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Abstract: Fast and reliable determination of enzyme inhibitors are of great importance in environmen-
tal monitoring and biomedicine because of the high biological activity and toxicity of such species
and the necessity of their reliable assessment in many media. In this work, a flow-through biosen-
sor has been developed and produced by 3D printing from poly(lactic acid). Acetylcholinesterase
from an electric eel was immobilized on the inner walls of the reactor cell. The concentration of
thiocholine formed in enzymatic hydrolysis of the substrate was monitored amperometrically with a
screen-printed carbon electrode modified with carbon black particles, pillar[5]arene, electropolymer-
ized Methylene blue and thionine. In the presence of thiocholine, the cathodic current at −0.25 V
decreased because of an alternative chemical reaction of the macrocycle. The conditions of enzyme
immobilization and signal measurements were optimized and the performance of the biosensor
was assessed in the determination of reversible (donepezil, berberine) and irreversible (carbofuran)
inhibitors. In the optimal conditions, the flow-through biosensor made it possible to determine
1.0 nM–1.0 µM donepezil, 1.0 µM–1.0 mM berberine and 10 nM to 0.1 µM carbofuran. The AChE
biosensor was tested on spiked samples of artificial urine for drugs and peanuts for carbofuran.
Possible interference of the sample components was eliminated by dilution of the samples with
phosphate buffer. Easy mounting, low cost of replaceable parts of the cell and satisfactory analytical
and metrological characteristics made the biosensor a promising future application as a point-of-care
or point-of-demand device outside of a chemical laboratory.

Keywords: acetylcholinesterase sensor; inhibitor determination; flow-through analysis;
electropolymerization; pillar[5]arene

1. Introduction

Growing contamination of the environment with pesticides and drug residues and
strict limitations on potential hazardous content in drinking water and foodstuffs call for the
development of simple and reliable analytical devices intended for preliminary screening
of potential pollutants and for the assessment of their exposure to humans outside chemical
laboratories [1,2]. They are considered as an alternative to conventional sophisticated
analytical instrumentation such as HPLC or fluorescence spectroscopy to provide informa-
tion on the chemical content of soil, water, agriculture and food industry samples that is
requested for making decisions on safety and potential risks related to xenobiotics and the
products of their conversion in the environment. Such portable analytical devices have
some specific requirements related to the application area. Thus, they should be portable,
rather compact and assume minimal sample treatment and consumables consumption [1].
Group assessment of the analytes in accordance with their similar chemical structure or
adverse effect is also desirable [2].

Among various approaches to the preliminary testing of chemical hazards, biosensors
offer unique opportunities for risk assessment [3]. In these analytical devices, biological
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elements (enzymes, nucleic acids, antibodies) are implemented in the assembly of a specific
transducer that converts a biochemical event into the electric signal measured and inter-
preted in terms of the analyte content or its activity in an appropriate reaction [4]. Due to
the extraordinary selectivity of most biochemical recognition reactions, biosensors can be
used in rather complex media including biological fluids in on-site and online regimes. To
some extent, biochemical reactions responsible for target recognition in the assembly of
biosensors mimic appropriate processes that take place in organisms and can be considered
the simplest model of toxic effects caused by contaminants [5]. Similar methodology can be
extended to the determination of drug residuals that also exert targeted effects related to
certain biochemical paths and are under strict control, especially for rather toxic species
with a narrow gap between the toxic and pharmaceutical dose [6,7]. Thus, biosensors
offer a variety of advantages over conventional chemical analysis that can be rather simply
realized in a format convenient for on-demand use.

Although many methods have been explored for sensitive and selective detection of
biochemical interactions in the biosensor assembly, electrochemical transducers remain on
top of real application examples [8]. Starting from the first success related to glucometers,
amperometric and impedimetric sensors are most investigated and used in biosensor proto-
types. They offer many well-known advantages over optic and physical sensors, i.e., rather
simple design, sufficient sensitivity of the signal measurement, well-elaborated theory,
intuitively understandable interpretation of the result, low cost of primary equipment
compatible with flow-through and portable modes [9,10]. Electrochemical biosensors can
be easily presented in a miniature format and are frequently used in point-of-care testing
mode [11].

