the beef CRC GWAS analyses

 COJOb GWAS 250 COJO selecting the 250 most significant variants from each of the beef CRC GWAS analyses

 GWAS  COJOb CHR COJO analysis performed within chromosome where significant (P ≤ 5.0e−03) variants were 
selected from each beef CRC GWAS analyses

META SNP pre-selection

 TOP META All significant (P ≤ 5.0e−06) variants from the WGS meta analyses of the beef CRC populations

 META  COJOb 100 COJO of meta analyses of the beef CRC populations selecting the 100 most significant variants

 META  COJOb 250 COJO of meta analyses of the beef CRC populations selecting the 250 most significant variants

 META  COJOb CHR COJO analysis performed within chromosome where significant (P ≤ 5.0e−03) variants were 
selected from meta-analysis of beef CRC populations
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(MGRM) method where the marker panel GRM remained 
the same but a second GRM, with only the significant WGS 
variants, was added and analysed simultaneously. Each 
GRM was centred using the allele frequencies of the entire 
population. The GBLUP models for the SGRM (model 1) 
and MGRM (model 2) are shown below:

where y is a vector of phenotypes, X is design matrix 
allocating records to animals, b is a vector of fixed effects 
including the mean, age at measurement fitted as a covar-
iate, contemporary groups fitted as a fixed effect, defined 
as herd, year and season, Z is an incidence matrix map-
ping phenotypes to animals, a is a vector of random ani-
mal effects and e is a vector of random error terms. The 
distribution of a is assumed to be N

(
0,Gσ2g

)
 , where G is 

a n× n matrix of the genomic relationships between 
individuals estimated using the respective SNPs selected 
in each analysis [36] and σ2g is the amount of genetic vari-
ance explained by the SNPs in the analysis. Vector e mod-
els the random error terms and follows the distribution 
N
(
0, Iσ2e

)
 , where I is an n× n identity matrix and σ2e is the 

unexplained proportion of variation from the model.
The MGRM model can be written as

where parameters and assumptions for the MGRM 
model (2) are the same as those described for the SGRM 
model (1), except that aPanel is a vector of random animal 
effects that follows the distribution N

(
0,GPanelσ

2
g

)
 , 

where GPanel is a n× n matrix of the genomic relation-
ships between individuals estimated using the panel 
SNPs and aWGS is a vector of random animal effects that 
follows the distribution N

(
0,GWGSσ

2
g

)
 , where GWGS is a 

n× n matrix of the genomic relationships between indi-
viduals estimated using the pre-selected WGS variants. 
The genomic estimated breeding values (GEBV) esti-
mated from the marker panel and the GEBV estimated 
from the WGS variants were summed to calculate the 
total GEBV for each animal, which was used to calculate 
prediction accuracy.

Bayesian analysis
The BayesR model for each analysis is shown below:

where the covariate terms are the same as described for 
the GBLUP models and W is the standardised genotype 
matrix (of order equal to the number of phenotypes 
by number of SNP). Furthermore, s is a vector of SNP 
effects that follows the distribution s ∼ N

(
0, σ2i

)
 , where 

(1)y = Xb+ Za + e,

(2)y = Xb+ ZaPanel + ZaWGS + e,

y = Xb+Wg + e,

σ
2
i  is one of four distributions: σ2i  = {0, 0.0001, 0.001, or 

0.01} ×σ
2
g , for the ith SNP distribution. The parameter σ2g 

is the estimated genetic variance of the trait. Erbe et al. 
[39] described the two latent parameters that are used in 
BayesR. The first parameter, b(i, k) , defines whether or 
not the estimated SNP effects follow a normal distribu-
tion and k = (1, 2, 3, 4):

The second parameter, Pr (a vector of length 4) defines 
the proportion of SNPs that fall into each of the four 
potential effect groups defined above, and the probability 
that SNP i falls in each distribution is:

