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Abstract: This paper presents a review on recent progress in quantitative 

structure-property relationship (QSPR) studies of surfactants and applications of various 

molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface 

tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants 

by quantum chemical calculations and its effects on the structures and properties of the 

colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for 

nonionic surfactants), biodegradation potential and some other properties of surfactants  

are evaluated .  
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1. Introduction 

Surfactants are usually amphiphilic organic compounds, meaning they contain both hydrophobic 

groups (their "tails") and hydrophilic groups (their "heads"). Therefore, they are soluble in both 

organic solvents and water. Due to their unique amphiphilic structures, surfactants have been widely 

used in traditional industries [1]. Furthermore their applications in many fields of science and 
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technology have recently been expanded [2–4]. Preparation of size-controllable nanoparticles by 

application of micelles and microemulsions as well as of porous materials by application of liquid 

crystals have been well documented [5,6]. Various membrane structures mainly consisting of 

amphiphilic molecules can be applied to fields such as photochemical solar energy transformation, 

molecular recognition, pharmaceutical formulation, targeting and sustained-release, and provision of 

unique micro-environments for substrates and enzymes and enzyme immobilization [7–10], and even 

restoration of environmental contamination [11].  

On the other hand, close attention has been given to the impact on the environment, especially on 

soils and waters, caused by the use of large quantities of surfactants [12]. It is especially worth noting 

that due to their special structures, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid 

(PFOA) surfactants are an important class of perfluorinated compound (PFCs) and also a class of 

emerging persistent organic pollutants (POPs) due to their high chemical stability and slow 

degradation. Fluorosurfactants are synthetic organofluorine chemical compounds that have multiple 

fluorine atoms. They can be polyfluorinated or fluorocarbon-based (perfluorinated) [13]. 
Fluorosurfactants have a fluorinated "tail" and a hydrophilic "head"，and are more effective at lowering 

the surface tension of water than comparable hydrocarbon surfactants, as they can lower the surface 

tension of water down to a value half of what is attainable by using hydrocarbon surfactants [14]. 

Some fluorosurfactants, such as PFOS, are detected in humans and wildlife, and fluorosurfactants tend 

to concentrate at the liquid-air interface due to the lipophobic nature of fluorocarbons [15]. They are 

not susceptible to the London dispersion force, the basis for lipophilicity, because the electronegativity 

of fluorine reduces the polarizability of the surfactants' fluorinated molecular surface. Therefore, the 

attractive interactions resulting from the "fleeting dipoles" are reduced, in comparison to hydrocarbon 

surfactants. However, fluorosurfactants are more stable and fit for harsh conditions than hydrocarbon 

surfactants because of the stability of the carbon–fluorine bond. Likewise, fluorosurfactants can persist 

in the environment due to their high stability. 

Consequently, studies on quantitative structure-property relationships (QSPRs) of surfactants and 

understanding of the effects of molecular structures on their functions and properties are becoming 

increasingly important [1,16]. In the processes for study, development and application of surfactants, a 

broad range of data concerning their properties and activities have been accumulated. Using 

thermodynamic data and other experimental data, widely applicable and acceptable QSPR models 

have been established between basic structures and physicochemical properties, applicable functions 

and some other special properties [17–21]. However, these QSPR models regarding surfactants are 

generally based only on the summary of a large amount of experimental data, and no detailed studies 

on their mechanisms of interaction have been performed. At present, QSPR methods based on the 

studies by Hansch and Free-Wilson [22] have been applied to a variety of fields, and related software 

and useful mathematical models have been developed [23,24]. In this paper, we will mainly review 

recent progress on development of QSPR for surfactants. 

2. Studies on Relationships between CMC and Molecular Structures 

In chemistry, the critical micelle concentration (cmc) is defined as the concentration of surfactants 

above which micelles are spontaneously formed. Upon addition of surfactants into a system, they will 
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initially partition into the interface, reducing the system free energy by lowering the energy of the 

interface and by removing the hydrophobic parts of the surfactant from contacts with water. When the 

surface coverage by the surfactants increases and the surface free energy (surface tension) has 

decreased, the surfactants start aggregating into micelles, thus again decreasing the system free energy 

by decreasing the contact area of hydrophobic parts of the surfactant with water. Upon reaching cmc, 

any further addition of surfactants will just increase the number of micelles (in the ideal case). As a 

measurable physical quantity for sudden change in surfactant solution, cmc can be used as a gauge for 

the surface activity of surfactants. In the beginning of development of QSAR models for surfactants, 

the length of lipophilic chain of surfactants was mainly considered, e.g., Becher et al. [25] established 

an equation to relate cmc to the numbers of carbons and ethoxyl groups. In recent years, topological 

and electronic structures have been adopted for this purpose. The program CODESSA (Comprehensive 

Descriptors for Structural and Statistical Analysis), running under the Windows environment and 

developed by Florida University, can produce more than 400 molecular descriptors including 

constitutional, topological, geometrical and electronic structure, and this program can be combined 

with molecular orbital program MOPAC (Molecular Orbital PACkage) [26–29]. 

2.1. QSPR Studies on CMC of Surfactants Based on Molecular Connectivity Index 

Using the CODESSA program, QSAR models have been developed by Huibers et al. to predict cmc 

values for non-ionic and anionic surfactants [30,31]. For non-ionic surfactants, a dataset of 77 samples 

was selected and divided into seven categories based on the characteristics of their hydrophobic and 

hydrophilic moieties [30] (Figure 1).  

