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Abstract

Gonadotropins are glycoprotein sex hormones regulating development and reproduction and bind to specific G protein–coupled 
receptors expressed in the gonads. Their effects on multiple signaling cascades and intracellular events have recently been 
characterized using novel technological and scientific tools. The impact of allosteric modulators on gonadotropin signaling, 
the role of sugars linked to the hormone backbone, the detection of endosomal compartments supporting signaling modules, 
and the dissection of different effects mediated by these molecules are areas that have advanced significantly in the last decade. 
The classic view providing the exclusive activation of the cAMP/protein kinase A (PKA) and the steroidogenic pathway by 
these hormones has been expanded with the addition of novel signaling cascades as determined by high-resolution imaging 
techniques. These new findings provided new potential therapeutic applications. Despite these improvements, unanswered issues 
of gonadotropin physiology, such as the intrinsic pro-apoptotic potential to these hormones, the existence of receptors assembled 
as heteromers, and their expression in extragonadal tissues, remain to be studied. Elucidating these issues is a challenge for future 
research.
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Introduction
Gonadotropins are glycoprotein hormones regulating develop-
ment and reproduction via targeting gonadal cells expressing 
specific G protein–coupled receptors. Gonadotropins are dimers  
having structural similarities and an identical common alpha 
subunit, and the beta subunit conserves about 70 to 80% of 
amino acid sequence identity in humans1. Receptor specificity  
is due to unique beta subunits encoded by follicle-stimulating  
hormone beta-subunit gene (FSHB) and luteinizing hor-
mone beta-subunit gene (LHB), expressed in the pituitary.  
Choriogonadotropin beta-subunit genes (CGBs) are expressed in  
trophoblast cells and placenta2,3.

During the fertile age, the action of gonadotropins is sex-specific  
and its secretion is regulated by a feedback mechanism  
depending on levels of sex steroid hormone. In the male, FSH 
binds its receptor (FSHR) expressed in Sertoli cells, where the  
hormone exerts trophic functions fundamental for sustaining 
gamete production and maturation. In contrast, LH binding to 
its receptor (LHCGR) stimulates the synthesis of testosterone  
by Leydig cells4. In the female, FSHR expression in granulosa  
cells is a requisite for sustaining the monthly ovarian follicle  
recruitment and subsequent FSH-mediated events, such as  
oocyte maturation, selection, and estrogen synthesis5. LH  
modulates proliferative and anti-apoptotic signals in granulosa 
cells, accompanied by androgen production in theca cells, and  
culminates in the induction of the dominant follicle ovula-
tion and progesterone production by luteal cells6. During the 
first trimester of pregnancy, human chorionic gonadotropin 
(hCG) replaces the luteotrophic role of LH in sustaining the 
demand for increasing levels of progesterone. Chorionic gona-
dotropin is encoded by a cluster of six genes, embedding two  
pseudogenes7, resulting in several slightly different isoforms  
and glycosylation variants acting through the LHCGR8. 
Although hCG glycoforms have different potencies in activating  
LHCGR-mediated signaling pathways9, the specific physi-
ological functions of these variants, if any, are uncertain. It was 
hypothesized that they evolved in humans to optimize fetal  
brain development10.

The physiological functions of gonadotropins are exerted via  
multiple signaling cascades simultaneously activated in the  
target cells. A limited number of these pathways were known 
for decades, but an increasing body of knowledge emerging  
from recent literature is uncovering a more complex and complete  
view of the action of these hormones. Therefore, we provide  
an update on the classic view of gonadotropin physiology,  
reviewing recent advancements as well as unanswered questions.

Update on gonadotropin physiology
The “classic” pathway
One of the best-known intracellular signaling cascades activated 
by gonadotropins is the Gαs

 protein/adenylyl cyclase-dependent  
cAMP/protein kinase A (PKA) pathway. Historically, this  
pathway was studied using immunoassays to quantify cAMP 
accumulation in target cells thanks to the use of specific inhibitors  
and activators11. It was discovered that this pathway is funda-
mental for regulating steroidogenic events in gonadal cells12, as 

already known for the functionally similar steroidogenic cells 
of the adrenal gland13. An exception is provided by adult Sertoli  
cells, which cannot synthesize sex steroid hormones, and the  
cAMP/PKA pathway activated therein results in FSH-dependent 
trophic signals, sustaining cell metabolism and viability14. However,  
the activation of this intracellular signaling pathway may be 
triggered by all gonadotropins in target cells, where the intra-
cellular cAMP increase is linked to other events such as 
trophic effects, mitotic functions, and sometimes apoptosis14.  
Downstream PKA, the cascade of kinase activations results 
in the extracellular-regulated kinase 1 and 2 (ERK1/2). The  
cAMP-responsive element-binding protein (CREB) phospho-
rylation is activated as well, inducing transcription of target 
genes, such as the steroidogenic acute regulatory protein StAR15.  
These common pathways modulating the steroidogenic signals  
are regulated in a cell- and developmental stage-dependent 
manner, and many newly discovered molecules and pathways 
were found to support steroid synthesis. For instance, protein  
kinase C (PKC) may amplify the cAMP-dependent steroido-
genesis in both granulosa and Leydig tumor cells16, but another 
research documented the opposite effects of PKA and PKC on 
progesterone synthesis in ovarian steroidogenic cells17. Inter-
estingly, a recent study found that, in granulosa cells, lisosphin-
golipids may induce cAMP-independent CREB phosphorylation,  
which, however, is not linked to the activation of steroid  
synthesis18. These data suggest that steroidogenesis is strictly  
under the control of gonadotropins and that the phosphoryla-
tion of a transcription factor per se is not enough to trigger 
the transcription of key enzyme-encoding genes. Moreover, it  
was recently demonstrated that the FSH-dependent activation of  
steroidogenic signals and folliculogenesis might be impinged by  
salt-induced kinases, indicating the relevance of these enzymes  
in regulating ovarian functions19. On the other hand, in luteal 
cells, progestational signals specifically regulated by LH via 
activation of the cAMP/PKA pathway involve the Wingless and 
Int-1 (Wnt) pathway components glycogen synthase kinase-3β  
and β-catenin and increase the acute progesterone synthesis  
in response to gonadotropin stimulation20. These data are  
representative of cell-dependent, complex signaling networks  
interacting with the classic cAMP/PKA pathway for supporting 
the synthesis of steroid hormones. New insights into the modu-
lation of the steroidogenic pathways were provided by experi-
ments performed using Leydig cell lines, treated with recently 
developed allosteric modulators of gonadotropin receptors.  
This experimental setting revealed that β-arrestin 2, known to 
be involved in G protein–coupled receptor (GPCR) internaliza-
tion and sustained signal transduction21, may act as a negative  
modulator of testosterone synthesis22. Interestingly, steroidogenic  
signals can be induced by cAMP-independent mechanisms, at 
least in Leydig cells, where the LH-dependent phosphorylation  
of ERK1/2 and CREB may occur via activation of the Rous 
sarcoma oncogene-encoded protein (SRC)23 and epidermal  
growth factor receptor24.