The prior of Pr is sampled from a Dirchlet distribu-
tion, Pr ∼ Dirchlet(α) , where α = [1, 1, 1, 1] . The default 
option of 50,000 Gibbs chain iterations was used, with the 
first 20,000 iterations discarded as burn-in, as described 
by Moser et al. [30]. GEBV were calculated using the fol-
lowing equation described in Hayes et  al. [20] (where 
Wcands is now the standardised genotype matrix for 
unphenotyped animals):

Prediction accuracy
Five-fold cross-validation was used to determine pre-
diction accuracy. Validation groups were populated by 
randomly assigning 20% of the SMF animals to one of 
five validation groups. Individual animals appeared only 
in a single validation group and these groups were used 
across all analyses. This random assignment to validation 
group was designed to reflect the heterogeneous mix of 
breeds that will most likely occur in genomic evaluations 
of the northern Australian beef industry.

Correlations between predicted GEBV and RMS phe-
notypes adjusted for fixed effects were averaged across 
validation groups for each analysis. Then, average corre-
lations were divided by the square root of the heritability 
of RMS to calculate the prediction accuracy. The herita-
bility estimates used in the calculation of accuracies were 
obtained from the 800 K CONTROL analysis (Table 2). 
Control analyses for each of the methods used a model 
that included only information from the marker panel 
and no added WGS variants. The variance components 
for each scenario are averaged over each of the five refer-
ence populations and the standard errors presented are 

p
(
gi|b(i, k)

)
=

{
0, b(i, 1) = 1

1√
2ψ2

i [k]
exp

g2i
2σ2i [k]

b(i, k) = 1(k = 2, 3, 4)
.

p
(
g
i
|Pr

)
=Pr1 × N

(
0, 0× σ

2

g

)
+ Pr2 ×N

(
0, 0.0001× σ

2

g

)

+ Pr3 ×N

(
0, 0.001× σ

2

6

)
+ Pr4 ×N

(
0, 0.01× σ

2

g

)
.

GEBV = Wcandsĝ.
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the standard errors of the mean of the average estimates. 
Prediction bias was calculated as the regression coef-
ficient between adjusted phenotype (y-axis) and GEBV 
(x-axis) in each of the analyses.

Model significance was tested using a linear model 
function in R [40] that tested panel density, GWAS 
type (GWAS or META), WGS variant pre-selection 
method and type of analysis, i.e. SGRM, MGRM and 
BayesR, to determine the effect of these factors on 
prediction accuracy for RMS. Pair-wise compari-
sons between factor levels were estimated using the 
emmeans package in R [41]. When performing signifi-
cance testing, the CONTROL groups were removed 
from the analysis because CONTROL was confounded 
in the MGRM analysis since the MGRM CONTROL 
was equivalent to the SGRM CONTROL.

Results
Initial statistical investigations showed that RMS is an 
approximately normally distributed categorical trait 
with a mean of 2.27 and a range from 0 to 5, which indi-
cates that variation in this trait exits between the Smart 
Futures heifers. Variance component estimates were sim-
ilar between marker panels, therefore for ease of refer-
ence, only the results estimated from the 800 K panel are 
presented in Table 2. The addition of WGS variants had 
little effect on the heritability estimates, across all marker 
panels.

The numbers of variants selected from each chromo-
some were similar across the three panels (Figs. 1 and 2; 
the results from the 6 K panel are displayed). Compared 
to the GWAS results (Fig. 1), the META analyses gener-
ally resulted in fewer WGS variants being selected from 

Table 2 Variance components for  Smart Futures heifers for  reproductive maturity score (RMS) estimated on  the  800  K 
marker panel with standard errors

Estimated phenotypic variance (Vp), additive variance (Va), environmental variance (Ve) and heritability  (h2) estimated for single GRM (SGRM), Bayes R (BAYES) 
analyses and multi-GRM (MGRM) analyses. Whole-genome sequence (WGS) variants additive variance (WGS Va), WGS variants heritability (WGS  h2) and total 
heritability (total  h2) estimated in the multiple genomic relationship matrix (MGRM) analyses in the Smart Futures heifers 800 K marker panel (standard errors (se) in 
parentheses)