Multiple linear regression (MLR) analyses of molecular descriptors and the logarithm of the cmc 

were carried out using the heuristic algorithm, and the best model obtained is: 

Log10 cmc = -(1.80 ± 0.16) – (0.567 ± 0.009)c-KH0 + (1.054 ± 0.048)c-AIC2 + (7.5 ± 1.0)RNNO 

(n = 77, R2 = 0.9833, F = 1433, S2 = 0.0313)      (1) 

where n is the number of compounds used for regression, R2 the squared correlation coefficient, S2 the 

standard error of the regression, and F the Fisher ratio for the regression; c-KH0 stands for the Kier & 

Hall molecular connectivity index of zero-th order for hydrophobic fragment [32], and using the 

numbers of total electrons, valence electrons and hydrogen atoms contained in this fragment represents 

the contribution from all non-hydrogen groups; the second order average structural information index 

(c-AIC2) reflects basic chemical characteristics of hydrophobic moiety [33]; RNNO (so-called relative 

number of oxygen and nitrogen atoms) stands for the size of hydrophilic moiety and its value is related 

to the numbers of nitrogen and oxygen atoms. The positive regression constants (R2 = 0.9833) show 

that branches and other structures can increase cmc more than a straight chain. 
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Figure 1. Representative structures of the seven nonionic surfactant classes used by 

Huibers et al. to predict the cmc for a series of 77 surfactants [30]: (1) branched alkyl 

ethoxylates (2) linear alkyl ethoxylates (3) octylphenol ethoxylates (4) alkanediols (5) alkyl 

mono and disaccharide ether and esters (6a) ethoxylated alkylamines (6b) ethoxylated 

alkylamides (7a) fluorinated linear alkylethoxylates (7b) fluorinated ethoxylated amides. 

 

 

For the study of anionic surfactants, a dataset of 119 samples was selected, and molecular structural 

types under research are shown in Figure 2. The equation obtained is [31]: 

Log10 cmc = (1.89 ± 0.11) – (0.314 ± 0.010)t-sum-KH0 – (0.034 ± 0.003)TDIP – (1.45 ± 

0.18)h-sum-RNC  

(n = 119, R2 = 0.940, F = 597, S2 = 0.0472)       (2) 

In this equation, the most useful descriptor is t-sum-KH0 which represents the kier & hall index of 

zero-th order for the whole hydrophobic domain and is related to molecular volume and surface 

domain. The second descriptor TDIP is molecular total dipole moment obtained from atomic charges 
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using MOPAC program [34]. Analysis of the change in total dipole moment of the anionic surfactants 

shows that total dipole moment increases with a rise in the size of alkyl chain if the hydrophilic moiety 

remains identical [30]. If the alkyl chain keeps unchanged, moving of hydrophilic group towards the 

molecular center will lead to a decrease of total dipole moment, however its effect on the cmc 

concentration is insignificant. For the double-tailed surfactants, total dipole moment is decided by the 

longer hydrophobic chain. The third descriptor stands for the sum of carbon atoms in the whole 

hydrophilic moiety and describes the variation of the hydrophilic moiety structure. 

Figure 2. Representative structures of the anionic surfactants, showing the diversity of the 

hydrophilic and hydrophobic domains [30]. 

 
 

When the hydrophilic moiety is sulfate or sulfonate, change in cmc only depends on the 

hydrophobic moiety, and the change in the hydrophilic moiety is small and even a fragment descriptor 

is not needed for this. The regression equation is [30]: 

Log10 cmc = (2.42 ± 0.07) – (0.537 ± 0.009) KH1 – (0.019 ± 0.002) KS3 + (0.096 ± 0.005) HGP 

(n = 68, R2 = 0.998, F = 1691, S2 = 0.0068)       (3) 

In this model, the three descriptors are related to variation of the hydrophobic moiety of the 

surfactants. KH1 is the first-order Kier & Hall molecular connectivity index and is related to molecular 
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surface domain and volume. KS3 is the third-order Kier & Hall molecular connectivity index, which 

contains the information for molecular shape. This index has a higher value for molecules with a 

straight chain than for those with a branched chain. HGP is hydrophobic group position on the longest 

chain, which simply describes the carbon number attached to the hydrophilic moiety. This descriptor 

explains the phenomenon that the cmc increases as the head group moves farther from the  

α-carbon position. 

2.2. QSPR Studies of CMC of Surfactants Based on Quantum Mechanical Descriptors 

It is known that dissolving of a surfactant in water and micelle formation is an exothermic process 

due to free energy reduction in the system [17], and that change in the energy mainly comes from 

interactions between surfactant molecules and between surfactant molecules and water molecules. 

Coulombic interactions, intermolecular van der Waals interactions and hydrogen bonding all play 

important roles in the formation of micelles. In the work by Wang et al. [35], therefore, quantum 

mechanical descriptors like molecular energies and dipole moment were additionally employed as 

descriptors and a better model was obtained between molecular structures and cmc. The model for the 

nonionic surfactants is [35]: 

lgcmc = 1.930 – 0.7846KH0 – 8.871 × 10-5ET + 0.04938D 

(n = 39, R2 = 0.9948, S2 = 0.1232)       (4) 

The model for the anionic surfactants is [27]: 

Lgcmccal = 0.546 – 0.269KH0 – 0.00370ΔHf + 0.000224Et + 0.382EHOMO + 0.493ELUMO – 0.0134D 

(n = 40, R2 = 0.9778, F = 74.72, S2 = 0.1184)      (5) 

where ET is the total energy of molecule, ΔHf molar heat of formation, D the molecular dipole moment, 

EHOMO the energy of the highest occupied molecular orbital, ELUMO the energy of the lowest 

unoccupied molecular orbital, and KH0 the kier & hall molecular connectivity index of zero-th order. 

In the QSAR model for anionic surfactants, the molecular structure descriptors having effecs on the 

cmc are in the following order: KH0 > ET > D > ELUMO >ΔHf > EHOMO. Katritzky et al. also suggested 

that significantly important molecular descriptors in the selected QSPR models were topological, 

solvational and charge-related descriptors as the driving force of the intermolecular interactions 

between anionic surfactants and water [36].  

The correlation coefficients (R2) between the calculated values with the above two models and the 

experimental values are 0.9965 [35] and 0.9989 [27]. These high correlations have demonstrated the 

necessity of using electronic structures to study QSAR for surfactants.  