Differences between the FSH- and LH-mediated signals
The two gonadotropin receptors have common signaling path-
ways. Besides triggering the aforementioned cAMP/PKA  
pathway, both membrane receptors are known to trigger the  
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activation of p38 mitogen-activated protein kinase (MAPK) 
pathway, an intracellular calcium ion (Ca2+) increase, and the 
recruitment of the adaptor protein “APPL1”25–31. The overlapping  
of FSHR- and LHCGR-dependent intracellular signaling path-
ways would be due to structural similarities between the 
two receptors as an inheritance persisting during the evolu-
tion of an encoding gene from an ancient common ancestor  
sequence32. Interestingly, mutations conferring constitutive activity  
to the FSHR may even support sex steroid–independent sper-
matogenesis33,34, suggesting that certain gonadal functions  
may be supported by the activation of overlapping pathways.

Although FSHR- and LHCGR-mediated signaling cascades 
are very similar, a number of receptor-specific pathways and  
target genes, which impact steroidogenesis, cell proliferation,  
and death, have been described. First of all, although both recep-
tors are described as being capable of activating the phosphoi-
nositide 3-kinase/protein kinase B (PI3K/AKT) pathway35,36,  
concerns about the reliability of data supporting FSH-induced  
pAKT activation were expressed37. FSHR-induced AKT phos-
phorylation would require the co-activation of insulin growth 
factor signaling cascades38,39. Moreover, FSH specifically regu-
lates the histone H3 phosphorylation via a PKA-dependent  
mechanism40, an effect fundamental for activating the  
LHCGR-encoding gene transcription41. In turn, in granulosa  
cells, some FSH-dependent metabolic functions, such as the 
upregulation of glucose uptake and glycogen synthesis, are 
inversely related to LHCGR expression levels and may be 
impaired under LH-related ovarian pathological conditions42. 
Moreover, the production of epiregulin and amphiregulin occurs  
predominantly together with progesterone increase upon granu-
losa cell treatment with LH rather than FSH43. In addition, the 
steroidogenic effect of these hormones depends on their different 
capacity to activate aromatase expression44. These features would 
underlie hormone-specific physiological effects in the ovary,  
consisting of the androgenic and progestational actions mediated  
by LH and the stimulation of estradiol synthesis by FSH45. 
Finally, the two gonadotropin receptors differently modulate and 
impact cell death signals in ovarian cells. In a β-arrestin 1- and  
2-depleted granulosa cell line, FSH administration enhanced 
the basal FSHR pro-apoptotic activity whereas LH treatment  
did not produce any effect46. This result was reproduced  
by FSHR but not LHCGR overexpression, suggesting  
that the control of life and death signals is due to structural  
features intrinsic to FSHR and LHCGR, which might under-
lie physiological events such as follicle recruitment, growth, and  
selection46. These functions might be the consequence of 
ancient duplications of genes encoding gonadotropin-like 
hormones and their receptors and would consist of evolu-
tionary mechanisms optimizing the neuroendocrine control 
of human reproduction47,48. In light of these considerations,  
gonadotropin-specific intracellular signals and physiology rely 
on the structural diversity between the two receptors49, which 
achieves the maximal complexity in humans. Thus, although 
the FSHR and LHCGR induce partially overlapping signal 
transduction pathways, the two receptors mediate different  
and irreplaceable physiological effects.

Recent advances
Role of gonadotropin glycosylation
It was previously suggested that the incorporation of  
oligosaccharides in the structure of gonadotropins impacts  
intracellular signaling cascades activated by the hormones50,51.  
Gonadotropins can be naturally glycosylated to produce 
variants with physiological relevance as well as artificial  
compounds, synthesized for clinical purposes, with different  
glycosylations and pharmacological impact. The alpha subunit  
carries two carbohydrate chains joined to asparagine resi-
dues (N-linked glycosylation), and one and two are linked to  
the LHβ and FSHβ, respectively. Two N-linked glycosylation 
sites are also present in the hCGβ, which, in addition, has four 
glycosylated serine/threonine residues (O-glycosylation)50,52.  
This classic view has been revisited, especially in the last  
decade, thanks to studies deepening our understanding of the  
glycosylation on the function of FSH53, LH54, hCG55, and even 
of the related glycoprotein thyroid-stimulating hormone (TSH)56.  
For instance, the existence of several hCG glycoforms is well 
known, was reviewed in 2016, and was considered to have  
a pathophysiological sense57. It was proposed that carbohydrate 
chains on hCG may be used to predict pregnancy outcomes  
as a marker of pathologies and infertility treatment58–62.  
During the first trimester of pregnancy, the quantitative and  
qualitative production of hCG glycoforms is exceptionally  
variable, starting with hyperglycosylated forms (H-hCG) of  
trophoblastic origin, followed by less glycosylated isoforms63.  
Moreover, H-hCGs were found in the serum of patients affected 
by certain tumors64. Given these observations, it was supposed 
that H-hCG, rather than being an activator of progesterone  
synthesis65, would play a key role in inducing proliferative  
signals regulating trophoblast invasion and angiogenesis during 
the first two weeks of pregnancy as well as tumor growth66. This  
action would be exerted via cross-interaction between the  
hormone and the tumor growth factor beta (TGF-β) receptor67. 
However, this issue is controversial since another study found no  
TGF-β receptor activation by hCG and, instead, suggested  
the presence of growth factor contamination in the gonadotro-
pin preparations68. Less glycosylated, “classic” hCG molecules 
have a shorter half-life than H-hCG8 and higher potency for  
LHCGR activation9. These features characterize hCG as a  
hormone optimized for inducing maternal and fetal steroidogen-
esis, which is fundamental for supporting massive progesterone 
production by the corpus luteum and the placenta, for estrogen 
production, and for triggering the masculinization of the male  
fetus69. hCG does also exert a TSH-like action, inducing the 
production of thyroid hormones acting on the TSH receptor 
(TSHR)70. Although the TSH-like actions of hCG require further  
research, a 2009 study suggested a link between thyroid  
autoimmunity and miscarriage71. However, conflicting data raise 
concerns about this hypothesis72. Finally, gestational hyperthy-
roidism has been linked to the expression of TSHR gene variants  
with hCG hypersensitivity73.

