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A look‑ahead Monte Carlo 
simulation method for improving 
parental selection in trait 
introgression
Saba Moeinizade1, Ye Han2, Hieu Pham2, Guiping Hu1* & Lizhi Wang1

Multiple trait introgression is the process by which multiple desirable traits are converted from a 
donor to a recipient cultivar through backcrossing and selfing. The goal of this procedure is to recover 
all the attributes of the recipient cultivar, with the addition of the specified desirable traits. A crucial 
step in this process is the selection of parents to form new crosses. In this study, we propose a new 
selection approach that estimates the genetic distribution of the progeny of backcrosses after multiple 
generations using information of recombination events. Our objective is to select the most promising 
individuals for further backcrossing or selfing. To demonstrate the effectiveness of the proposed 
method, a case study has been conducted using maize data where our method is compared with state-
of-the-art approaches. Simulation results suggest that the proposed method, look-ahead Monte Carlo, 
achieves higher probability of success than existing approaches. Our proposed selection method can 
assist breeders to efficiently design trait introgression projects.

From a commercial breeding perspective, trait introgression (TI) is a necessary process to produce the elite culti-
var with the most desirable traits. This technique is used to incorporate desired traits from a donor into an exist-
ing elite cultivar, preserving the performance of the elite cultivar and adding the benefits of the introduced traits. 
The result is essentially the same elite cultivar with the added desired traits that will bring benefits to growers1.

As an illustration, imagine two maize populations: one population (recipient) characterized by high yielding 
potential and low resistance to drought stress, whereas the other population (donor) characterized by low yield 
potential and high resistance to drought stress. In this scenario, one would hope to recover all the attributes of 
the recipient while obtaining the drought resistant alleles of the donor by some mechanized breeding process 
to create a new elite cultivar.

Marker-assisted backcrossing strategies provide important time and quality advantages over classical pro-
cedures for introgression of desirable alleles from a donor to an elite cultivar2–6. Backcrossing is a well-known 
breeding approach for the introgression of a target gene from a donor cultivar into the genomic background of a 
recipient cultivar3–5,7,8. The donor parent (DR) provides the desired trait and may not perform as well as an elite 
variety in other areas. The elite cultivar, called the recurrent parent (RP), usually performs well in the background. 
The objective is to increase the recipient genome content of the progenies, by repeated backcrosses to the recipient 
cultivar to recover all the attributes of the recipient cultivar, with the addition of the specified desirable traits9.

Although, in principle, the intent of trait introgression is forthright, in practice, there exists many compli-
cations due to the stochastic nature and size of a commercial breeding program. Because of this uncertainty, 
multiple breeding generations may be required until the superior, desired cultivar is achieved10. An additional 
challenge of the TI process is selecting the most promising backcross individuals for further backcrossing or 
selfing4,7. At each backcross generation cycle, plant breeders are faced with the difficult decision of identifying 
crosses to perform to produce the next generation of, hopefully, superior cultivar. In the prefect scenario, plant 
breeders would be able to cross every possible combination of parents until the desired cultivar is achieved. How-
ever, in reality, due to the limited amount of available resources (time, money, land, technology, etc.), breeders 
may only consider a small fraction of an existing gene pool, possibly leading to sub-optimal decision making11–13.

Recent advances in simulation and optimization techniques have been applied to variety of disciplines includ-
ing plant breeding14–20. Computer simulation approaches help identify optimal breeding strategies by adopting 
assumptions of the breeding system and running multiple scenarios, whereas, optimization approaches aim to 
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produce the best framework to maximize the probability of achieving the desired cultivar while minimizing 
input resources. It should be noted that the combination of analytical techniques and plant breeding has mainly 
been applied to genomic selection and not trait introgression21–27.

Although there does not currently exist much literature to integrate operations research techniques and trait 
introgression, there are still a few impactful studies. Cameron et al. utilized an operations research framework 
with a stochastic optimization model to identify the best breeding strategies for a given population under resource 
constraints28. This work illustrates the potential optimization modeling can have on resource allocation in plant 
breeding. Probabilistic simulation techniques have also been performed by Sun and Mumm29 to assess in silico 
various crossing schemes and breeding approaches. Moreover, Han et al.30 has framed trait introgression as 
an algorithmic process and introduced a novel selection metric, predicted cross value (PCV), which predicts 
specific combining ability by estimating the probability that a pair of parents will produce a perfect gamete with 
all desirable alleles.