Wang et al. [37] conducted a further study to derive a quantitative structure-property relationship 

for 77 nonionic surfactants belonging to eight series, and they suggested that the best model contained 

four quantum-chemical descriptors (ΔH, D, EHOMO and ELUMO), and two constitutional descriptors (the 

molecular weight of surfactant (M) and the number of oxygen and nitrogen atoms (nNO)), and one 

topological descriptor (KH0). Wang et al. [38] used the model (Equation 5) to predict cmc of three 

AE3SO3 compounds, and their results indicated that the calculated values were in accordance with 

their observed values. 
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Li et al. optimized hydrophobic–hydrophilic segment geometries of 98 anionic surfactants at ab 

initio RHF/6-31G(d) level, and obtained a quantum chemical dataset including charge density, 

energies of molecular orbital and dipole moment. The anionic surfactants employed include sodium 

alkyl sulfates, sodium alkyl sulfonates, sodium alkyl benzenesulfonates, and potassium alkyl 

carboxylates with a wide variety of hydrophobic structures [29]. Based on one constitutional descriptor 

and two quantum chemical descriptors, a significant QSPR model for cmc of anionic surfactants was 

obtained by MLR technique. The model they have established is [29]: 

log10cmc(cal) = (1.89 ± 0.0671) + (-0.0697 ± 0.00151) NT + (-0.0323 ± 0.0015)µ + (0.381 

± 0.0305)QC-max 

(n = 98, R2 = 0.980, F = 1505.23, S2 = 0.0107, 2
CVR  = 0.978)    (6) 

where NT represents the total atom number in the hydrophobic–hydrophilic segment, µ is the dipole 

moment of surfactant segment, and QC-max represents the maximum net atomic charges on C atom; 
2
CVR  is the squared correlation coefficient for the ‘leave-one-out’ cross-validation procedure. 

Coefficient 2
CVR  (0.978) indicates the excellent capability and stability of the regression equation 

developed. They concluded that the total atom number (NT) in the surfactant hydrophobic–hydrophilic 

segment plays a major role in the model, while the dipole moment (µ) of the surfactant segment and 

the maximum net atomic charge on C atom (QC-max) in the surfactant segment are also important. 

Katritzky et al. explored a data set of 181 diverse anionic surfactants to relate the logarithm of 

critical micelle concentration (cmc) to the molecular structure using CODESSA Pro software [36]. 

Their final regression equation involved five descriptors: the Kier & Hall index (order 1); the Kier 

shape index (order 2) defined for the hydrophobic fragment; moment of inertia B, calculated for the 

hydrophilic fragment; the total point-charge component of the molecular dipole; and the image of the 

Born solvation energy defined for the whole molecule. The most obvious influence on cmc was 

manifested by hydrophobic fragments expressed by the topological and geometrical descriptors, while 

the hydrophilic fragment is represented by constitutional, geometrical, and charge related descriptors.  

2.3. QSPR Studies of CMC of Surfactants Using Neural Network 

Utilizing MLR and an artificial neural network (ANN) algorithm, Katritzky et al. derived linear and 

nonlinear predictive models from a data set of 162 nonionic surfactants [19]. The artificial neural 

network (ANN) is a popular tool in function learning due to its ability to learn rather complicated 

functions. ANN is a mathematical model or computational model that tries to simulate the structure 

and/or functional aspects of biological neural networks. Neural networks are non-linear statistical data 

modeling tools. They can be used to model complex relationships between inputs and outputs or to 

find patterns in data. The descriptors in the derived models relate to the molecular shape and size and 

to the presence of heteroatoms participating in donor-acceptor and dipole-dipole interactions. Steric 

hindrance in the hydrophobic area also plays an important role in micellization. The QSAR models 

reported are expected to provide reliable estimations for the following surfactant classes: branched and 

linear alkyl ethoxylates, octylphenyl, ethoxylates, linear ethoxylated alcohols, octylphenols, 

alkanediols, alkyl mono- and disaccharides, ethoxylated alkylamines and alkylamides, fluorinated 

alkyl ethoxylates, carbohydrate derivatives, and dimeric surfactants. 
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A QSPR study was also performed using wavelet neural network (WNM) to relate the structure of 

94 cationic Gemini surfactants to their cmc [16]. Wavelet neural networks are another novel approach 

towards the learning function.Wavelet networks, which combine the wavelet theory and feed forward 

neural networks, utilize wavelets as the basis function to construct the networks. The performance of 

the QSPR model obtained was investigated by the test set and the average error was 0.105 for the test 

set, which is superior to the MLR model. In this work, the cmc of Gemini surfactants was related to the 

12 descriptors (seven topological, three WHIMs, one geometrical and one functional group descriptors) 

by WNN model for the first time. 

2.4. QSPR Studies of CMC of Surfactants Using Other Methods 

Considering the fact that relationship between free energy change in micellization process and the 

nucleus structure is related to hydrophobic fraction of surfactants, Robert et al. adopted octanol/water 

partition coefficient (logP) to systematically study the cmc models for anionic surfactants [39]. They 

made regression analysis of experimental cmc values for primary alcohol sulfate and primary alcohol 
ester sulfate (at 50 °C) vs IIh (the logP fragment value for the hydrophobe, simply defined as the 

whole molecule minus the negatively charged fundamental fragment SO3
- or OSO3

-) and L (the length 

of the hydrophobe, in C-C single bond unit), and the following QSPR models were obtained [39]: 

Pcmc = 0.32 (± 0.13) Лh + 0.08 (± 0.05) L – 1.02 (± 0.71) 

(n = 16, R2 = 0.927, F = 83, S = 0.17)       (7) 

Pcmc = 0.39 (± 0.05) ЛH + 0.08 (± 0.02) L – 1.50 (± 0.30) 

(n = 16, R2 = 0.989, F = 582, S = 0.07)       (8) 

where Pcmc is the negative logarithm of the cmc. IIh in Model 6 was calculated with Leo and Hantsch 

approach [40] and IIh in Model 7 computed based on position-dependent breaching factor [41]. A 

regression was made between the cmc values calculated with Model 7 and the experimental cmc 

values, and a fairly good liner relationship was found. The correlations obtained are summarized as 

follows: for all anionic surfactants (n = 133, R2 = 0.976, S = 0.12, F = 5360); all anionic surfactants 

except SALS (secondary alcohol sulfates), LAS (linear alkyl benzene sulfonate), and β-branched PAS 

(primary alcohol sulfate) (n = 75, R2 = 0.988, S = 0.09, F = 6122); SALS, LAS and β-branched PAS  

(n = 58, R2 = 0.982, S = 0.08, F = 3074). In addition, molecular mechanics has also been used to 

predict cmc for surfactants like linear alkyl polyoxyethylene ethers and alkyl polyglucoside [42,43]. 