Although the debate over the pathophysiological impact of 
hCG glycoforms is far from being fully clarified, findings  
in vitro demonstrated that the glycosylation pattern of these 
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molecules might modulate the intracellular signaling and gene  
expression9. Similarly, changes in the glycosylation and  
composition of glycans attached to FSH and LH, related to the  
stage of the menstrual cycle, were found in the serum of 
women of fertile age74,75. Thus, it cannot be excluded that  
glycoform-specific intracellular signals can be activated76. For 
instance, poorly glycosylated FSH molecules are more active 
in vitro than those fully glycosylated77 and this observation was 
repeatedly confirmed both in vitro76,78,79 and in mouse models80–82.  
Together with FSH glycoforms, di- and tri-glycosylated LH  
molecules were supposed to contribute differently to the  
regulation of natural ovarian cycles54 but these data need to be  
confirmed. To conclude, steps forward have been taken to elu-
cidate molecular aspects related to gonadotropin glycobiology  
and the issue nourishes increasing interest of scientists 
and clinicians using these hormones as drugs for infertility  
treatment83. However, a clear-cut demonstration of its real 
impact on human physiology remains to be determined. Actu-
ally, the data available indicate that these glycoforms modulate  
short-term intracellular effects in vitro76,79,84–86, which are  
flattened in the long term85,86 and are extremely difficult to  
evaluate in humans without performing clinical trials with very  
large sample sizes87.

Biased signaling and allosteric modulation of gonadotropin 
receptors
All GPCRs are activated upon hormone binding to their orthos-
teric site, which, in the case of gonadotropin receptors, is 
located in a wide horseshoe-shaped extracellular domain with  
leucine-rich repeats (LRRs)88. The binding of the ligand triggers  
a two-step activation mechanism, including the reshaping of  
the hormone conformation after contacting the LRR domain89. 
These events are followed by the interaction of the alpha and 
beta subunits with a sulfated tyrosine residue within the hinge  
region90. This process leads to the stabilization of ligand–receptor  
complexes and the inhibition of the agonistic activity of the 
hinge region50. As described above, these events are needed for  
triggering the Gαs

 protein coupling to the gonadotropin recep-
tor and activation of the downstream cAMP/PKA pathway,  
which are preceded by conformational rearrangements of the 
transmembrane regions91. However, receptors may exist in  
multiple active conformations, leading to several signaling  
cascades simultaneously activated by coupling to other G proteins  
and intracellular interactors, triggering a network of simul-
taneous intracellular pathways92. Thus, particular signaling  
patterns may be induced by ligands displaying agonist, antago-
nist, or inverse agonist activities (or a combination of these) at 
the same GPCR, depending on the downstream endpoint evalu-
ated, via induction of specific spatial conformations of the  
receptor molecule93.

Although these features may be due to the aforementioned  
hormone glycosylation variants, another mechanism that may 
alter GPCR signaling may be provided by single-nucleotide  
polymorphisms (SNPs) at the receptor level. This is the 
case of the common nucleotide change at position 2039 of  
the FSHR gene (2039A>G), leading to the amino acid change 

of asparagine to serine at position 680 at the intracellular  
portion of the protein (pN680S; rs6166). This SNP modulates the  
kinetics of cAMP activation, ERK1/2 and CREB phosphoryla-
tion, and synthesis of sex steroids94 and is associated with the  
gonadal response to FSH in males and females95,96.

Beta-arrestins are scaffold proteins that directly interact with 
the gonadotropin receptors97 and modulate desensitization, 
internalization, and recycling. They also counteract Gαs

 pro-
tein coupling to the receptor98 and upregulate ERK1/2 and AKT  
phosphorylation99. Moreover, the action of β-arrestins is  
susceptible to the phosphorylation pattern of the intracellular  
carboxyl-terminal end of GPCR, which differentially contrib-
utes to the recruitment of the scaffold protein, trafficking, and  
specific intracellular localization100 of ERK1/2 activation101,102. 
These data may explain why overexpression of β-arrestins is 
linked to attenuation of intracellular cAMP increase103 and may be  
associated with cell proliferation46. In particular, given the posi-
tive impact of β-arrestin functioning on tumorigenesis and  
cancer cell growth104, they have been suggested as a therapeutic  
target105,106 and promoted the development of in vitro systems 
for studying their functions107. Notably, β-arrestin–induced  
pERK1/2 activation occurs later but is more sustained than 
that triggered by the Gαs

 protein108, revealing that intracellu-
lar kinase cascades may be targeted via distinct pathways and  
kinetics, a molecular mechanism likely modulating specific 
cell metabolic events. However, β-arrestins and G proteins 
may also cooperate via the formation of complexes linked to 
the receptor, leading to temporally sustained cAMP signal-
ing activated from internalized cellular compartments21. These 
molecular assemblies may also mediate the inhibition of G  
protein signaling, depending on the spatial conformation of the  
GPCR–β-arrestin complexes109. Therefore, elucidating the 
mechanisms biasing gonadotropin receptor signaling is of  
crucial relevance for developing new therapeutic approaches  
to certain diseases.