Due to the importance of optimizing the breeding pipeline and the need to consider resource limitations for 
large scale breeding programs, this paper aims to design a platform that integrates operations research methods 
to trait introgression. Specifically, the authors develop a novel Monte Carlo simulation approach for the TI pipe-
line to consider the parental selection aspect under different scenarios of resources present within a commercial 
scale TI program. The originality in the proposed method, look-ahead Monte Carlo (LMC), is to look ahead and 
estimate the performance of progeny in the target generation and then optimize the selection decisions based 
on the estimated performance. In this study, we use computer simulations to compare selection strategies with 
respect to the recurrent parent background gene recovery percentage of individuals in the final generation.

Methods
In this section, we first define the problem by describing the backcrossing breeding pipeline and introduce two 
existing selection methods. Then, we propose the novel look-ahead Monte Carlo selection method.

Problem definition.  The following abbreviations will be used in subsequent sections in this paper:
DR: donor RP: recurrent parent
BCt: backcross population at generation t
BCTF2: self-fertilized population after final backcross
GEBV: genomic estimated breeding value
PCV: predicted cross value
LMC: look-ahead Monte Carlo
The general objective of trait introgression projects is to produce a new line that is highly close to the recurrent 

parent, and contains the desired alleles or traits from the donor parent. First an initial cross is made between the 
donor and recurrent parent to produce F1 progeny. Since, the donor and recurrent parents are both homozy-
gous, this step is deterministic which means the F1 progeny has 50% of the genetic material from each parent. 
Next, the F1 individual is crossed to the recurrent parent to develop a backcross one (BC1) population. Figure 1 
represents a schematic overview of the backcross project where the ultimate goal is to produce drought resistant 
individual plants with good agronomics. In Fig. 1, we see n individuals in the backcross one population denoted 
with BC11, BC12, ..., and BC1n . Best individuals from the BC1 population were selected based on a selection 
strategy and then again backcrossed to the recurrent parent.

In successive generations, progeny are first selected for the trait of interest and then backcrossed to the recur-
rent parent. This process is repeated for T backcross generations. We refer to an individual as positive if it contains 
the desirable alleles from the donor. For positive individuals in BCT population, the percentage of beckground 
recovery was calculated by dividing the number of desirable alleles in the background by the total number of 
background alleles. Furthermore, we monitor and evaluate the BCTF2 individuals.

The donor parent (poor agronomics, drought resistant) is crossed with the recurrent parent (good agronomics, 
drought sensitive) to produce F1. F1 progeny have 50% of their genetic material from each parent (yellow square: 
favorable allele, purple square: unfavorable allele). Then, F1 is backcrossed with the recurrent parent to develop 
the BC1 population. Best individuals from BC1 are selected based on a predefined metric and backcrossed to the 
recurrent parent. This process is repeated for T generations. The ultimate goal is to achieve an individual which 
is drought resistant and has good agronomics.

To simulate the recombination process during meiosis we used the same inheritance distribution defined in30. 
In subsequent sections, the recombination frequency vector is denoted by r ∈ [0, 0.5]L−1 , where L is the total 
number of markers in the genome. To represent the genotype of an individual plant, we use an L×m binary 
matrix, say G ∈ B

L×m , where Gl,m = 1 indicates whether the lth allele from chromosome m is desirable or not 
( Gl,m = 0 ). For each individual plant represented with a binary matrix, each row is a locus in the genome. The 
number of columns in the binary matrix represents the ploidy of the plant. We use diploid species in this paper 
( m = 2 ). Here, we review two existing approaches for parental selection.

Background selection.  The background selection approach first selects the individuals with desired marker gen-
otypes and then among these positive individuals selects for the desired background genotype3,7,31. Background 
selection has been shown to be efficient by previous theoretical work3,31–33 and experimental work2.

The breeding value of a background genotype can be estimated using genomic estimated breeding value 
(GEBV)34,35. GEBV of individual plants (or animals) is defined as the sum of their estimated marker effects34. We 
assume D = {d1, d2, ..., dz} is the location of the positive markers from the donor and there are total Z markers 
that should be introgressed. If we assume uniform weight for all desirable alleles, then the background GEBV of 
an individual is equivalent to the number of desirable alleles in its background:
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According to this approach, the positive individuals with highest GEBVs will be selected as parents.