3. Charge Distribution of Surfactants and Its Influence on Their Properties 

A variety of properties for surfactants are related to charge distribution in their molecules. A recent 

study showed that in colloidal dispersion systems (mainly system with low particle concentrations and 

high surface charges) there existed a long-range force purely from electrostatic interactions between 

particles in addition to short-ranged forces caused by van de Waals interaction [44]. Therefore the key 

to the study of electrostatic interactions is description and quantification of the charge distribution.  
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3.1. Computation of Charge Distribution in Ionic Surfactant Molecules and Their Effects 

For ionic surfactants, net charge carried on the headgroup of the molecules has been normally 

treated as a point charge, although it is factually located on several atoms in the hydrophilic groups and 

even enter tails of surfactant molecules (see Figure 3) [45]. 

Figure 3. For ionic surfactants, quantum chemical calculations suggest that the charge is 

distributed throughout the molecule [45]. 

 

 

Using an ab initio 6-31G basis set, electrostatic potential surface was calculated for dodecyl 

carboxylate and decyl sulfate and proved that there is a partial negative charge on the alkyl chain of 

these surfactants [46]. By studying the fluorescence quenching behavior and constants of ionic 

surfactants, it is indicated that the single molecule of the surfactant adopt dynamic coil configuration in 

water [47]. This configuration will be more closely related to molecular charge distribution than other 

configurations. Consequently, a previous assumption that the tail part of a surfactant is nonpolar and 

electronically in equilibrium is not objective in a physical sense. 

Huibers has recently studied charge distribution in common ionic surfactants using four widely 

accepted semiempirical methods (MINDO/3, AM1, PM3 and MNDO/d), and developed QSAR models 

for some properties of these surfactants (Figure 4) [45]. The ionic surfactants they studied include 

anionic (sulfate, sulphonate and carboxylate), cationic (trimehthylammonium and pyridinium) and 

amphoteric (betaine and dimethylamine oxide) classes. Addition of d-orbital to basis sets for MNDO 

[48] has improved calculation results for elements of the third period such as sulphur and phosphorus. 

From the calculation results, it can be seen that there is a partial charge distribution found for the 

α-CH2 and the alkyl chain. The terminal methyl group of all surfactants has a positive charge and this 

causes their neighboring CH2 to carry a partial negative charge. For the anionic surfactants, a ca. 5% 

partial negative charge resides on the tail part of the molecules (for sulphonate surfactants, a 5% partial 
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positive charge is carried on the tail part of the molecules). The polar head of the amphoteric 

surfactants carries a ca. 6% negative charge with the same amount of positive charge on the tail. The 

polar head of the cationic surfactants carries a positive charge and the tail part of surfactants also 

carries a ca. 10% positive charge, the highest local charge. Although, in some studies modeling 

associated behavior of surfactants [49], α-CH2 was considered as part of the polar head, the 

explanation about this was not given. 

Figure 4. Distribution of charge in selected surfactants between the head group, the 

α-methylene, and the remaining portion [45]. 

 

NMR data from Zhao and Fung [50] also indicated that chemical environment around the α-CH2 is 

different from those around the other methylene groups and this may lead to its association with water 

molecules. Huibers et al. have quantified charges on these groups and shown that a relatively high 

amount of charge is located on the α-CH2 and thus have supported the idea that the α-CH2 belongs to 

the polar head group [45]. In addition, it is interesting to note that the sign of the charge on the α-CH2 

and that of the charge on polar head can be the same or opposite. These results showed that existence 

of local charge on the tail of the alkyl chain of surfactants provide a need to reconsider the properties 

for micelle cores. Normally, for treatment of micelle formation and solubilization, ‘water drop’ model 

has been employed without consideration of repulsive interaction between the alkyl chains [49,50]. 

Obviously, the migration of the charge on the polar head of ionic surfactants to the other part of the 

molecules, especially to α-CH2 and terminal methyl group, has an important effect on their properties. 

Polar head charge and charge on α-CH2 have varying effects on cmc of different surfactants. Inequality 

of local charges on the alkyl chains can rationalize polarity of micelles and effects of polar head charge 

on molecular self-assembly. 
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Furthermore, using the Huckel molecular orbital theory, Jacobs and Anacker have computed 

charges on hydrophilic group for decyl pyridinium chloride [51], finding that the aggregation numbers 

in micelles is related to atomic charges on the pyridinium ring attached to the alkyl chains. They were 

trying to elucidate the role of charge delocalization in micelle formation by determining the 

aggregation numbers of 1-decylpyridinium bromide and three of its structurally similar isomers (2-, 3-, 

and 4-decylpyridinium hydrobromide) in an aqueous environment, and suggested that the positive 

charge is not localized on the nitrogen but is spread over the entire polar head. Using the 

AM1-calculated charges, Huibers and Jacobs [52] have rationalized the effect of the charge 

distribution on the hydrophilic group on the aggregation numbers in micelles. The aggregation 

numbers of the surfactants are shown to increase with a decrease in the residual partial charge in the 

alkyl tails, suggesting a change in the packing of the surfactants. The critical micelle concentration 

increases with a decrease in the partial charge of the head groups, indicating increased solubility of the 

surfactant molecule as charge is more widely distributed throughout the molecule. Villamagna et al. 

[53] have studied configuration design for structure of surfactants for water-in-oil emulsions using 

AM1 calculations. Their molecular modelling analysis of presently used surfacts in water/oil 

emulsions leads to the ideal structure of a surfactant have tail:polar head:hydrogen bonding chains in 

the volume ratio 1:1:1, and that is a useful way to designing ideal surfactants. 

In the meantime, it should be realized that the above calculations are based on gaseous-phase 

models. Although no environmental effects are considered in the calculations and only pure charge 

distribution is provided, this can be used to compare different surfactants. To consider the 

environment’s perturbation on charge distribution, i.e., to model the solvation environment is a fairly 

complex process, since this kind of models needs to reflect the characteristics of flowing media with a 

certain dielectric strength. Consequently, further studies on model establishment theory and calculation 

capability are needed in order to predict such a complex system as surfactant micelles. 