GRM Analysis Vp (se) Va (se) Ve (se) h2 (se) WGS Va (se) WGS  h2 (se) Total  h2 (se)

SGRM CONTROL 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

TOP GWAS 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

TOP META 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

COJO GWAS 100 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

COJO GWAS 250 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

GWAS COJO CHR 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

COJO META 100 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

COJO META 250 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

META COJO CHR 1.11 (0.01) 0.22 (0.01) 0.89 (0.01) 0.20 (0.01) – – –

MGRM TOP GWAS 1.11 (0.00) 0.20 (0.01) 0.90 (0.02) 0.18 (0.01) 0.012 (0.002) 0.012 (0.002) 0.19 (0.011)

TOP META 1.13 (0.01) 0.19 (0.01) 0.90 (0.01) 0.17 (0.01) 0.042 (0.007) 0.036 (0.008) 0.21 (0.012)

COJO GWAS 100 1.11 (0.01) 0.20 (0.01) 0.89 (0.01) 0.18 (0.01) 0.010 (0.000) 0.012 (0.002) 0.20 (0.010)

COJO GWAS 250 1.11 (0.01) 0.19 (0.01) 0.89 (0.01) 0.17 (0.01) 0.028 (0.007) 0.024 (0.005) 0.20 (0.010)

GWAS COJO CHR 1.11 (0.01) 0.20 (0.01) 0.89 (0.01) 0.18 (0.01) 0.014 (0.007) 0.010 (0.006) 0.20 (0.010)

COJO META 100 1.11 (0.01) 0.20 (0.01) 0.89 (0.01) 0.18 (0.01) 0.022 (0.002) 0.018 (0.002) 0.20 (0.012)

COJO META 250 1.11 (0.01) 0.18 (0.01) 0.89 (0.01) 0.16 (0.01) 0.034 (0.002) 0.032 (0.002) 0.20 (0.011)

META COJO CHR 1.10 (0.00) 0.20 (0.01) 0.90 (0.01) 0.18 (0.01) 0.016 (0.002) 0.012 (0.002) 0.19 (0.010)

BAYES CONTROL 1.09 (0.00) 0.19 (0.01) 0.90 (0.01) 0.17 (0.01) – – –

TOP GWAS 1.09 (0.00) 0.19 (0.01) 0.90 (0.01) 0.17 (0.01) – – –

TOP META 1.09 (0.00) 0.19 (0.01) 0.90 (0.01) 0.17 (0.01) – – –

COJO GWAS 100 1.09 (0.00) 0.19 (0.01) 0.90 (0.01) 0.17 (0.01) – – –

COJO GWAS 250 1.09 (0.00) 0.19 (0.01) 0.90 (0.01) 0.17 (0.01) – – –

GWAS COJO CHR 1.09 (0.00) 0.19 (0.01) 0.90 (0.01) 0.17 (0.01) – – –

COJO META 100 1.09 (0.00) 0.19 (0.01) 0.90 (0.01) 0.17 (0.01) – – –

COJO META 250 1.09 (0.00) 0.18 (0.01) 0.90 (0.01) 0.17 (0.01) – – –

META COJO CHR 1.09 (0.00) 0.18 (0.01) 0.90 (0.01) 0.17 (0.01) – – –
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each chromosome, with the exception of the TOP META 
analysis (Fig.  2). The TOP META analysis identified the 
largest number of pre-selected WGS variants among 
all META analyses, however, all WGS variants were 
on four chromosomes only, 3, 5, 14 and 21. The major-
ity of the 1591 WGS variants pre-selected in the TOP 
META analysis were located on chromosome 14 (92%). 
Similar to the GWAS results (Fig.  1), COJO analysis of 
the META results resulted in a reduced number of vari-
ants selected from each chromosome. Unlike the COJO 
GWAS results, the META COJO CHR analysis identified 
fewer significant variants than the other META pruning 

methods, even with a less stringent P-value threshold 
(P ≤ 5.0e−03). Of the six variants identified in this pre-
selection method, two were located on chromosome 5, 
and one on each chromosome 14, 21, 22 and 25 (Table 3).