Acetylcholinesterase (AChE) is one of the most frequently used enzymes in biosensor
assembly. Starting from chemical warfare detection [12,13], AChE biosensors have found
a large application in the determination of organophosphate and carbamate pesticides
inhibiting enzymes [14–16]. Due to a wide variety of species exerting the anticholinesterase
effect, AChE biosensors were proposed as indicators of general pollution of the environ-
ment [17] and for detection of heavy metals [18], surfactants [19], fluorides [20] and organic
solvents [21,22] exerting a non-specific inhibitory effect. Recently, AChE biosensors were
also successfully utilized for the determination of reversible inhibitors, e.g., anti-dementia
drugs [23,24] and aflatoxins [25,26].

Various approaches have been elaborated for the detection of AChE activity in appro-
priate biosensors for inhibitor determination; those most frequently used are described in
reviews [14,27–29]. Among them, the oxidation of thiocholine formed in the enzymatic
hydrolysis of acetylthiocholine (ATCh) is the most popular. The reaction (Figure 1) re-
sults in the formation of disulfide and can be monitored either amperometrically or using
conventional cyclic voltammetry.
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Figure 1. Application of ATCh for the amperometric determination of AChE activity.

However, the reaction of thiocholine oxidation on carbon and metal electrodes is
complicated by a high overvoltage and partial passivation of the electrode. For these
reasons, auxiliary mediators of electron transfer are introduced in the surface layer of
biosensors. Cobalt phthalocyanine [30], Prussian blue [31] Au nanoparticles [31,32], thion-
ine [33], ferrocene [34] and Ru(II) complexes [35] were successfully utilized for this purpose.
Recently, we have shown that perhydroxylated pillararenes exert electrocatalytic properties
efficient for thiocholine oxidation [23,36,37]. Their effect on electron transfer is related
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to the reversible redox conversion of hydroquinone units of the macrocycle. However,
adsorption of pillararenes on bare glassy carbon results in its fast inactivation caused
by chemisorption of intermediate oxidation products. For this reason, pillararenes were
implemented in the biosensor assembly by using appropriate supports such as reduced
graphene oxide, carbon black or multiwalled carbon nanotubes. Although such modifiers
extend the performance of appropriate biosensors, the weakened mechanical durability
of the surface layer is less applicable for flow-through measurements. Implementation of
electropolymerized redox active polymers as binders and mediators of electron transfer
can solve this problem. Phenothiazine and diazine dyes are rather easily polymerized and
entrap mediators of electron transfer on the stage of growth of the polymer film [38–40].

Although there are many AChE biosensors intended for the detection of inhibitors in
real samples, some drawbacks limit their further application. They involve decay of the
enzyme activity after each contact with an inhibitor and a multi-step protocol of biosensor
assembly that involves various and incompatible conditions for the modification of primary
transducer and enzyme immobilization. The use of a flow-through format and spatial
separation of the enzyme layer and electrode in a thin-layer cell can solve these problems.
Recently, we have proposed a simple and reliable protocol for the determination of the
substrates of uricase and tyrosinase [41]. A replaceable reactor was covered with the
immobilized enzyme and used as a part of the flow-through cell with a mounted screen-
printed electrode modified with electropolymerized phenothiazines and pillar[5]arene
(P[5]A). All the parts of the cell were produced by 3D printing from poly(lactic acid). A
flow-through cell made it possible to achieve a reliable and sensitive response to uric
acid and tyrosine. The assembly made it possible to quickly change both the reactor and
electrode if necessary. In this work, we have extended the approach to the determination of
AChE inhibitors different in nature and mechanism of interaction with the enzyme.

2. Materials and Methods
2.1. Reagents

Donepezil hydrochloride monohydrate (≥98%), berberine chloride dihydrate (≥98%),
AChE from electric eel (EC 3.1.1.7, 518 U mg−1), ATCh, poly(lactic acid), thionine acetate
(3,7-diamino-5-phenothiazinium acetate), Methylene blue (MB, 3,7-bis(dimethylamino)
phenazathionium chloride), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide chloride
(EDC), N-hydroxysuccinimide (NHS), pralidoxime (2-pyridine aldoxime methiodide, 2-PAM),
and carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Unsubstituted P[5]A was synthe-
sized at the Organic Chemistry Department of Kazan Federal University by the modified
Ogoshi method [42]. Carbon black N 220 (CB, >99.95% C) was purchased from Imerys
Graphite&Carbon (Willebroek, Belgium). All the working solutions were prepared using
Millipore Q® water (Simplicity® water purification system, Merck-Millipore, Molsheim,
France). Other reagents were of analytical grade.