3.2. Descriptors Related to Molecular Surface Area—CPSA  

To study interactions between molecules, some researchers have used solvent-accessible molecular 

surface area as a descriptor. There have been some reports on descriptors for molecular surface area, 

atomic charges and charge scaling factors and their applications [54–56]. Stanton and Jurs [57] have 

combined molecular surface area with atomic charges and defined a new molecular descriptor named 

charged partial surface area (CPSA) to address polarization interactions between molecules, which can 

be correlated with physical quantities such as chromatographic retention, boiling point and  

surface tension. 

The geometric model for CPSA descriptor is to utilize overlapping of hard spheres defined by the 

van de Waals radii of atoms. The calculation for this descriptor was performed with a UNIX system 

(Sun4/1102) and ADAPT software. Solvent-accessible area calculation adopted SAVOL algorithm 

developed by Pearlman [58]. Atomic charges were obtained from the Abraham and Smith [59] 

algorithm, an empirical method including σ and π contributions, which is parameterized to reproduce 

experimental dipole moments. Calculations of both surface areas and atomic charges include hydrogen 

atoms. The CPSA descriptor system established in this study have 25 individual descriptors, which 

include partial positive surface area descriptors (PPSAs), partial negative surface area descriptors 
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(PNSAs), partial surface area descriptors (DPSAs), fractional charged surface area descriptors (FPSA 

and FNSA), total surface weighted partial surface area descriptors (WPSA and WNSA), relative 

positive and relative negative charges descriptors (RPCG and RNCG), and relative positive and 

relative negative charged surface area descriptors (RPCS and RNCS). 

4. Surface Tension Prediction Models 

Surfactants can to some extent balance interfacial unsaturated force fields to reduce surface tension. 

Different structures of surfactants and the resulted difference in intermolecular interactions can be 

understood at different levels. The Wang group has focused on parameters of molecular structure of 

surfactants [60], used as molecular descriptors oxygen atom number (NO) in hydrophilic group, Kier 

& Hall zeroeth-order index (KH0), heat of formation (ΔHf) calculated by quantum mechanics, total 

energy of a molecule (ET), molecular mass (Ws) and dipole moment (D) etc to regress vs. minimum 

surface tension at cmc (γ0) and established several types of related models. Among them, the best 

model is [61]: 

γ0 = 11.98 + 0.4780N0 + 0.5848KH0 – 0.0007763ET - 0.01053ΔHf + 0.09734D – 0.1345N0. KH0 

(n = 30, R2 = 0.9945, F = 187.8, S2 = 0.5302)      (9) 

Their chosen data set of γ0 contains 30 diverse structures of nonionic surfactants and molecular 

descriptors ΔHf, ET and D are obtained from calculations using MNDO-MOPAC 7.0. Through energy 

and electronic parameters, this model set up indirect QSAR between surface tension and electron 

motion.  

Wang et al. have also established quantitative models for 20 anionic surfactants with different 

structures concerning their surface tension reduction effect expressed as surface pressure (II) at 

different temperatures (t) and different counter ion concentrations (c) [62]. This effect is normally 

expressed as maximum surface pressure measured at cmc condition. In addition to temperature and 

counter ion concentration, variables for the optimal models obtained also include molar heat of 

formation for anionic surfactant (ΔHf), dipole moment (D) and Kier & Hall zeroeth-order index (KH0) 

for hydrophobic moiety. The model containing five descriptors is as follows [63]: 

IIcmc = 27.71 – 0.005239ΔHf + 17.16C – 0.1520T – 0.2130D + 1.080KH0 

(n = 20, R2 = 0.9884, F = 56.43, S2 = 0.0134)      (10) 

The IIcmccal values calculated with this model is highly related to the observed values, and the 

regression equation is as follows: 

IIcmccal = 2.982 + 0.9199IIcmc(obs) 

(n = 34, R = 0.994, S2 = 0.0688)       (11) 

Stanton et al. [64] and Stanton and Jurs [65] have focused on descriptors relating to molecular 

surface area. They made multiple linear regressions on observed surface tension of alkanes, alkyl 

esters, alkyl alcohol, etc. against these descriptors, and established surface tension prediction models. 

146 compounds were selected for the regressions, among which 74 compounds are from alkane type 

(accounting for 50.7% of the total), 44 compounds from α-ester type (accounting for 30.1%), and  

28 compounds from alcohol type (accounting for 19.2%) [64]. This model contained 10 molecular 
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descriptors [65], among which six descriptors are topological, two electronic and two from hydrogen 

bonding system. Predicted surface tension values for these three systems under study showed an 

excellent correlation with the experimental values (R2 = 0.983, s = 0.4 dyn/cm). After studying 

inter-correlations of these descriptors, these authors indicated that the topological descriptors are of a 

significant correlation to the molecular surface area, and intermolecular interaction increases with a 

rise in the molecular surface area. This will result in a relatively high surface tension, and thus 

molecular surface area is the most influential factor for surface tension.  

5. Qsar Studies on Cloud Point of Nonionic Surfactants 

The cloud point of a nonionic surfactant is the temperature where the mixture starts to phase 

separate and two phases appear, thus becoming cloudy. This behavior is characteristics of non-ionic 

surfactants containing polyoxyethylene chains, which exhibit reverse solubility versus temperature 

behavior in water and therefore "cloud out" at some point as the temperature is raised. It is affected by 

salinity, being generally lower in more saline fluids. Cloud point is a critical factor in the performance 

of nonionic surfactants (such as those containing polyoxyethylene polymers as their hydrophilic 

moieties) in detergent formulations [66,67]. Nonionic surfactants show rich phase behavior in aqueous 

mixtures. Below their cloud points (CPs), a number of isotropic phases exist. Above their CPs, 

nonionic surfactants form opaque suspensions, which eventually separate into water-rich and 

surfactant-rich phases [68,69].  

Bünz et al. studied cloud point of 20 nonionic surfactants with alkyl zwitterions groups, obtaining 

QSAR models (Table 1) [70]. These models contained four descriptors for molecular structures: two 

topological [average information content (order 2), Kier shape index (order 3)] and two constitutional 

descriptors (relative molecular weight, relative number of rings).  