The prediction accuracies of all the BayesR analyses, 
including the CONTROL analyses, were higher than 
for any of the within-panel GBLUP analyses (Fig.  3). 
The greatest improvement in prediction accuracy using 
BayesR was obtained with the higher density panels, as 
also observed in the GBLUP results. Unlike the GBLUP 
results, the 50 K panel showed slightly better prediction 
accuracies than the 800  K analysis when using BayesR. 

Fig. 1 Number of pre-selected whole-genome SNPs from single cohort genome-wide association studies. Numbers of pre-selected 
whole-genome sequence (WGS) SNPs in each of the single cohort genome-wide association studies (GWAS) with the 6 K panel by chromosome 
(CHR) (a–d) and the total number of preselected WGS SNPs in each analysis (e)
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Estimates of the CONTROL analyses in the 50  K and 
800  K BayesR analyses were 0.51 and 0.50, respectively. 
Inclusion of WGS variants in the 50 K and 800 K analy-
ses did not improve prediction accuracy in either BayesR 
or GBLUP. Prediction accuracy in the 6 K BayesR CON-
TROL analysis was 0.42, which is similar to the 800  K 
GBLUP CONTROL or the 6 K COJO CHR meta-analysis 
GBLUP analyses. Similar to the GBLUP results, the 6 K 
panel benefitted most from the inclusion of WGS vari-
ants in BayesR analyses.

Estimates of prediction bias were not significantly 
affected by the density of the panels or the WGS variant 

Fig. 2 Number of pre-selected whole-genome SNPs from meta-analysis genome-wide association studies. Numbers of pre-selected whole 
genome sequence (WGS) SNPs in each of the meta-analysis genome-wide association studies (META) with the 6 K panel by chromosome (CHR) 
(a–d) and the total number of preselected WGS SNPs in each analysis (e)

Table 3 Annotation of  significant pre-selected whole-
genome sequence variants

Annotation of pre-selected variants identified in the 6 K meta conditional or 
joint analysis (COJO) by chromosome
a 305 kb from gene

Chromosome Position Annotation Gene SNP

5 46074974 Intergenic rs719636104

5 70786467 Intergenic s133829475

14 25315124 Intergenic PLAG1 rs133340360a

21 6816909 Intron ADAMTS17 rs109115540

22 25147635 Intron CNTN6 rs382635721

25 1561873 Intron ZNF598 rs516692605
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pre-selection strategy used. Type of analysis, GBLUP or 
BayesR, influenced the estimates of bias in this study, 
however these differences were not statistically sig-
nificant. Estimates of bias regression coefficients for the 
GBLUP analysis ranged from 0.84 to 0.94 and there were 
no significant differences between each of the GBLUP 
analyses. Estimates of bias regression coefficients in 
BayesR analyses ranged from 1.05 to 1.23 and, again, 
there were no significant differences between each of the 
BayesR analyses.

When examining the effect of each potential factor in 
the model on prediction accuracy; validation group, the 
type of GWAS, analysis and marker panel all had a sig-
nificant (P < 0.001) effect. The effect of the WGS vari-
ant pre-selection method was bordering upon statistical 
significance (P < 0.06) in these analyses. Furthermore, 
the interactions between analysis and marker panel 
(P < 0.001) and analysis and type of GWAS (P < 0.01) had 
significant effects on the prediction accuracy for RMS 
in these models. Pairwise comparisons of factor levels 
showed that the prediction accuracy of RMS was signifi-
cantly different (P < 0.001) between the GBLUP (SGRM 
and MGRM) analyses and the BayesR analyses, but 
there was no difference between the SGRM and MGRM 
GBLUP analyses. Panel density also had a significant 
effect on prediction accuracy in these models, and the 
pairwise comparisons showed that there was a significant 
difference between the 6 and 50 K and the 6 K and 800 K 

panels (P < 0.001), but no difference between the 50 and 
800  K panels. There was also a significant difference in 
accuracy between the GWAS and META WGS variant 
pre-selection methods (P < 0.001).