Artificial urine contained 10 mM CaCl2, 6 mM MgCl2, 6 mM Na2SO4, 2 mM potassium
citrate, 20 mM KH2PO4, 21 mM KCl, 18 mM NH4Cl, 9 mM creatinine and 416 mM urea.

Electrochemical measurements were performed in a 0.1 M phosphate buffer containing
0.1 M KCl.

2.2. Electrode Modification and Flow-Through Cell Mounting

Screen-printed electrodes were produced on a DEC 248 printer (DEK, London, UK) on
Lomond PE DS Laser Film (thickness 125 µm, Lomond Trading Ltd., Douglas, Isle of Man).
Each electrode strip included a working and an auxiliary electrode made of carbon and
a reference electrode made of silver. Conducting tracks were printed using PSP-2 silver-
containing paste (Delta-Paste, Moscow, Russia), carbon tracks with carbon/graphite paste
C2030519P4 (Gwent group, Pontypool, UK) and the isolating layer was made of solvent-
resistant blue dielectric paste D2140114D5 (Gwent group). Each layer was hardened at
80 ◦C. The electrode strip had dimensions of 11 × 27 mm with a geometric area of the
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working electrode of 3.8 mm2. The schematic outline of an electrode strip is presented
in Figure 2. Prior to use, the working electrode was consecutively modified with the CB
suspension containing P[5]A and an electropolymerized layer of the MB and thionine. The
modification protocol is described in Electronic Supplementary Information (ESI).
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Figure 2. Schematic outline of screen-printed electrodes used with the flow-through cell.

The flow-through cell was prepared using Wanhao Duplicator 9/300 (Jinhua Wanhao
Spare Parts Co., Jinhua, Zhejiang, China) with a single extruder (nozzle diameter 0.3 mm)
from the poly(lactic acid) filaments. The 3D model of the cell designed for the printing is
presented in Figure S1. Layer thickness was 0.1 mm and the printing rate was 70 mm·s−1.
The printing temperature was 220 ◦C. The flow-through cell consisted of three parts fixed
with two screws. The base of the cell had a rectangular notch for fixation of the screen-
printed electrode strip. The replaceable enzymatic reactor contained two channels equipped
with plastic tubes to pump the solutions through the cell. The schematic outline of the cell
is presented in Figure 3. Photographs of a disassembled and assembled flow-through cell
with a screen-printed electrode strip is presented in Figure S2.
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2.3. AChE Immobilization and Signal Measurement

All the manipulations with the flow-through cell and signal measurements were
performed at ambient temperature. The immobilization of the AChE was performed by
carbodiimide binding to the inner side of a replaceable flow-through reactor (Figure 3B)
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by carbodiimide binding. For this purpose, 15 µL of 100 mM EDC and 15 µL of 400 mM
NHS were drop-casted on the surface and left for 10 min. After rinsing with deionized
water, 10 µL of the AChE solution containing 2–15 U of the enzyme were placed on the
same surface, dried and rinsed again. The immobilization assumes covalent binding of the
AChE molecules to the terminal carboxylic groups of the poly(lactic acid).

After assembling the flow-through cell, appropriate solutions (phosphate buffer, ATCh
or an inhibitor solution) were pumped through the cell by the Model 100 Syringe Pump
(ALS Co., Tokyo, Japan). The amperometric response was measured with the multi-
mode potentiostat BioStat (ESA Bioscience Inc., Chelmsford, MA, USA). Electrochemical
measurements in the batch conditions were performed with the electrochemical analyzer
CHI 440B (CH Instruments Inc., Austin, TX, USA).

Inhibition degree was quantified as a relative decay of the signal recorded prior
to and after the contact of the immobilized AChE with the inhibitor. For irreversible
inhibitor (carbofuran), the solutions of the substrate and inhibitor were switched so that the
enzyme contacted with the inhibitor with no substrate in the solution. Reversible inhibitors
(donepezil, berberine) were added in various quantities to the 0.1 mM ATCh and influenced
the immobilized AChE simultaneously. The reactivation of inhibited AChE was performed
by treatment with reactivator in the case of irreversible inhibitor and washing out with
phosphate buffer for reversible inhibitor.