Predicted cross value selection.  The predicted cross value (PCV) calculates the probability that a pair of breed-
ing parents will produce a gamete with desirable alleles at all specified loci by taking into account the recombi-
nation frequencies30. This approach selects individuals based on their likelihood to produce an elite gamete by 
combining all desirable alleles. Since in a backcrossing scheme, individuals are always crossed with the recurrent 
parent, the PCV can be defined as the probability that each individual will produce an elite gamete.

Let g ∈ B
L×1 denote a random gamete produced by a breeding parent. The PCV of an individual is calculated 

as follows:

(1)
GEBV =

L∑

l = 1

l /∈ D

2∑

m=1

Gl,m

Figure 1.   A schematic overview of the backcross project.
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To calculate this probability, the same water-pipe algorithm described in25 is used. The rationale for the PCV 
definition is to calculate the probability that none of the undesirable alleles survives two generations of meiosis30. 
According to this approach, the positive individuals with highest PCVs will be selected as parents.

Proposed look‑ahead Monte Carlo algorithm.  In this section we propose a novel probabilistic and 
heuristic driven search algorithm, look-ahead Monte Carlo (LMC) for parental selection. The underlying con-
cept is to use Monte Carlo simulation for modeling uncertainty involved due to recombination events. Monte 
Carlo simulation is a technique that relies on repeated random sampling to obtain numerical results36. This tech-
nique is often used in physical and mathematical problems and is most suited to be applied when it is impossible 
to obtain a closed-form expression or infeasible to apply a deterministic algorithm37.

The look-ahead Monte Carlo algorithm for parental selection evaluates different selection decisions periodi-
cally during the learning phase by predicting the genetic distribution of the progeny of backcrosses after multiple 
generations using information of recombination events. This algorithm makes a trade-off between exploration 
and exploitation. It exploits the selection strategies that is found to be best until the current generation and also 
explores the alternative decisions to find out if they could replace the current best. The essence of this algorithm 
is to strategically search the space to find optimal crosses that can result in best performance in the targeted 
generation.

Figure 2 presents an overview of the LMC algorithm. For every individual in BCt population (e.g., BCti ), 
multiple random gametes are simulated according to the recombination frequencies. These gametes are narrowed 
down to the ones which have the desirable markers from the donor in the introgressed loci. Then, one of these 
positive gametes is selected randomly to form the next BC progeny (e.g., BC(t+1)i ). This process is repeated until 
the target generation (BCT). Finally, individuals are evaluated based on their performance after selfing (BCTF2).

In BCTF2, success can be defined as achieving certain amount of recovery percentage (e.g., 95% ) among 
positive individuals. Suppose the population size of the BCTF2 generation is K and n individuals with desirable 
markers have achieved the desired recovery percentage. Then nK  is the probability of getting a positive individual 
that has met the background recovery requirements. Since through backcross generations the gametes are selected 
randomly, this probability is estimating only one of the possible outcomes for individual i in BCt population. To 
have a reasonable approximation for the performance of progeny in BCTF2, the same process should be repeated 
multiple times. The objective of the LMC algorithm can then be calculated as:

where vj represents the maximum recovery percentage achieved in BCTF2 for the jth round, and P is total rounds 
of repetition. According to LMC approach, individuals with highest Q values will be selected as the breeding 
parents.

Results
In this section, we first describe the data sets used in this case study, and then compare the proposed method 
with two existing selection methods in different scenarios of resources using computer simulation.

Data.  Data contains donor and recipient’s genetic information and recombination frequencies. To explore 
the effect of having different initial genetic similarities between donor and recurrent parent, we considered three 
cases as demonstrated in Table 1. The genetic similarity is calculated based on the NEIs metric38. Cases 1, 2, and 
3 have low, moderate and high initial genetic similarities respectively. Our goal is to compare the performance 
of selection strategies using these 3 different cases given that the low initial genetic similarity (case 1) is expected 
to be more difficult relatively.

The genetic information of donor and recurrent parent for these three cases are illustrated in Fig. 3. For all 
cases, three markers should be integrated from the donor to the recurrent parent. Furthermore, the recombina-
tion events are presented in the supplementary information.

Simulation settings.  Multiple trait introgression was studied using realistic maize data with three different 
selection methods, including GEBV, PCV, and LMC. We considered three cases with different genetic similari-
ties and two different scenarios for resources. These scenarios are designed considering the practical aspects of 
a breeding program. In scenario 1, we are allocating limited resources by making 2 crosses in each generation 
whereas in scenario 2, we are allocating moderate resources by making 6 crosses in each generation (see Table 2). 
Scenario 1 more closely resembles what occurs in a commercial breeding program, namely, decision making 
with limited resources.