Discussion
The hypothesis underlying this study was that pre-
selected WGS variants can be used to improve prediction 
accuracy of RMS in a multi-breed population of tropi-
cally-adapted beef heifers. Our results show that, in some 
cases, pre-selection of WGS variants and novel analysis 
methodologies were able to improve the accuracy of pre-
diction of RMS without increasing prediction bias. The 
greatest improvement in prediction accuracy for RMS in 
the SMF heifers came from using the higher density pan-
els, 50 K and 800 K, irrespective of the inclusion of WGS 
variants. The use of higher density panels significantly 
improved prediction accuracy compared to the 6 K panel, 
however, we found no significant difference between the 
50 and 800 K prediction accuracies. Similarly, Raymond 
et al. [25] have shown that inclusion of WGS variants had 
little effect on prediction accuracy of the 50 K or 800 K 
panels in dairy cattle. The range of linkage disequilibrium 
(LD) in beef cattle is relatively long and the 50  K panel 
may be sufficient to capture this variation [39], which 
would explain the lack of significant improvement in pre-
diction accuracy with increased marker density. How-
ever, the extent of LD between breeds depends largely 
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on the effective population size of each breed [20]. In 
the north Australian pastoral industry, many breeds are 
produced commercially, including large numbers of B. 
indicus and B. taurus crossbreeds [21]. The genetic diver-
gence between B. indicus and B. taurus breeds is poten-
tially large and more research is required to determine 
the most appropriate density of panels in this situation.

Increasing the size of the reference set (animals geno-
typed and phenotyped) has been shown to improve the 
accuracy of GEBV, including in tropical beef breeds [20, 
42]. In populations with many breeds, accumulating 
large reference populations for each breed may be chal-
lenging. An alternative is to run a multi-breed analysis. 
Recently, Hayes et  al. [20] estimated within- and multi-
breed prediction accuracy of another puberty proxy trait, 
the corpus luteum score, in the same cohort of Smart 
Futures heifers as those used in our study. Prediction 
accuracies were calculated using both a within-breed and 
multi-breed reference population and the results demon-
strated that prediction accuracy estimates were improved 
for each breed using a multi-breed reference population 
rather than a within-breed reference population [20]. In 
the extensive northern Australian beef industry, accurate 
recording of the breed composition of individual animals 
can be limited, which may adversely affect the prediction 
accuracy of genomic evaluations. Our aim was to deter-
mine if accurate multi-breed GEBV can be predicted to 
aid the development of genomic evaluation programs 
in these industries. Consequently, our study used both 
multi-breed reference and validation populations. The 
method that we used to randomly assign reference and 
validation populations did not consider breed, and it is 
possible that breed composition varied within validation 
group. We found that validation group had a significant 
effect on the prediction accuracy of RMS and some of 
this variation may be due to breed effects. In the future, 
it may be necessary to consider methods that more accu-
rately account for breed effects in multi-breed genomic 
evaluations.

Bayesian methodologies resulted in the highest predic-
tion accuracies for RMS, regardless of the panel density 
and WGS variant pre-selection strategy. In our study, 
Bayesian analyses had significantly higher prediction 
accuracies across all markers and pre-selection meth-
ods than the GBLUP analyses. A number of other stud-
ies have shown that genomic selection using Bayesian 
methods performed better in across-breed predictions 
than GBLUP analyses [29, 39], which could be due to 
differences in the model assumptions between the two 
methods [29]. One of the model assumptions of GBLUP 
analyses is that all SNPs within the GRM have a small 
effect on the trait of interest [29] and, as such, GBLUP 
uses all the SNPs equally to make genomic predictions 

[29]. When estimating within-breed genomic predic-
tions, GBLUP performs equivalently to Bayesian meth-
ods, due to long-range LD that usually exists within 
breeds [29]. However, in multi-breed analyses recom-
bination can affect the associations between SNPs and 
causative mutations, breaking up the long-range LD, and 
reducing the prediction accuracy of GBLUP analyses [29]. 
Model assumptions of the Bayesian analyses allow SNPs 
to have a zero effect within the analysis, which means 
that each analysis is being performed by using only SNPs 
that are in LD with SNPs that have an effect on RMS [29, 
39]. Thus, by using the information from SNPs that only 
affect the trait, Bayesian models have an improved abil-
ity to estimate genomic differences between animals of 
genetically diverse breeds [29, 39].