In the last decade, small-molecule chemical compounds able 
to bind and modulate FSHR-mediated signaling have been  
developed110. Increasing interest arose around allosteric lig-
ands, which bind the receptor in a site different from the  
hormone-binding site111. According to the mode of action, these 
molecules are grouped into classes defined as neutral, nega-
tive (NAMs), or positive (PAMs) allosteric modulators. All of 
these molecules require gonadotropin binding to the recep-
tor for exerting their action111 and modulate receptor-mediated  
signaling in the presence of the natural ligand. Interestingly, 
compounds acting via modulation of gonadotropin recep-
tor assembly as homo/heteromers also have been described112. 
Among allosteric agonists, thiazolidinones are known to bind 
the FSHR transmembrane domain inducing the activation of  
Gαs

 protein-dependent pathways, similarly to FSH. However, 
compounds with preferential Gαi

 protein stimulatory activity 
also have been described113,114. Benzamides and dihydropyridines 
are known to have PAM activity at nanomolar concentrations  
for both the LHCGR and FSHR, activating cAMP in the pres-
ence of the bound ligand115,116. Tetrahydroquinolines belong 
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to the NAM group for both gonadotropin receptors inhibiting  
cAMP and progesterone, but not estradiol, production and 
maturation of the ovarian follicle in vivo22,117–119. Finally,  
compounds with antagonistic activity for FSHR were found to 
block FSH-induced steroid synthesis120,121, similarly to what was 
recently found for the LHCGR122. Taken together, novel mol-
ecules with agonistic activity and able to differentially activate  
intracellular signaling are promising tools to be potentially  
used for optimizing or personalizing treatments of human  
infertility. Instead, molecules with NAM activity at the gona-
dotropin receptor, inhibiting the follicle growth without 
impairing steroid production, could become an option for  
contraceptive purposes.

New and exciting insights were provided by antibodies  
modulating selective activation of GPCRs via stabilization 
of particular hormone or hormone receptor conformations91.  
For instance, antibodies binding the FSHβ subunit were found 
to prevent the binding to the receptor and have protective 
effects against bone loss in ovariectomized mice123. Antibodies  
targeting a placental bovine hCG-like LH (equine chorionic  
gonadotropin), with both FSH and LH activity in other  
mammals, would be responsible for forming hormone–antibody  
complexes with increased β-arrestin–dependent signal-
ing and activity in vivo124,125. New monoclonal and polyclonal  
compounds with agonistic activity for gonadotropin receptors 
and targeting the hinge region are currently under study126–128 and 
may represent an alternative approach to allosteric chemicals for  
modulating gonadal functions. Among these immunoglobu-
lins, nanobodies against the FSHR, with small molecular weight 
and low predicted immunogenicity in humans, can inhibit 
cAMP production129. In conclusion, immunoglobulins are 
promising compounds for future therapeutic purposes, such as  
infertility130,131 and cancer132 treatment.

Endosomal signaling and its physiological role
Mechanistic models explaining GPCR pathways of desensitiza-
tion and recycling have greatly progressed in recent years. These 
functions have been known for decades133, and the elucidation 
of their physiological significance was addressed recently134  
but remains mostly unclear. The current knowledge of gona-
dotropin receptor post-endocytotic processing indicates 
that these molecules are internalized and either recycled or  
directed to degradation after ligand binding and G protein 
activation. The activated receptor then is phosphorylated by  
GPCR kinases (GRKs) and recruits β-arrestins, leading to G 
protein uncoupling, desensitization, and internalization via the 
formation of clathrin-coated pits135. Recent studies have found  
that β-arrestin–mediated GPCRs internalization may also 
occur without uncoupling to G proteins, forming a molecular  
super-complex mediating sustained signaling21,109,136. Interest-
ingly, most of these discoveries were provided by functional 
studies using in vitro transfected models, overexpressing the 
human FSHR and LHCGR, or rodent receptors, revealing that 
the internalization of human molecules is slower than that of 
murine receptors and is due to species-specific amino acids 
in the intracellular loop of the transmembrane region and the  
carboxyl-terminal tail108,137.

GPCR internalization is followed by the activation of a recy-
cling pathway mediated by different endosomes or by the  
degradation via lysosomes138. Therefore, the endocytotic path-
ways may sort the fate of receptors impacting their density at 
the cell surface and the spatial and temporal regulation of intra-
cellular signaling139. One of the most studied pathways involves 
the formation of early endosomes (EEs). These structures are 
characterized by the presence of the Ras-related protein 5  
Rab-5 (RAB5) and consist of fusion vesicles routing from the 
plasma membrane and the trans-Golgi network140. The embed-
ding of GPCRs in EEs is the first step of a process directing 
receptors to two possible fates; the first one is the degrada-
tive pathway, which is triggered by the replacement of RAB5 
with RAB7, thus trafficking these units to form multi-vesicular  
bodies preceding protein degradation in the lysosomes. This is 
the pathway controlling receptor desensitization, which occurs 
after persistent stimulation of the GPCRs139. Trafficking-defective  
receptors due to mutations causing protein misfolding are  
known and may provoke reproductive dysfunctions falling 
within a wide range of phenotypes138. Interestingly, defects 
of genes involved precisely in EE functioning were recently  
associated with dysregulation of GPCR signaling and linked to 
pathological conditions, such as polycystic ovary syndrome. For 
instance, perturbation of RAB5- or the clathrin-binding protein  
(DENND1A)-encoding gene expression in theca cells may 
result in over-activation of androgen synthesis and subsequent 
increased susceptibility to the disease141. Another pathway  
regulating the fate of receptors involves the ubiquitin or RAB4 
protein, rerouting EEs to degradation or to recycling endo-
somes, respectively. The latter route depends mostly on a  
so-called “PDZ ligand” binding sequence at the carboxyl-terminal  
tail of LHCGR142, and FSHR recycling may also occur via 
alternative pathways133. In this case, a crucial role is played 
by a palmitoylated cysteine at the C-tail, which is required 
for maintaining proper FSHR recycling, preventing excessive  
degradation and, likely, impairment of the cell signaling143.