2.4. Real Sample Assay

Determination of the drugs in spiked artificial was performed as described above for
standard solutions of appropriate species after dilution of the samples with phosphate
buffer. The dilution degree was established in blank experiments by changes in the signal
related to the AChE activity.

Determination of carbofuran in peanuts was performed as follows: First, 1 g of
peanuts were ground and mixed with 1 mL of acetonitrile containing a certain amount of
the pesticide. After 24 h incubation, the solvent was evaporated. Prior to measurements,
the dried ground sample was wetted with 1 mL of acetonitrile and after 10 min, 100 mL of
phosphate buffer. Then, the liquid phase was separated and pumped through the cell as
described previously for standard carbofuran solutions. In accordance with the appropriate
calibration curves, extraction of carbofuran was equal to 91%.

3. Results
3.1. Modification of the Screen-Printed Electrode with Polymeric Phnothiazine Dyes and P[5]A

The conditions for the electropolymerization of the MB and thionine on the electrode
have been optimized for similar flow-through conditions in our earlier work [41]. Briefly,
the concentrations and polymerization conditions have been specified to reach the maximal
efficiency of polymerization and stability of the redox characteristics of the coating. It was
found that the use of the mixture of MB and thionine resulted in higher currents recorded
against layer-by-layer deposition of each dye or the use of a monolayered film of only MB
or thionine.

The electropolymerization was performed by repeating the cycling of the potential. It
resulted in the consecutive growth of the peaks attributed to the redox reactions of the dyes
and P[5]A (Figure 4a). At higher anodic potentials, the efficiency of electropolymerization
and stability of the coating decreased probably due to the formation of the products of
monomer overoxidation. The proximity of the redox peaks did not allow for separating the
signals of the macrocycle redox reactions that overlapped with those of the dyes.

The irreversible anodic peak recorded at 0.85–0.90 V corresponded to the formation
of radical products of the dye oxidation initiating polymerization. If the upper potential
was chosen below these values, no significant changes in voltammograms were found.
With an increasing number of cycles, the peak current separation slightly increased due
to the slower transfer of the monomers to the electrode. Moreover, another peak pair at
−0.05–0.15 V appeared and grew with the number of cycles. It is commonly attributed to
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the formation of polymeric dyes that exerted similar redox behavior but at higher potentials
against monomeric forms because of the steric factors [43].
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with CB and adsorbed P[5]A in the mixture of 0.1 mM MB and 0.1 mM thionine during their elec-
tropolymerization; (b) one cycle voltammograms recorded in working buffer with no dye monomers
on the screen-printed electrodes modified with CB + P[5]A and polymerized MB and thionine, dif-
fering in the number of electropolymerization cycles performed. Measurements in 0.01 phosphate
buffer + 0.1 M KCl, pH = 7.0, 100 mV/s.

When transferred to the phosphate buffer with no monomers, the electrode modified
with polymeric dyes showed two pairs of broad peaks (Figure 4b). They were poorly
resolved and probably corresponded to redox conversion of both polymeric dyes and
P[5]A. In the absence of the macrocycle, the morphology of the peaks on voltammograms
remained the same but the peak currents were about threefold lower. This might result
from the involvement of all the components in the electron transfer chain and from the
synergetic effect of the macrocycle and polyphenothiazines on the electron transfer. Vice
versa, the signals of P[5]A alone (see a black line on Figure 4b corresponded to zero cycles
of electropolymerization) were much lower and contained a pair of asymmetrical peaks
with a bigger cathodic peak that corresponded to the reduction of benzoquinone units in
the oxidized [5]A molecules. Domination of the reduction process can be referred to as the
oxidation of the macrocycle with dissolved oxygen. Such behavior was earlier observed
with the same coating (CB + P[5]A) in the assembly of DNA sensors [44]. In accordance
with Figure 4b, most increases in the peak currents of the modified electrode have been
reached at the 15th cycle and the maximal effect of electropolymerization was at −0.4 V.