One hundred independent simulation replicates were performed for each of the selection methods using 
MATLAB (R2019-a). Simulation has been performed for three generations of backcrosses followed by a selfing. 
The evaluation is based on the recovery percentage of individuals in BC3F2 generation.

It is assumed that each cross makes 200 progeny and for each scenario the number of crosses remains the 
same through all generations (i.e. resources are distributed evenly among different generations).

Simulation results.  Comparison of selection methods for one sample simulation Figure 4 presents the perfor-
mance of three selection methods for one sample simulation. The histograms of background recovery percentage 

(2)PCV(G, r) = Pr(gi = 1,∀i ∈ {1, 2, ..., L})

(3)Q =

∑P
j=1

nj

K vj

P
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for positive individuals are demonstrated over BC1, BC2, BC3, and BC3F2 generations. All three methods start 
with the same BC1 population and then produce the next population based on different selection decisions. As 
expected, the background recovery improves from BC1 to BC3 for all selection methods. For this sample simula-
tion, the (maximum, mean, minimum) recovery percentage in BC3 is (94, 90.61, 85), (94, 89.71, 84), (97, 94.07, 

Figure 2.   The Monte Carlo search for parental selection in trait introgression. For a deadline of T generations, 
we estimate the performance of BCTF2 individuals for a given selection strategy by searching across all possible 
paths. This is a schematic overview of monitoring the estimated performance in BC3F2 for a single path. The 
same process is repeated multiple times and then the average value is assigned to BC1i.

Table 1.   The description of data sets.

Case NEIs (%) Number of markers

1 0.58 195

2 0.72 173

3 0.89 172
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Figure 3.   Donors and recurrent parents’ genetic information and recombination frequencies for three cases 
(DR: donor, RP: recurrent parent, r: recombination frequency). A yellow square is used to denote a favorable 
allele (“1”) and a purple square is used to denote an unfavorable allele (“0”). The gray charts are heat maps for 
recombination frequencies.
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92) for GEBV, BPV, and LMC methods respectively which demonstrates improvement in recovery percentage 
when selection decisions are made using the LMC method.

It should be noted that the BC3F2 individuals should have all 6 alleles desirable in the three markers that 
are to be integrated from the donor (i.e. BC3F2 individuals are homozygous). However, the BC individuals are 
expected to have 3 desirable alleles total since their second chromosome is being inherited from the recurrent 
parent. This can explain why recovery percentage drops from BC3 to BC3F2. As demonstrated in Fig. 4, for this 
sample simulation, the LMC method achieves 95% recovery in BC3F2, however the other two selection methods 
achieve maximum 91% recovery.

Background recovery percentage of the top individual in BC3 across all simulation replicates Figure 5 compares 
the cumulative distribution functions (CDFs) of maximum recovery percentage achieved in BC3 for three selec-
tion methods among 100 simulation replicates. The further toward the right direction a CDF curves, the better 
performance a method has. Take for example, point (97, 75) means that 75% of the simulations have achieved 
recovery percentage less than or equal to 97. In all cases and scenarios, the LMC method achieves higher recov-
ery percentage.

Table 2.   Numbers of crosses in each generation for two different scenarios.

Generation Scenario 1 (limited resources) Scenario 2 (moderate resources)

BC1 2 6

BC2 2 6

BC3 2 6

Figure 4.   A sample simulation result for three different selection methods presenting histograms of population 
background recovery percentage over different generations. This simulation is performed for case 2, scenario 1.
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For case 3 which has the highest genetic similarity between donor and recurrent parent, there was one simula-
tion that resulted in having one individual in BC3 with all desirable traits (100% recovery percentage). Note that 
since this is a backcross generation, for this individual the second chromosome still lacks the desirable alleles 
from the donor. As expected, for each case, scenario 2 has better performance compared to scenario 1 since 
there are more resources available.

Average background recovery percentage of top 10 individuals in BC3 across all simulation replicates Figure 6 
presents the box-plots of average recovery percentage of top 10 individuals in BC3 generation. For all cases and 
scenarios, the median value is higher when selection decisions are optimized using LMC method. Furthermore, 
PCV has generally higher median values than GEBV. The overall range of values is greater for LMC method (as 
shown by the distances between the ends of the two whiskers for each box-plot). The interquartile ranges are 
reasonably similar (as shown by the lengths of the boxes), except for case 2, scenario 1, where LMC has consid-
erably higher range.