A gonadotropin receptor recycling pathway involves a novel 
intracellular compartment, the very-early endosome (VEE), 
where LHCGR is routed through the interaction of the so-called  
“Gαi

-interacting protein C-terminus” (GIPC) with the PDZ 
protein binding domain100. VEE differs from the EE in that 
the former lacks RAB5 and is smaller, but in vitro removal of 
the PDZ domain from LHCGR re-routes the receptor to the  
EE100, inducing sustained ERK1/2 phosphorylation and revealing  
that these recycling pathways are interconnected. Interestingly,  
a similar behavior was observed for FSHR in vitro, using 
GIPC knockout without the PDZ domain, demonstrating 
the involvement of APPL1 in the receptor recycling through  
VEEs26,144,145. Indeed, APPL1 may interact with GIPC146 and 
sustains FSHR-mediated ERK1/2 phosphorylation, as well 
as AKT activation and recruitment of the 14-3-3τ adapter  
protein26,144,145,147, through a subpopulation of VEEs posi-
tive for APPL1. Interestingly, this molecule is recruited upon 
cAMP/PKA activation occurring via the FSHR and LHCGR  
itself148 and depletion of VEE formation results in cAMP inhibi-
tion, as demonstrated for other GPCRs149. However, PKA (and 
VEE) blockade by a specific inhibitor did not evoke similar 
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effects, at least for LHCGR, which can induce sustained cAMP  
signaling, indicating a dual, receptor-specific effect of  
APPL125. These data may be relevant for elucidating the whole 
functions exerted by gonadotropin receptors and their physi-
ological impact. For instance, sustained LHCGR-mediated  
cAMP signaling would be required to unlock the oocyte from 
meiotic blockade150, demonstrating its effects on reproduc-
tion. In summary, gonadotropin receptor trafficking, being 
much more than a pathway for recycling these molecules to 
the cell surface, plays a crucial role in sustaining prolonged  
intracellular signaling (Figure 1).

Functional differences between LH and hCG
LH and hCG are distinct molecules that have different  
functions7,10,151. Despite this knowledge, the fact that the two  
gonadotropins act on the same receptor and the difficulties of 
dissecting these differences in clinical studies152 support the  
common belief that they are two clinically equivalent hormones. 
Thus, commercial preparations consisting of FSH, which may 
be supplemented with LH or hCG or both, were developed153  
under the assumption that hCG would provide “LH activity”154 
during the follicular phase of the menstrual cycle in inducing  
oocyte maturation and ovulation153. In the last decade, sev-
eral studies elucidating specific roles of LH and hCG were  

published and reviewed3,155–157, pinpointing the differences  
between the two gonadotropins.

LHβ and hCGβ have a common evolutionary origin since 
CGB genes originated in primates likely by loss of the origi-
nal stop codon and repeated duplication from an ancestral LHB  
gene158,159. More generally, CG molecules exist first in  
primates160 but are missing in other mammals traditionally used 
to evaluate the action of hCG, such as mice161–163. Indeed, his-
torically, LH action was typically studied using hCG in rodents. 
This is indicative of hCG binding capability to non-primate  
receptors that are structurally similar to primate LH/CG  
receptors164. Thus, it appears that in humans the complexity  
of the LHβ/hCGβ-encoding gene cluster is greater than that 
of other primates. It was suggested that this complexity might 
serve for supporting a more complex mechanism of placentation 
and highly energy-demanding brain development in humans10  
but this remains an unproven claim. In any case, this com-
plexity indicates a specialization occurring uniquely in the  
LHCGR, which, in contrast to FSHR, discriminates between 
two ligand-specific signals and physiological functions. This 
exclusive feature would rely mostly on the region encoded 
by the LHCGR gene exon 10, which may recognize and  
distinguish the molecular interaction between LH and hCG, 

Figure 1. Endosomal signaling of gonadotropin receptors. Receptor bound to the hormone is internalized via different kinds of endosomal 
compartments, sustaining prolonged signaling, receptor degradation, or recycling on the cell surface. AKT, protein kinase B; ERK1/2, 
extracellular-regulated kinase 1 and 2; GIPC, “Gαi-interacting protein C-terminus”; RAB4, Ras-related protein Rab-4; RAB5, Ras-related 
protein Rab-5; RAB7, Ras-related protein Rab-7.
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modulating different hormone receptor conformations and  
intracellular signaling165,166. The role of the exon 10–encoded  
receptor domain was highlighted by a clinical case describing  
a boy with impaired development of secondary sexual charac-
teristics due to a naturally occurring deletion of the LHCGR  
exon 10151. Although the phenotype at birth was clearly male, 
this patient presented with primary hypogonadism, which  
could be rescued by treatment with hCG, suggesting a possi-
ble action of the maternal choriogonadotropin inducing fetal 
sex determination but a lack of function of the high LH levels  
after birth. These data were corroborated by the discov-
ery that the LH receptor sequence of the New World monkey  
Callithrix jacchus naturally lacks the exon 10–encoded domain. 
In this primate species, the pituitary produces an hCG-like  
molecule and not LH, thereby replacing the role of LH167,168  
in other species in which exon 10 is present.

Evolutionary issues suggest that LH and hCG exert differ-
ent roles, a concept confirmed by the nature of their physi-
ological functions. Although both in vitro and clinical data  
indicate that these hormones could be equivalent in induc-
ing testosterone synthesis and spermatogenesis169,170, reflect-
ing the primary androgenic role of Leydig cells, different results  
were found in in vitro models of ovarian cells171,172. The two 
molecules display different intracellular signaling (Figure 2),  
indicating that hCG has a higher steroidogenic potential than 
LH and the latter induces preferentially proliferative and  

anti-apoptotic signals171–174. Moreover, they display biased 
agonism at the LHCGR, differentially activating cAMP pro-
duction and recruitment of β-arrestin 2, likely explaining  
the partial agonism of LH on progesterone production175.  
Because H-hCG activates the receptor with lower activity than 
hCG and retains a highly proliferative potential9, it could be 
assumed that the hyperglycosylated gonadotropin modulates  
LH-like intracellular signaling patterns. Interestingly, the mouse 
receptor (Lhr) cannot discriminate qualitatively between the 
two human ligands170. This discrepancy between human and 
mouse receptor functioning should be due to LHCGR key  
residues involved in hCG/LH discrimination165,166, which are 
missing in the Lhr176. In any case, data from human cells sup-
port the different physiological roles of the two hormones, 
which would consist of potent progestational effects mediated  
by hCG and a fine-tuned regulation of life signals required 
for ovarian follicle growth and maturation for LH3. Moreo-
ver, clinical hormone-specific effects may be evaluated by  
meta-analyses of studies analyzing large datasets, oppositely to 
what other studies performed in a clinical177 or in vitro84,86 con-
text. A proper sample size is required for dissecting the effects 
of the two hormones in vivo, which indeed turn out to be dif-
ferent. Although the addition of hCG to FSH treatment for  
assisted reproduction may optimize the number of oocytes 
retrieved, suggesting an effect positively modulated by steroids,  
LH could be beneficial for the pregnancy rate as an indirect 
measure of better oocyte quality152. These data may provide  