The use of a MGRM model in some of the GBLUP 
analyses showed potential for improving prediction accu-
racy for RMS in the SMF heifers. A MGRM model for 
genomic analyses can improve the accuracy of GBLUP 
predictions in dairy populations [26, 27]. The use of 
a second GRM that consists of pre-selected variants, 
allows these variants to have a larger variance than they 
would have if they were fitted in a larger SGRM [27]. In a 
large SGRM, the effect of pre-selected WGS variants will 
be regressed more towards the mean than if they were 
fitted in a MGRM model. Since these variants have been 
pre-selected from WGS because of their significant asso-
ciation with RMS, the SGRM may be biasing the effect 
of these pre-selected WGS variants. This may affect the 
ability of the algorithm to accurately estimate SNP effects 
in SGRM models, reducing the potential to further 
increase accuracy.

Prediction accuracies obtained with meta-analysis 
GWAS were slightly higher than with single cohort 
GWAS analyses, particularly in the GBLUP MGRM mod-
els. Meta-analyses are used to account for differences in 
population size and trait measurements when combin-
ing datasets from unrelated populations [43]. Linkage 
disequilibrium in multi-breed populations is expected to 
be shorter, which can improve the precision with which 
SNPs can be identified in GWAS [43]. Thus, by combin-
ing the Beef CRC populations in a meta-analysis, we may 
have improved the ability to identify WGS variants that 
affect AGECL, resulting in increased prediction accura-
cies in the META analyses. Furthermore, in this study, 
GWAS variant pre-selection techniques considered nei-
ther the differences in the variance of AGECL between 
the Beef CRC datasets, nor the differing numbers of 
animals used for GWAS analysis within each of the Beef 
CRC datasets. The slight improvement in META analy-
sis prediction accuracies in our study, compared to single 
cohort GWAS pre-selection, suggests that when pre-
selecting variants from combined datasets of unrelated 
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animals, it may be beneficial to use meta-analyses. Teis-
sier et  al. [43] provided support for this hypothesis by 
showing that meta-analysis of GWAS results were ben-
eficial in identifying variants in whole-genome sequence 
data, and resulted in the most accurate multi-breed 
genomic evaluation.

Of the eight WGS variant pre-selection strategies, two 
of the meta-analysis pre-selection strategies that we used 
resulted in improved prediction accuracies in the GBLUP 
analyses, TOP and COJO CHR. Figure 2 shows that 1591 
and 6 SNPs were selected from these analyses, respec-
tively. Furthermore, both of these pre-selection strategies 
selected variants from very few chromosomes, i.e. BTA14 
(92%), BTA5 (5%) and BTA21 (3%) for TOP and BTA5 
(33%), BTA14 (16.75%), BTA21 (16.75%), BTA22 (16.75%) 
and BTA25 (16.75%) for COJO CHR, respectively. The 
arbitrary cut-off values set in the COJO 100 and COJO 
250 analyses may have resulted in a number of less sig-
nificant WGS variants being pre-selected from a large 
number of chromosomes. In GBLUP analyses, all SNPs 
are assumed to influence the trait [29] and the inclusion 
of SNPs that do not have a significant effect on the trait 
will potentially reduce prediction accuracy. In contrast, 
the pre-selection of variants from a meta-analysis using 
significance value thresholds (e.g. TOP and COJO CHR) 
only selected variants with a significant association with 
the RMS trait, which increased prediction accuracies in 
the GBLUP analyses.