Table 1. Results of the best four-parameter multilinear regression for cloud point of 

nonionic surfactants based on the 20-member training set. 

descriptor No. X DX t-test R2 F S2 

intercept 0 -7.03E + 02 1.91E + 01 -36.7455    

relative molecular 

weight 
1 1.77E + 02 4.33E + 00 40.9502 0.2983 8.08 313.55 

average information 

content (order 2) 
2 -4.53E + 01 2.56E + 00 -17.7164 0.6445 16.32 167.67 

relative number of 

rings 
3 -5.53E + 03 1.68E + 02 -32.8383 0.8516 32.51 74.14 

Kier shape index 

(order 3) 
4 -2.81E + 00 1.34E - 01 -21.0049 0.9948 765.99 2.75 

X, regression coefficient; DX, error of the regression coefficient; t-test, value for the single regression term: 

R2, squared correlation coefficient for all regression terms just mentioned; F, value for the F-test for all 

regression terms just mentioned; S2, mean square deviation (variance) for all regression terms just mentioned. 

The squared correlation coefficient for this model was R2 = 0.9948. Huibers et al. have established 

an empirical relationship to estimate the cloud point of pure nonionic surfactants of the alkyl ethoxy 
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with 41 topological descriptors, and the best regression was [71]: 

CP = (–264 ± 17) + (86.1 ± 3.0) logEO# + (8.02 ± 0.78)3k – (1284 ± 86)0ABIC – (14.26 ± 0.73)1SIC 

(n = 62, R2 = 0.937, F = 211, S2 = 42.3)      (12) 

where EO# is the number of ethylene oxide residues, 3k is the third order Kier shape index for the 

hydrophobic tail, 0ABIC is the zeroth order average bonding information content of the tail, and 1SIC 

is the first order structural information content of the tail. 

In 2003, Yuan et al. developed another equation to predict cloud point for nonionic surfactants with 

their several structural, electronic, spatial and thermodynamic properties, and their best regression was [72]:  

T c = 9.62958 + 0.69733A + 0.981001μ-y – 1.59247μ-z – 19.0815 lgP – 0.829297Mr 

(n = 49, R2 = 0.844, F = 46.618)       (13) 

where lgP is the octanol/water partition coefficient, A is the molecular area, Mr is the relative mass, 

and μ-y and μ-z were the molecular dipole. 

In 2006, Ren et al. developed the QSPR models to predict cloud points and study the cloud 

phenomena of nonionic surfactants in aqueous solution [69]. Four descriptors were selected by the 

heuristic method as the inputs of multiplier linear regression and support vector machine (SVM) 

models. The basic idea of SVM is to map the input vectors into a higher dimensional feature space by 

a kernel function, K(xi, xj), and then to do linear regression in this space. SVM models performed 

better both in fitness and in prediction capacity. For the test set, they gave a predictive correlation 

coefficient of 0.9882, root mean squared error of 4.2727, and absolute average relative deviation of 

9.5490, respectively. The proposed models can provide some insight into what structural features are 

related to the cloud points of compounds, i.e., the molecular size, structure, and isomerism of the 

hydrocarbon moiety and the degree of oxyethylation.  

More recently, QSPR analysis has been directed to a series of pure nonionic surfactants containing 

linear alkyl, cyclic alkyl and alkyl phenyl ethoxylates [66]. Modeling of cloud point of these 

compounds as a function of the theoretically derived descriptors was established by MLR and partial 

least squares (PLS) regression. PLS, which is based on factor analysis fundamentals, is applied where 

there are many variables but not enough samples or observations. PLS has been applied to many fields 

of applied sciences with great success. In chemometrics, it is one of the favored methods of analysis. 

In this study, a genetic algorithm (GA) was employed as a variable selection method in QSPR analysis. 

GA is developed to mimic some of the processes observed in natural evolution, which are an efficient 

strategy to search for the global optima of solutions. The results indicate that the GA is a very effective 

variable selection approach for QSPR analysis. The comparison of the two regression methods used 

showed that PLS has better prediction ability than MLR. 

6. Studies on Degradation of Surfactants 

QSPR studies with respect to cmc, charge distribution and surface tension prediction of surfactants 

have received a high attention as described above. However biodegradation potential of surfactants 

should be another highly important issue as this decides their environmental impact. Concerning 

biodegradation of surfactants, the reported studies include effects of alkyl chain structure (straight and 

branched chains) and position of branching in the chain, etc., on biodegradable activity [73–75]. 
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Biodegradation is the process whereby organic (i.e., carbon-containing) matter is decomposed by the 

action of micro-organisms present in the environment. The evaluation of biodegradability of 

anthropogenic organic substances is an essential parameter for environmental risk assessment and 

required according to appropriate legislation. 

Biodegradation with respect to surfactants is defined as primary biodegradation, ultimate 

biodegradation and ready aerobic biodegradability. Primary biodegradation means the structural 

change (transformation) of a surfactant by microorganisms resulting in the loss of its surface-active 

properties due to the degradation of the parent substance. Ultimate biodegradation means the level of 

biodegradation achieved when the surfactant is completely used by micro-organisms resulting in its 

breakdown to inorganic end-products such as carbon dioxide, water and mineral salts of any other 

elements present (mineralization) and new microbial cellular constituents (biomass). Ready aerobic 

biodegradability is an arbitrary classification of surfactants which have passed certain specified 

screening tests for ultimate biodegradability; these tests are so stringent that it is assumed  

that such [76,77].  

Siwiski et al. developed a modified river water die-away test for controlling the biodegradability of 

anionic surfactants and non-ionic surfactants of detergent powders and investigated twelve powders. 

They found that anionic surfactants were much more easily biodegraded than non-ionic surfactants, 

and non-ionic surfactants were very different in terms of biodegradability [78]. Sales et al. have 

carried out a study to research the influence of several environmental factors on the biodegradation of 

a commercial anionic surfactant (LAS) in waters and sediments of Cadiz Bay (southwest Iberian 

Peninsula). They concluded that degradation is basically an aerobic process, and hence the 

introduction of air to the solution will favour it [79]. Li et al. have conducted a study to interpret the 

differences in biodegradation of LAS and its coproducts from the electronic structure characteristics 

and to explore the mechanism of LAS biodegradation. In their research, electronic descriptors of LAS 

and its cocproducts, including orbital energy, dipole moment, charge distributions and local electronic 

characteristics of surfactant molecule were calculated by using semiempirical quantum chemical 

method at the PM3 level. They have explained why biodegradation of model compounds at first takes 

place in the terminal CH3 group, and they have given two reasonable explanation: (1) there is no 

transferred H atom in the S-O bond; (2) the degrees of S-O bonding are higher than those of the 

terminal C-H bonding in the model compounds [80].  