Figure 2. LH- and hCG-specific signals. LH and hCG induce different intracellular signaling. Whereas LH is more potent than hCG in activating 
proliferative and survival signals via EK1/2 and AKT phosphorylation, the choriogonadotropin acts preferentially as a progestational, inducing 
a more potent cAMP response. H-hCG has a relatively high proliferative potential and lower activity than hCG in activating the receptor. AKT, 
protein kinase B; ERK1/2, extracellular-regulated kinase 1 and 2; hCG, human chorionic gonadotropin; H-hCG, hyperglycosylated human 
chorionic gonadotropin; LH, luteinizing hormone; LHCGR, luteinizing hormone/chorionic gonadotropin receptor.
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helpful insights for developing personalized protocols for 
assisted reproduction in specific categories of patients. For 
instance, poor-responder women178 or those requiring luteal 
support179,180 might benefit from the addition of LH and hCG, 
respectively, during the management of an assisted reproduc-
tive cycle154,179. On the other hand, gonadotropin-releasing  
hormone (GnRH) agonists are now the alternative option to 
hCG to prime ovulation and reduce the risk of ovarian hyper-
stimulation syndrome181,182, but there are no clinical data  
comparing the effects of LH and hCG in men.

Pharmacogenomic use of FSH
More than two decades of studies focusing on polymorphisms 
of gonadotropins and their receptors revealed the existence of 
allelic variants linked to specific reproductive phenotypes or  
increased risk of developing related pathologies. In contrast  
to mutations183,184, polymorphic allelic variants are com-
monly widespread among the human population, achieving 
allele frequencies greater than 1%185. To date, these variants 
may be identified by genetic screening at relatively low costs; 
in some instances, they are becoming relevant for developing  
individualized clinical treatments.

Genetic variants of FSHB and FSHR genes are promis-
ing candidates to be characterized for pharmacogenomic 
approaches since they impact the ovarian response to hormone  
stimulation186. Among the roughly 20 SNPs found within the 
FSHB gene, the only one demonstrated to have physiologi-
cal significance and clinical impact so far is the guanidine (G) 
to thymidine (T) variation 211 nucleotides upstream of the  
start codon (c.-221G>T, rs10835638)47. In men, the T homozy-
gosity is associated with lower serum FSH levels and tes-
ticular volume than other haplotypes187 and decreased sperm  
quality188. However, similar findings were not always rep-
licated by other studies evaluating spermatogenic poten-
tial and Sertoli cell number189. Even the opposite results were  
found in women190, suggesting possible sex-specific effects of 
this SNP. In females, the T allele decreases the risk of devel-
oping endometriosis, delayed age of menopause, and longer 
menstrual cycles than the G allele191. At the same time, other 
studies found an association between the T allele and the  
FSH and LH levels, idiopathic infertility, and worst clinical 
assisted reproduction outcome192,193. These data indicate a lower 
transcriptional activity of the T allele of the FSHB promoter  
SNP194, which would modulate the circulating levels of the  
hormone, thus impacting ovarian response.

A number of activating and inactivating FSHR mutations have 
been described within the receptor regions encoded by exons 7  
and 10184. Loss-of-function FSHR mutations may lead to patho-
logical conditions, such as amenorrhea, in women186 and may 
be linked to infertile or subfertile phenotypes in men131,195,196.  
FSHR mutations overall are rare, and several FSHR SNPs may 
have been characterized and analyzed for their associations 
with the gonadal response. Among the best-known common 

FSHR variants, the rs1394205 (c.-29G>A) in the FSHR pro-
moter, as well as the two exon 10 SNPs rs6165 (c.919G>A) and  
rs6166 (c.2039G>A) usually in linkage disequilibrium, have 
been associated with the gonadal response to FSH. In particu-
lar, the rs6166 variant is linked to the asparagine-to-serine amino 
acid change at position 680 of the protein chain (p.N680S)  
and is located in the C-terminal region of the receptor. This 
substitution adds a potential phosphorylation site, increases 
early intracellular signaling, and impacts the kinetics of  
steroid synthesis94. In practice, homozygous individuals car-
rying the amino acid serine are less “sensitive” to FSH and 
show higher serum FSH levels and longer menstrual cycles 
than pN680S N homozygous women197. A role for FSHR SNP 
in male fertility has also been proposed198. Cases of idiopathic  
infertility related to this SNP were described in men199. How-
ever, these findings were obtained after analysis of the cumu-
lative effects of the FSHR p.N680S SNP and other SNPs,  
revealing the overall mild but detectable impact of the poly-
morphism on male reproduction196,199. In men, the impact of  
the SNP rs6166 in modulating the action of FSH was eventu-
ally characterized by a pharmacogenetic study where sperm 
DNA fragmentation of idiopathic infertile patients improved 
after prolonged treatment with the gonadotropin96. Therefore,  
the p.N680S phenotype may be a marker of sperm quality.

Studies analyzing the allele frequencies of FSHR exon 10 SNPs 
should take into account the expression level of the receptor  
protein given that the polymorphism c.-29G>A modulates 
the transcriptional activity of the gene200 and is linked to 
genotype-specific gonadal functions in both males201,202 and  
females203–205. In particular, associations between reproduc-
tive parameters and the c.-29G>A SNP were found when  
analyzed together with the p.N680S FSHR polymorphism201,  
revealing the cumulative effects of these hot spots. How-
ever, the opposite results, which likely indicate a weak clini-
cal impact of the SNP per se, have also been reported206–208.  
Further studies using larger datasets are required to highlight 
the impact of this genetic variant on fertility. Therefore, the 
combined evaluations of several FSHR and FSHB SNPs are 
determinant to indicate how the whole haplotype is linked to  
specific endocrine phenotypes.