3.2. Signal Measurement

The activity of the AChE is commonly monitored by the formation of thiocholine from
the ATCh, a synthetic substrate added to the working solution. To characterize the effect of
the electrode modification, the reaction was first considered with thiocholine obtained by
mixing aqueous solutions of the enzyme and the substrate. The reaction was performed
prior to the addition to the modified electrode. It was preliminarily established that 10 min.
incubation was quite sufficient for full hydrolysis of the ATCh to thiocholine and acetic
acid. Due to the instability of the thiocholine solution, the electrochemical measurements
were performed with a freshly prepared solution containing 1 mM of thiocholine within an
hour. To avoid the possible influence of the transducer components and uncertainty in the
potential of pseudo-reference electrode screen-printed together with working and counter
electrodes on plastic support, the measurements were made with a glassy carbon electrode
modified following the protocol described above for the screen-printed electrode.

Figure 5 presents the comparison of cyclic voltammograms recorded on the modified
glassy carbon electrode in phosphate buffer and that containing 0.1 mM thiocholine.
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Figure 5. Cyclic voltammograms were recorded on a glassy carbon electrode covered with CB and
adsorbed P[5]A (a) without and (b) with electropolymerized MB and thionine. Recorded in 0.01 M
phosphate buffer + 0.1 M KCl containing 0.1 mM thiocholine. Measurements at pH = 7.0, 100 mV/s.

If the electrode was covered with CB and P[5]A, the addition of the thiocholine
resulted in an increase in the peaks (a1, c1) attributed to the P[5]A and the appearance
of a new peak (a2) related to the oxidation of thiocholine. The latter one corresponds to
the 0.25 V and coincides with the conditions of the reactions reported earlier in similar
research [23,24]. However, despite the significant difference in the peak currents, the
voltammograms obtained in the presence of thiocholine were unstable and appropriate
signals rapidly decreased in a series of consecutive measurements from the same solution.
The electropolymerization of the MB and thionine decreased the response related to the
thiocholine oxidation due to overlapping with the peaks of polymeric dyes. Meanwhile,
the reduction peak current recorded at −0.27 V (c2) was quite stable and did not interfere
with the currents related to other components of the surface layer. Thus, the following
monitoring of the AChE activity was performed using the cathodic current corresponding
to the P[5]A mediation of thiocholine redox conversion.

Other mediators of electron transfer utilized in the assembly of the electrochemical
AChE biosensors amplify the anodic current related to thiocholine oxidation. The use
of cathodic signals is the most significant advantage of the approach proposed. Most of
the common interferences are oxidizable and hence can result in underestimation of the
inhibition measured. Contrary to that, there are active species in the cathodic area and the
signal is not disturbed by the by-products of the thiocholine oxidation able to passivate
the electrode.

The immobilization of the AChE was performed using a well-known reliable method of
carbodiimide binding. In them, terminal carboxylic groups of poly(lactic acid) were bonded
to the amino groups of the protein. Although the number of accessible carboxylic groups
on the inner walls of the reactor is limited, this cannot be a drawback for the inhibition
determination. In such biosensors, the inhibitor concentration is mostly quantified using
the inhibition degree. It is calculated as a ratio of inhibited enzyme to its total concentration
in the reaction media. Assuming that the numerator of the fraction is constant, a decreased
denominator means a high value of inhibition degree for the same quantity of an inhibitor.
For this reason, the reproducibility of the signal and its stability during the measurement is
of bigger importance than the absolute value of the current recorded.

The optimization of the AChE immobilization and measurement conditions was per-
formed using a screen-printed electrode modified with CB + P[5]A and electropolymerized
phenothiazine dyes. The conditions of modification corresponded to those described above.
The electrode was fixed in a mounted flow-through cell and equalized with phosphate
buffer solution. After that, the ATCh solution was pumped through the cell and the shift of
the current was recorded in amperometric mode. The working potential corresponding to
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the maximum current in presence of ATCh with the pseudo-reference electrode was found
to be −0.25 V (Figure S3). The dynamic response to the substrate is shown in Figure 6.
As could be seen, switching flows resulted in rather fast changes in the current but the
total response time is quite large—up to 15 min. This might result from a rather high dead
volume of the cell. The distance between the inner wall of the reactor and the electrode
surface is about 0.3 mm and the total volume of the cell is 36 µL. For the flow rate of
0.2 mL/min, the response time corresponds to the eightfold renewal of the solution in
the cell. The attempts to decrease the height of the cell by additional membranes were
unsuccessful because of the unpredictable positioning of a rather flexible screen-printed
electrode against the enzyme location (replaceable reactor).
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Figure 6. Dynamic response of the flow-through AChE biosensor to the 1.0 mM ATCh solution. Blue
arrows correspond to the switching of the flow from the phosphate buffer to the substrate and the
green arrow from the substrate to the phosphate buffer. Flow rate 0.2 mL/min.