PFC surfactants can resist degradation by acids, bases, oxidants, reductants, photolytic processes, 

microbes and metabolic processes [81–84]. Some monitoring studies indicate that fluorosurfactants are 

globally distributed, environmentally persistent and bioaccumulative [85,86]. To evaluate the fate of 

PFCs in the environment a set of principal transformations was developed and implemented in the 

simulator of microbial degradation using the catabolite software engine (CATABOL) [87]. The 

simulator was applied to generate metabolic pathways for 171 perfluorinated substances on Canada's 

domestic substances list. It was found that although the extent of biodegradation of parent compounds 

could reach 60%, persistent metabolites could be formed in significant quantities. During the microbial 

degradation a trend was observed where PFCs are transformed to more bioaccumulative and more 

toxic products. Perfluorooctanoic acid and perfluorooctanesulfonate were predicted to be the persistent 

biodegradation products of 17 and 27% of the perfluorinated sulphonic acid and carboxylic acid 

containing compounds, respectively. 
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Structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and 

its trifluoromethyl-branched isomers (i.e., 1-CF3– to 6-CF3–PFOS) were theoretically investigated by 

density functional theory (DFT) calculations with the B3LYP functional and a 6-31++G(d,p) basis set 

[88]. The linear and branched PFOS ions were identified as the most suitable compounds for 

interacting with charged species. Furthermore, in the linear anion, the LUMO orbital is located along 

the whole fluoro-carbon chain, while it is localized to the region close to the ternary carbon in the 

4-CF3–PFOS, 5-CF3–PFOS, and 6-CF3–PFOS isomers.  

The higher accessibility of the LUMO orbital in these branched anions implicates that they have a 

higher probability of reacting with free radicals compared with the linear counterpart. This finding is in 

agreement with the experimental observation that only the branched PFOS isomers were susceptible to 

reductive defluorination by reduced vitamin B12 as previously reported. The relative stability of the 

linear and branched PFOS in their different forms computed by comparing their calculated Gibbs free 

energy showed that 1-CF3–, 6-CF3–, and linear PFOS are the most favorable structures in terms of 

chemical stability. 

In summary, QSPR studies on degradation of surfactants are far from complete, and further studies 

should be initiated especially on fluorosilicone surfactants and silicone surfactants. Due to their higher 

degradation potential than those of PFOS and PFOA, they belong to a promising direction, where 

QSPR method can be actively applied for studying their degradation-related properties. 

7. QSPR Studies on Other Properties of Surfactants  

It is well known that surfactants are typically amphiphilic molecules that contain both hydrophilic 

and lipophilic groups. The hydrophile-lipophile balance (HLB) is one of the indicators representing the 

ratio of the hydrophilicity of a surfactant to its hydrophobicity. The value of HLB number is between 

0–60 defining the affinity of a surfactant for water or oil. Chen et al. have established two QSPR 

models for the HLB value of anionic surfactants by using the quantum chemical descriptors generated 

by semiempirical approach and density functional theory (DFT). One multiple linear regression model 

14 included 46 anionic surfactants belonging to four series of alkyl sulfates and alkyl sulfonates, with 

the optimal squared correlation coefficient (R2) being 1.000, and the other multiple linear regression 

model 15 involved 73 structures including polyoxyethylene, acetate, propionate and fluorinated 

anionic surfactants, with the optimal squared correlation coefficient being 0.993 [89]. 

HLBcal. = -59.789 + 27.223NO + 0.00898E -0.0424D - 38.474EHOMO 

(n = 46, R2 = 1.000, F = 130259.2, S2 = 0. 0027)      (14) 

HLBcal. = 552.760 + 205.512NO – 664.509NO
1/2 - 0.101D + 47.809EHOMO + 0.203D-y 

(n = 73, R2 = 0.993, F = 1780.713, S2 = 0. 015)      (15) 

It is noteworthy that using these quantum mechanical descriptors can differentiate the differences 

between the HLB values of different isomers of the surfactants and overcome the difficulty 

encountered by Davies equation (HLB = ∑(hydrophilic group numbers) + ∑(hydrophobic group 

numbers)). Davies in the 1950s developed a system based on the analysis of group numbers. The 

“group number” characterizes the contribution of each specific functional group to the energy that 

would be required if a solvent molecule were changed from water to an organic solvent [90].  
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Liu et al. have established a QSPR model between molecular electronegativity—distance vector 

(MEDV) and HLB Values of anionic surfactants. Their model was examined by both internal and 

external validation on its stability, and the details were shown in Equation 16 [91]: 

HLB = 52.775 + 18.185M11 – 2.423M12 – 9.151M13 – 0.333M22 – 22.746M24 – 246.157M33 

- 41.806M34 – 48.796 M44 

(n = 65, R = 0.970, F = 112.886, SD = 3.232, Rcv = 0.957, Fcv = 75.540, SDcv = 3.895)  (16) 

Ghasem et al. established some QSPR models to predict solubility of nonionic solutes in anionic 

micelle, and their QSPR models were tested for an external prediction set of 11 compounds randomly 

chosen from 62 compounds. The squared regression coefficients of prediction for the multiple linear 

regression and partial least squares regression methods were 0.9679 and 0.9728 respectively [92].  