Although each FSHR SNP was linked to particular endocrine 
phenotypes in some studies, the combined analysis of several 
alleles revealed the real impact of specific haplotypes in increas-
ing the risk of infertility197,199. These analyses should account 
for limitations intrinsic to each study. Different results due to  
ethnicity-related201,209 or sample size210 issues may occur, lead-
ing to the requirement of independent confirmation of the 
findings. Other limitations may be linked to the study design 
since weak selection criteria and different or unspecified pri-
mary endpoints provided non-comparable results199. Extensive 
interventional studies are needed to more deeply explore the  
therapeutic benefit of a pharmacogenomic approach to gona-
dotropin treatment. Nevertheless, after about two decades of 



Faculty Reviews 2021 10:(41)Faculty Opinions

small studies on markers of the gonadal response, scientific  
support for the development of a pharmacogenetic approach to 
personalized hormonal treatments is now available. Given the 
dramatic cost reduction for genetic testing in recent years211, 
conditions are now favorable for SNP analysis before clinical  
treatments of infertility.

Unanswered questions
Gonadotropin-driven cell death
Although steps forward have been made in the elucidation of  
gonadotropin physiology over the last three decades, several  
unknown aspects of their function remain. One of the most 
underrated issues related to gonadotropin signaling is the  
activation of pro-apoptotic signals14. Gonadotropins are classi-
cally linked to proliferative and survival signals, reflecting their 
roles in supporting gametogenesis. On the other hand, these  
molecules upregulate the phosphorylation of mitogenic/ 
anti-apoptotic signals induced via ERK1/2 and AKT and through 
activation of several different intracellular pathways, including  
the positive impact on steroid hormone production, supportive  
of reproduction. In fact, convincing data confirmed that  
FSH and LH mediate signals required for sperm and somatic  
cell life in the male gonad212. Interestingly, the textbook knowl-
edge of ovarian physiology is that follicular dominance  
is a process regulated by pro-apoptotic stimuli occurring  
after the decrease in serum FSH levels. This event would be  
responsible for declining proliferative signals occurring in 
individual follicles, which become atretic. The proliferative 
effect of gonadotropins is widely described in the scientific  
literature, where a number of studies describe how FSHR and  
LHCGR may activate life signaling pathways and, in  
certain cases, have even a tumorigenic potential5. However,  
pro-apoptotic stimuli delivered by gonadotropins via  
cAMP-related pathways were also described213–215. These 
effects would be triggered by relatively high intracellular  
levels of the second messenger, likely resulting in p38 MAPK 
and p53 activation216,217 together with steroidogenic signals218  
and inducing cell death. From this point of view, the  
pro-apoptotic potential of gonadotropins would rely on the 
capacity to increase cAMP, a property previously demon-
strated for FSH and hCG in certain experimental conditions  
in vitro46,172. In particular, persistently high FSHR expres-
sion levels and the lack of steroid hormones could be linked 
to insufficient inhibition of death signals172, a possible expla-
nation for the lack of consistent human ovarian steroidogenic 
cell lines expressing this receptor46. This condition is hardly 
obtainable in vivo in the ovary, where the FSH-induced signals 
are translated to estrogen production and FSHR is transitorily  
expressed in the follicles. On the other hand, steroids  
activate anti-apoptotic signals172,219, as obligatory regulators of 
folliculogenesis220, even inducing multi-follicular maturation  
during assisted reproduction221,222, where relatively high gona-
dotropin doses are administered. However, death signals  
delivered through FSH may play an essential role in the ovary.  
They could be involved in the selection of the dominant  
follicle, inducing steroidogenesis and atresia of those follicles 

expressing relatively high levels of FSHR215. The activation of  
cAMP is due to the preferential coupling to the G

s
 protein 

when FSHR is maximally expressed215,223 in granulosa cells at  
the early/mid-antral stage of the menstrual cycle. Interest-
ingly, oocyte maturation might depend on the capability of the  
membrane G protein–coupled estrogen receptor (GPER) to repro-
gram cAMP/death signals, linked to FSHR, into proliferative 
stimuli. The anti-apoptotic role of GPER in the ovary is exerted  
through the physical interaction with the FSHR, leading to 
the formation of heteromers activating the AKT pathway  
upon FSH binding215. These data indicate that the temporary 
succession of pro- and anti-apoptotic signals is orchestrated,  
at least in part, by interacting gonadotropin and steroid  
hormone membrane receptors, playing an essential role in 
female reproduction. Further studies are required to understand 
how these molecules act in concert to regulate folliculogenesis. 
Membrane receptor heteromers might be markers of ovarian 
cell proliferation104,215 to be targeted by drugs for infertility and  
cancer treatment.