In continuous flow, the recorded current was stable within 6 h, the changes did
not exceed 0.03 µA/h and were random without a pronounced trend. No tendencies of
increasing response time were observed as well.

3.3. Optimization of the Measurement Conditions

The main parameters of the AChE biosensor operation were optimized to find out
the conditions corresponding to the maximum and most stable response. Appropriate
dependencies are presented in Figure 7.
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Figure 7. The dependence of the response of the AChE biosensor: (a) on the quantity of the enzyme
taken for immobilization (ATCh 1.0 mM); (b) flow rate (AChE 5 U/biosensor, ATCh 1.0 mM); (c) pH
(5 U of AChE, 0.2 mM ATCh). All the measurements at −0.25 V, average from three repetitions.

Full loading of the reactor with the AChE corresponded to 5 U per biosensor. The
following increase in the enzyme quantities did not alter the response to 1.0 mM. It should
be also noted that the repeatability of the signal was rather high and reached 1.1% for the
same reactor and 2.5% for three individual reactors and the same modified screen-printed
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electrode. The increase in the flow rate of the substrate solution increased the signal up to
30–35% of its minimal value. This can be attributed to the faster transfer of the thiocholine
to the electrode. The following measurement was performed at 0.2 mL/min. Regarding pH
dependence of the response, the maximum (pH = 7–8) coincided well with the behavior of
the native enzyme exerting maximal activity in basic media. However, the deviation of the
signal was higher at pH 8.0 probably due to spontaneous hydrolysis of the ATCh, so the
following inhibition measurements were performed at pH = 7.0.

Among other parameters, the concentration of the substrate is of main importance.
It should be sufficient for full saturation of the enzyme active site so that any changes
in the enzyme activity would affect the signal of the AChE biosensor. For this format of
biosensor, the signal increased with the ATCh concentration to 1.0 mM (Figure S4). Thus,
the following measurements were performed at this concentration of the substrate.

3.4. Reversible Inhibition Measurements

To assess the performance of the flow-through biosensor developed, two reversible
inhibitors, donepezil [45] and berberine [46], were chosen. They are used as anti-dementia
drugs and exert reversible inhibition on the AChE to compensate for the lack of acetyl-
choline observed in the acute stage of Alzheimer’s disease and other neurodegenerative
diseases [45].

For both drugs, their solutions were mixed with 1.0 mM ATCh dissolved in phosphate
buffer, pH = 7.0, and pumped through the cell. The stationary response has been reached
at the third minute of pumping. The calibration curves are presented in Figure 8. As
could be seen, increasing the concentration of the reversible inhibitor suppressed the
signal down to zero in both cases. Meanwhile, the recovery of the AChE activity could be
performed by 10 min washing the electrode with phosphate buffer even at high inhibitor
concentrations. During the operation, up to 30 consecutive cycles of inhibition—recovery
could be performed in continuous pumping of the solutions. The analytical characteristics
of the drug determination are summarized in Table 1. The limit of detection (LOD) was
calculated for a 6% decrease in the signal. This corresponded to the doubled deviation of
the response measured. I50 corresponded to the inhibitor concentration resulting in a 50%
decrease in the initial signal recorded in the absence of the inhibitor.
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Figure 8. Calibration curves of donepezil and berberine were obtained with the flow-through AChE
biosensor. AChE 5 U per biosensor, ATCh 1.0 mM, flow rate 0.2 mL/min, phosphate buffer, pH = 7.0.
Average ± standard deviation for six measurements.
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Table 1. Analytical characteristics of donepezil and berberine determination with the flow-through
AChE biosensor.

Inhibitor
∆I, µA = (a ± ∆a) − (b ± ∆b) log(CI, M) Concentration

Range, M I50, nM LOD, nMa ± ∆a b ± ∆b n R2

Donepezil −1.18 ± 0.04 0.23 ± 0.01 7 0.996 1 × 10−9–1 × 10−6 40 0.5
Berberine −0.52 ± 0.03 0.24 ± 0.01 8 0.992 1 × 10−6–1 × 10−3 1240 120

The results obtained are comparable with the characteristics of other AChE biosensors.
The comparison is summarized in Table S1. Application of the second enzyme, choline oxi-
dase, as well as the use of polyelectrolyte complexes with maximum mild immobilization of
the AChE showed an advantage. Meanwhile, the only flow-through screening of reversible
inhibition of the AChE with the working Au electrode covered with Au nanoparticles
indicated a higher I50 value of donepezil determination [47].