Background recovery percentage of the top individual in BC3F2 across all simulation replicates Figure 7 com-
pares the probability of success for three selection methods by evaluating recovery percentage of best individual 
in BC3F2. For example, point (0.8, 95) means that 80% of the simulations have achieved recovery percentage of 
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Figure 5.   Cumulative distribution functions of population maximum in the BC3 for three cases and two 
different scenarios. Results are based on 100 simulation replicates.
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95 in the terminal generation. The curves with better performance are expected to be closer to the upper right 
corner of the plot.

As expected, scenario 2 has generally higher probability of success compared to scenario 1 as more resources 
are used. Take for example, for case 2 the probability of achieving 95 percentage recovery with LMC method 
increases from 0.74 to 0.83 when having more resources. This probability also increases from 0.59 to 0.71 for 
PCV and from 0.54 to 0.69 for GEBV method. Furthermore, the probability of success increases from case 1 to 
3 where there is more genetic similarity between the donor and parent. Take scenario 2 for example, the prob-
abilities of having 95 percentage recovery when selection decisions are optimized using LMC method are 0.81, 
0.83, 0.89 for cases 1, 2, and 3, respectively.

Discussion
Selection methods based on marker information make trait introgression more efficient and effective. When 
introgressing the desired traits form a donor to a recipient, background selection is the conventional selection 
approach that aims to recover the desired background genome. Recent advances in optimization and simulation 
techniques can help enhancing the efficiency of parental selection in breeding programs.

Figure 6.   Box-plots of mean recovery percentage of top 10 individuals in BC3 for three selection methods. For 
each case and scenario, 100 simulation replicates are performed. The median values are demonstrated with a 
bold line.
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In this study, we introduced a new selection method, LMC, which has the potential to further improve the 
efficiency of breeding given limited time and resources by integrating operations research techniques and trait 
introgression. The proposed method was compared with existing selection methods in a simulation study using 
empirical maize data. Computational results demonstrate the improvements of the LMC method over two exist-
ing selection approaches, GEBV and PCV.

One of the advantages of the LMC method is being sensitive to the deadline. Unlike other selection meth-
ods that evaluate the performance based on only next generation, the LMC method relates the objective to the 
performance of individuals in the targeted generation. Another advantage of the LMC method is the trade-off 
between exploration and exploitation. When the look ahead process finds exploitation to contribute more to the 
final objective, the algorithm behaves in a greedy way to maximize performance. However, when the exploration 
is found to be more beneficial, the algorithm explores new possible outcomes.
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Figure 7.   Probability of success in BC3F2 for three different selection approaches considering 3 cases of initial 
genetic similarity and 2 scenarios of resource allocation for 100 simulation replicates. The maximum recovery 
percentage of positive individuals in BC3F2 is first identified and then probability of success has been defined as 
the proportion of simulations that have achieved a certain recovery.
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The simulations in this study were designed based on practical considerations. The trait introgression pipeline 
included three backcross generations followed by a selfing so that selected individuals will be homozygous for 
the target trait. There is no absolute number for the number of backcrosses needed to be performed but generally 
between two to five backcrosses are performed in maize. The number of required generations can be determined 
based on the breeding objective and the resources invested at each generation39. Intuitively, making more crosses 
and producing more progeny leads to a higher chance of creating desirable individuals, however the resources 
are limited and the breeding strategy should be customized based on available resources. Here, we considered 
two scenarios to represent both limited and moderate cases of resource availability. Scenario 1 limits the number 
of crosses to two in each generation where as scenario 2 allows six crosses. According to reproductive biology of 
maize, it is possible to obtain ≈ 200 seeds from a cross. Thus, we assumed each cross makes 200 progeny which 
means for scenarios 1 and 2, the population size of each generation becomes 400 and 1200 respectively. As 
expected, simulation results demonstrated that the probability of success increases when having more resources.

Future work should investigate optimizing the resource allocation strategies by spreading out the budget 
systematically among different generations. Also, this study investigated introgressing desirable alleles from a 
single donor, however desirable alleles can be carried by multiple donors. Hence, another direction that deserves 
investigation is to extend the LMC method for the cases with multiple donors. Moreover, we based our simula-
tions on a single crop organism. Further simulations considering more diverse populations are necessary to 
demonstrate the general applicability of the proposed selection method.
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