Receptor heteromers in vivo
Several GPCRs are known to form homo- and hetero-meric  
functional units consisting of the molecular association between 
the same or different but structurally similar receptors224.  
It is reasonable that GPCRs interact with molecules having 
an overall similar structure, as previously demonstrated for 
receptors of other pituitary225 and non-pituitary226 hormones.  
In particular, FSHR–LHCGR heteromers were demonstrated  
in vitro227,228, where they are classically overexpressed in trans-
fected cell lines and analyzed using imaging methods229,230.  
Recently, the GPER has been indicated as a novel inter-
acting partner of both FSHR and LHCGR in ovarian 
cells215. The physiological implications of these heterom-
ers are not fully understood. It was proposed that they  
mediate GPCR functional diversity, highly relevant for human  
physiology231. In particular, they should be involved in the 
development of competent oocytes during the normal men-
strual cycle, reprogramming gonadotropin receptor–mediated  
death signals in proliferative stimuli215,232. Impairment of  
hormone-dependent signaling due to FSHR–LHCGR heteromer 
formation was reported in the transiently transfected human  
embryonic kidney (HEK293) cell line233, further providing the 
rationale for the assembly of heteromers. However, the exist-
ence of naturally formed gonadotropin receptor heterom-
ers, as a general feature of GPCRs, is not widely accepted226.  
In fact, this concept may be weakened by the difficulties in  
demonstrating heteromers in primary cell cultures, unspecific 
signals, or elevated background noise due to biosensor-tagged  
receptor overexpression obtained in an artificial system in 
vitro as well as the doubt that agonist-induced signals can be  
generated by heteromers or conformational changes within 
preassembled groups of receptors234. Therefore, the fact that 
gonadotropin receptor heteromers may occur in vivo is under 
debate. A step forward was taken by obtaining data in geneti-
cally modified mice coexpressing binding-deficient and  
signaling-deficient LH receptors235. These experiments were 
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based on a concept previously developed and demonstrated in  
vitro; binding-deficient receptors triggered cAMP activation  
through the interaction with a receptor, defective in signal  
generation, bound to hCG236. Even in mice, LH was able to 
trigger the activation of the cAMP/PKA intracellular sign-
aling cascade via intermolecular cooperation between the  
two receptors235. This is a mechanistic proof of gonadotropin 
receptor interaction in vivo, which presumably occurs even in 
the human granulosa cells. In the ovary, LH-like signals could be 
induced via FSH binding to FSHR during the window of recep-
tor coexpression232. However, results concerning the existence of  
FSHR–LHCGR transactivation were also provided, although 
stably transfected HEK293 cells used in this study were not 
a physiological model237. This issue merits further studies, 
and alternative experimental approaches may be essential in  
demonstrating gonadotropin receptor heteromers and com-
plementarity in a physiological context. For instance, bivalent  
ligands able to bind receptor dimers or super-resolution  
imaging analysis could be extremely helpful238.

Extragonadal gonadotropin receptors
By definition, gonadotropins act in the gonads by binding to 
receptors specifically expressed therein as a requisite for main-
taining endocrine signal specificity and proper metabolic  
functions. This classic view was recently challenged by  
several studies describing the expression of functional ectopic  
gonadotropin receptors, mainly FSHR, supposed to play a  
significant role in non-reproductive processes. These effects 
include bone loss, obesity, and cardiovascular and cancer risk, 
which could be triggered by extragonadal FSHR activated by  
high FSH levels239, such as those occurring after menopause. 
Lhr expression was found in the mouse adrenal cortex240, reflect-
ing previous data demonstrating the presence of LHCGR  
expression in adrenal glands of postmenopausal women241.  
Aberrant LHCGR expression in the adrenal gland would be 
linked to cortisol synthesis and Cushing’s syndrome242,243.  
Functional LH receptors were also found in uterine tissues 
of human244 and farm animal models under physiological  
conditions245,246. Surprisingly, immunoreactivity to LHCGR 
was found even in human brain microglial cells and was 
positively correlated to an increased risk of developing  
Alzheimer’s disease247. More recently, the presence of LHCGR 
was suggested in the retina, where LH and hCG would  
have vascular endothelial growth factor–like functions248.

Functional FSHRs were found in endometriotic lesions, 
where FSH may induce CYP19A1 expression and estrogen  
production249. This is not the only study describing ectopic 
expression of this receptor; in this regard, an increasing amount 
of data from human and animal models has been published in 
the last two decades. Genetically modified or antibody-treated  
mouse models elegantly suggested that FSH-induced signals 
modulate bone mass and adipose tissue123,250. Around these issues, 

several studies described a link between FSH, osteoporosis, 
and increased fat mass that occurs after menopause251–258. Simi-
lar conclusions were achieved by in vitro studies using human  
cells259,260, although the existence of direct causality between 
gonadotropin receptor and the physiological effect was  
questioned261. Relatively low levels of FSH were associated 
with increased cardiometabolic risk and cardiovascular diseases  
in the Chinese population262, and the rationale of this issue is 
provided by the angiogenetic support exerted by FSH via the 
PI3K/AKT pathway263. Finally, it was demonstrated that FSHR 
is expressed in tumor vessel cells upregulated by FSH264–266.  
These accumulating experimental data seem to clearly debunk 
the classic view of gonadotropin physiology, potentially leading  
to new diagnostic, therapeutic, and prognostic opportunities.  
For instance, the use of anti-FSH antibodies for bone- and  
fat-specific targeting was proposed for clinical testing267. 
However, the issue is highly debated, and several objections, 
including the low reliability of the antibodies used for inves-
tigating FSHRs in non-canonical tissues268, firmly oppose the  
existence of extragonadal FSHRs and LHCGRs269. These data 
would rely on the discrepancy between mRNA and protein level 
detected in the analyzed samples, suggesting that they could 
be an artifact due to suboptimal antibody binding270 and chal-
lenging Western blotting271. Missing control experiments of  
target mRNAs by DNA sequencing263 put further concerns on 
the reliability of the detection. Together with the aforemen-
tioned experimental issues, the opposite results were also found.  
For instance, a decrease in body fat was not found in mice 
and humans maintained under gonadotropin production 
blockade by GnRH agonist/antagonist272–274. Finally, studies  
revisiting previous experimental conditions used for detect-
ing extragonadal FSHRs in the human umbilical vein endothe-
lial cells failed in replicating results275, and several technical  
concerns arose when ectopic gonadotropin receptors were 
evaluated in other tissues269. In conclusion, the concept of 
extragonadal FSHRs remains highly controversial. Genetically  
modified mice may not be the best tools for assessing this 
issue. Interventional studies in humans will be the only 
way to demonstrate direct causality between gonadotropin  
receptors and the abovementioned effects.

Conclusions
Significant steps forward in the elucidation of gonadotro-
pin signaling and regulation have been made in recent years.  
The current knowledge addressed most of the questions of the 
past, revealing novel aspects of FSH, LH, and hCG physiol-
ogy and providing the potential for new therapeutic applications. 
Despite these advances, many unanswered questions remain, 
and the full potential of gonadotropin action, the presence of  
FSHR–LHCGR heteromers in vivo, and the role of extrago-
nadal receptors warrant further research. Studying these aspects 
is vital for further scientific and clinical progress that could  
benefit human reproductive health.
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