The drugs tested are excreted from the human organism with urine. For this reason, we
have prepared spiked samples of artificial urine (see Experimental). The interfering effect
of the urine components was successfully eliminated by a 20-fold dilution. The comparison
of the biosensor signal in phosphate buffer and diluted artificial urine is presented for
berberine in Figure S5 as an example.

3.5. Irreversible Inhibition Measurements

Contrary to reversible inhibition, irreversible inhibition should be measured by con-
secutive addition of an inhibitor to the immobilized enzyme and only then of the substrate
solution. This is due to the fact that the enzyme-substrate complex is much less sensi-
tive or even insensitive to the irreversible inhibitor [48]. Such a requirement complicates
the measurement protocol. We have tested carbofuran. Its solution was first pumped
through the cell for 10 min. After that, the flow was switched to the 1.0 mM ATCh and the
current was recorded as described above for reversible inhibition. In some experiments,
the AChE reactivator, pralidoxime, was then pumped to restore the enzyme activity. In
semi-logarithmic plots, the calibration curve is linearized in the range from 10 nM to 0.1 µM
(LOD 5.0 nM) (Figure 9a). The appropriate calibration equation is presented below:

∆I, µA = (−2.36 ± 0.11) − (0.49 ± 0.02) log(CI, M), R2 = 0.991, n = 7
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Figure 9. (a) Calibration curve of carbofuran obtained with the flow-through AChE biosensor.
(b) Comparison of the inhibition degree recorded with standard solutions of carbofuran and diluted
extracts from spiked peanut samples. Incubation 10 min, AChE 5 U per biosensor, ATCh 1.0 mM, flow
rate 0.2 mL/min, phosphate buffer, pH = 7.0. Average ± standard deviation for six measurements.
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The sensitivity of the biosensor signal toward carbofuran appeared to be lower than
that of other AChE biosensors reported in the literature. The comparison of their analytical
characteristics is presented in Table S2. Meanwhile, the only analog utilizing separate
stages of enzyme inhibition and thiocholine detection [49] demonstrated a LOD of 20 nM
and a general measurement time of more than 20 min.

There are several reasons explaining the lower sensitivity of carbofuran determination
against the analogs. First, much longer incubation was used in the literature. In flow-
through conditions, this was found not very effective because of possible deterioration of
the surface layer. Not full removal of the substrate is a second reason. It was mentioned
above that the design of the flow-through cell did not allow fast turnover of the solutions.
Indeed, increased pumping of the buffer increased inhibition caused by carbofuran but not
to an extent deserving prolongation of the measurement period. Indeed, the maximum
acceptable concentration for carbofuran in drinking water is 90 µg/L (0.41 µM).

The flow-through AChE biosensor was tested on the spiked samples of peanuts. The
preparation of the spiked samples and pesticide extraction were described in Experimental.
Figure 9b shows the comparison of the inhibition detected for standard carbofuran solutions
and diluted spied samples. The recovery was assessed as 91%. Thus, the biosensor
developed can be applied for preliminary testing of carbofuran trace residues in peanuts.

Regarding the use of pralidoxime as a re-activator, treatment was found to be effective
only for rather low inhibition of the AChE. If the decay of the current exceeded 50%, the
repeated measurement of the inhibition resulted in the underestimated assessment of
carbofuran content even though the response toward the substrate was about the same
as prior to the contact of the biosensor with the inhibitor. It should also be noted that
reactivation increases twofold the measurement time and could result in positive faults due
to the own reversible inhibition effect of pralidoxime. For this reason, its application was
estimated as undesirable.