The most significant improvement in prediction accu-
racy due to the inclusion of WGS variants from the 
meta-analysis was observed when the lower density 
panels, particularly the 6  K MGRM models, were used. 
Of these models, the COJO CHR pre-selection had the 
highest prediction accuracy in the GBLUP analyses from 
the inclusion of only six WGS variants. Three of these 
variants were identified on introns of the ADAMTS17, 
CNTN6 and ZNF598 genes. An association between 
ADAMTS17 and height has been reported in horses 
[44], dairy cattle [45] and humans [46]. Increased hip 
height has been identified as adversely genetically corre-
lated with puberty in beef cattle [47], which may explain 
the significant effect of ADAMTS17 on AGECL in this 
study. Furthermore, a recent study has identified a SNP 
in ADAMTS17 that is significantly associated with age 
at puberty in a population of tropically-adapted heifers 
[48]. Similarly, ZNF598 is associated with low fertility in 
dairy cattle [49]. The variant in CNTN6 is associated with 
neural development and spatial learning in mice and is 
differentially expressed between the sexes in the develop-
ing brain [50], and to the authors’ knowledge, it has not 
been associated with fertility in cattle. In addition to the 
variants in these three introns, one intergenic variant was 

identified on BTA14 that was within a 305-kb region of 
the PLAG1 gene. Due to its proximity, this variant is very 
likely tracking a mutation in the PLAG1 gene or its regu-
lators. Recent research has shown that PLAG1 is associ-
ated with age at puberty in tropically-adapted cattle [51]. 
The inclusion of these six SNPs from the meta-analysis 
COJO CHR multi-GRM model, increased the prediction 
accuracy of the GBLUP 6 K analysis to 0.42, which is the 
same as the estimated prediction accuracy of the GBLUP 
800  K control. The economic effect of using a lower 
density panel for genotyping while achieving the same 
accuracy as with higher density panels may have wide-
reaching implications for applied genomic predictions, 
and as such, this finding warrants further investigation.

While the results from this study suggest that the use of 
pre-selected WGS variants and novel analysis methodol-
ogies can be used to improve the prediction accuracy for 
RMS in a multi-breed population of tropically-adapted 
heifers, it is worth noting that these are not true across-
breed GEBV. Across-breed GEBV can only be calculated 
with direct breed comparisons through mixed breed 
cohorts, which were not available in the SMF dataset. 
As each of the three breeds of heifers from the Smart 
Futures dataset were managed separately, in our analyses 
the definition of the contemporary group accounted for 
breed effect. The development of an across-breed GEBV 
for the northern Australian beef industry will require the 
collection of genotypes and phenotypes on animals that 
are produced in multi-breed cohorts, in which breed 
performance can be directly compared. When these 
datasets become available, further research will be neces-
sary to develop methods to predict across-breed GEBV 
and methods to account for differences between breeds 
within these analyses.

Conclusions
Both BayesR and some GBLUP MGRM analysis with pre-
selected WGS variants resulted in improved prediction 
accuracies for RMS in this population of heifers. Gen-
erally, BayesR analyses had higher prediction accuracies 
than GBLUP, and the addition of WGS variants had very 
little effect on BayesR estimates. Pre-selection of WGS 
variants was most beneficial in the GBLUP analyses, par-
ticularly when using variants that were pre-selected by 
using meta-analysis COJO CHR in multi-GRM analy-
ses. The most pronounced improvements in prediction 
accuracy were observed when genotypes were based on 
the 6 K panel for both the BayesR and GBLUP methods. 
The 6 K panel is the most cost-effective option and, if the 
prediction accuracy of this panel can be improved, there 
will be a financial benefit to end-users. More RMS phe-
notypes will be required to improve accurate detection of 



Page 12 of 13Warburton et al. Genet Sel Evol           (2020) 52:28 

WGS variants that can explain variation in RMS across a 
number of tropically-adapted breeds and the best meth-
ods to use this data in genomic prediction analyses.
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