3.6. Measurement Precision and Biosensor Lifetime

The drift of the signal of the flow-through biosensor to a repeated concentration of
the substrate (1.0 mM ATCh) during six hours of the flow-through regime did not exceed
0.05 µA per measurement. This was similar to the background current drift (0.03 µA/h).
Both values increased with the storage time of the reactor with the immobilized enzyme.
The deviation grew regularly by about 10% per week. The general storage period of the re-
actor with immobilized enzyme was assessed as four months (dry conditions, 4 ◦C). Within
a week, the reactor can also be stored at ambient temperature, however, the requirement
of dry conditions remained critical. In addition, the repeatability of the response toward
the substrate was calculated from the results of amperometric measurements performed
using two sets of measurements, i.e., (1) six individual poly(lactic acid) reactors and the
same screen-printed electrode modified with CB + P[5]A and polymeric MB and thionine,
and (2) the same reactor and six modified screen-printed electrodes. Relative standard
deviation was equal to 8 and 10%, respectively. The comparison of the results made it
possible to conclude that mounting the parts of the flow-through cell was the main reason
for the variation of the response.

Regarding inhibition measurements, relative decay of the signal was less sensitive to
the storage period and replacement of the reactor/electrode. In all the cases, the deviation
of inhibition degree was lower than 5%. It is a common estimate of the reproducibility of
the signals of AChE biosensors.

Thus, the flow-through AChE biosensor developed showed quite satisfactory charac-
teristics of inhibition measurements and storage stability acceptable for its application for
fast and reliable inhibition detection.

4. Discussion

Separation of the steps of enzyme immobilization and signal detection have some
advantages related to more flexible protocols of preparation and storage and the possibility
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of easy replacement of certain parts of the biosensor without the necessity of full changes
in the surface layer. The use of the 3D printing technique and processible and cheap
poly(lactic acid) allowed assembling a compact and simple flow-through biosensor where
the advantages of P[5]A as electron transfer mediator and polymeric phenothiazine dyes as
wiring compounds were demonstrated in the example of the determination of reversible
and irreversible inhibitors. Consideration of the redox activity of electropolymerized
matrices with implemented macrocycle made it possible to propose a new approach to
signal measurement. Instead of anodic oxidation of thiocholine complicated with high
overvoltage and electrode passivation, the reduction peak attributed to the P[5]A recovery
was recorded as a measure of enzyme activity. In the presence of thiocholine released
in enzymatic hydrolysis of ATCh, the current decreased due to the alternative path of
chemical oxidation of the macrocycle. The mechanism of signal generation is confirmed by
the fact that the dependence of the current on the rate of enzymatic reaction was observed
only when the surface layer contained P[5]A molecules adsorbed on the CB particles.

The biosensor developed showed sufficient sensitivity toward donepezil and berberine,
drugs used in the therapy of neurodegenerative diseases, and carbofuran as a representative
of irreversible AChE inhibitors. Though the repeatability of signals and sensitivity toward
inhibitors was slightly lower than those of “common” AChE biosensors, these drawbacks
can be overcome by further improvement of the flow cell design. Even on this step, the
analytical performance of the biosensor was quite sufficient for the determination of the
inhibitors on the levels important for appropriate purposes. This was proved by the
analysis of spiked samples of urine in the case of anti-dementia drugs and peanut extracts
for carbofuran. The high efficiency of dilution for the elimination of interferences present in
the samples is explained by several reasons. The high affinity of the drugs and pesticides to
the AChE results from the design of their molecules to reach maximal binding to the enzyme
active site. Natural inhibitors of AChE present in the samples exert a weak reversible effect,
so that dilution shifts their concentrations to the values below the lower limits exerting
inhibition on the enzyme. The use of the buffer also makes minimal pH changes and the
influence of oligomeric substances is able to non-specifically bind the enzyme prior to
its interaction with the analyte. The AChE biosensor showed a stable and reproducible
signal both in model solutions and in spiked samples. Possible interference influence was
eliminated by dilution of the samples. This offers good opportunities for the application
of such flow-through biosensors as point-of-care (point-on-demand) devices outside of
chemical laboratories.
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and (b) assembled; Figure S3: Dependence of response of the flow-through AChE biosensor to the
1.0 mM ATCh solution on the applied potential of the working electrode; Figure S4: Concentration
dependence of the signal of the flow-through AChE biosensor, 5 U AChE per biosensor, 0.2 mL/min,
pH 7.0, electrode potential −0.25 V; Figure S5: Comparison of inhibition degree of berberine in
phosphate buffer and 20-fold diluted artificial urine, flow-through AChE biosensor, 1.0 mM ATCh,
5 U AChE per biosensor, 0.2 mL/min, pH 7.0, electrode potential −0.25 V; Table S1: The comparison
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