Campbell et al. studied effects of surfactants on attachment of bacteria to cellulose acetate (CA) and 

aromatic polyamide (PA) reverse osmosis membrane [93]. They analyzed effects of 23 classes of 

surfactants, including nonionic, anionic and amphoteric types, on attachment of Mycobacterium Sp to 

CA and PA membrane. The results showed that 17 classes of surfactants inhibited attachment of the 

bacteria to PA membrane, 25 classes inhibited the attachment to CA membrane, and 13 classes 

inhibited the attachment to both CA and PA membrane. Results from examination of adsorption of 

anionic surfactants to CA membrane using ATR-FT/IR (attenuated total reflection fourier-transform 

infrared) indicated that structures of surfactants can be effectively manipulated to optimize adsorption 

to inhibit attachment of the bacteria to reverse osmosis membrane. Also using SciQSAR program 

(SciVision, Lexington, MA) to calculate structures of surfactant molecules, 17 molecular descriptors 

were obtained ranging from molecular weight to electronic and topological ones. The QSAR models 

obtained for attachment force of surfactants to CA and PA membrane is [93]: 

CA membrane: attachment force = 1.06 × 10-3 + 1.01 × 10-5 CMC + 4.52 × 10-5 Dipole + 

4.35 × 10-4ABSQon + 0.0187MaxQpos – 8.00 × 10-5Ka3  

(n = 23, R2 = 0.377)         (17) 

PA membrane: attachment force = 0.13 – 6.40 × 10-4CMC – 0.0407logP – 1.89 × 10-3 Dipole 

(n = 23, R2 = 0.771)         (18) 

where ABSQon, MaxQpos and Ka3 stand for the sum of absolute values of charges on nitrogen and 

oxygen atoms in a surfactant molecule, the largest charge on all atoms and the third-order Hall & Kier 

index, respectively. Sensitivity analysis of the variables above demonstrated that for CA membrane 

system, Ka3 and cmc were the most effective factors to determine surface active effects, while dipole 

moment and other descriptors had very limited effects. For PA membrane system, cmc was a strongest 

factor, and dipole moment and lgP had very limited effects.  

Structure of alkyl chain, especially the chain length, has a direct or indirect effect on properties of a 

surfactant. By using the methods of quasielastic light scattering spectroscopy, Biz and Occelli derived 

hydrodynamic radius of alkyl sulphate micelle (Rh) [94]. On the basis of this, Missel et al. performed a 

theoretical study on the formation of rod-shaped micelles from sphere-shaped micelles [95], deriving 

the kinetic constant (K) for controlling dodecyl sodium sulfate micelle growth. Their further study 

manifested that K could work as function of chain length (the number of carbon atoms nc = 8-12), Rh 

value increased linearly approximately and was more dependent on temperature with the chain length. 
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At high concentrations of NaCl, the growth of micelles depends strongly on temperature, and when 

concentration of a surfactant is higher than cmc, micelles would be transformed into a cylindrical 

shape from a spherical shape by bonding to each other [96].  

By changing surfactant concentration, washing temperature and washing time, Lindgren et al. 

studied correlation of detergency of some nonionic surfactants with these physicochemical properties 

and established a QSPR model to predict cleaning effect (Y) [97]: 

Yobs = b0 + b1C + b2t + b3T + b11C
2 + b22t

2 + b33T
2 + b12ct + b13cT + b23tT + e    (19) 

where c1, t, T stands for concentration of a surfactant, washing time and temperature, respectively. 

Coefficient b0 is constant; b1, b2 and b3 stand for contribution to cleaning effect from each respective 

variable; b11, b22 and b33 reveal whether in this effect, variable can give maximum/minimum values; 

b12, b13 and b23 stand for interaction of different variables. According to this model, detergency effect 

of surfactants is influenced mainly by (in order of importance): longest carbon chain in the 

hydrophobic part (redc); critical packing parameter where the branching of the hydrophobic part is 

taken into account (redcpp); hydrophilic-lipophilic balance (HLB); derivative of the cloud point curve 

(dCP); relationship between the longest carbon chain and the total amount of carbon in the 

hydrophobic part (redc/c) and amount of nonethoxylated fatty alcohol (f-alcohol). It was also shown 

that detergency effect of nonionic surfactants was related to cmc, molecular weight, unit of 

ethyleneoxy in the hydrophilic part and the number of carbon atoms in the hydrophobic part. Washing 

temperature was affected by the number of different carbon chains present in the hydrophobe (chains), 

cloud point, etc. These all indicated that detergency effect of surfactants was affected by  

molecular structures. 

Warszynski and Lunkenheimer analyzed experimental results on surface tension for dimethyloxy 

phosphine with 7-13 carbon atoms in alkyl chain and its homologues [98], indicating that there was a 

repulsive interaction in adsorption layer and demonstrating that this was the result of decrease in 

configurational free energy due to a closer coiling of the hydrophobic chain. The adsorption isotherm 

for surfactants on air/water interface (statistical level) presented by these authors explicitly considered 

configurational free energy and the results exhibited that under a constant surface pressure, 

conformational free energy increased linearly with the hydrocarbon chain length. 

Wang et al. investigated the interaction of CH3 (CH2)7OSO3
− with 1 to 6 water molecules at the 

air-water interface with quantum mechanics [99]. DFT (density functional theory) was employed to 

optimize the configuration of the anionic surfactant complexes CH3(CH2)7OSO3
− (H2O)n (n = 0-6) and 

calculate their molecular frequencies at the B3LYP/6-311+G* level. The results revealed that the 

hydration shell was formed in the form of H-bond between the hydrophilic group of CH3(CH2)7OSO3
− 

and 6 waters. The strength of H-bonds belongs to medium. Binding free energy revealed that the 

hydration shell was stable. The increase of the number of water molecules will cause increases of the 

total charge of hydrophilic group and S10-O9-C8 bond angle, but decreases of the alkyl chain length 

and the bond lengths of S10-O11, S10-O12 as well as S10-O13, respectively.  

Based on linear solvation energy relationships (LSERs), Vitha and Carr studied fundamental 

chemical interactions responsible for solute retention in micellar electrokinetic capillary 

chromatography (MEKC) [100]. The system under study was homologous series of sodium dodecyl 

sulfate (SDS), sodium decyl sulfate (SdecS) and sodium octyl sulfate (SOS). It was found in this study 
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that there was no evident change on interaction of solute with micelles when the number of carbon 

atom in the alkyl chain changed from 8-12. In fact, chromatographic parameters for the micelle phase 

of the three systems under study were identical. Analysis of linear solvation energy relationship and 

free energy change for each methylene transferring from water to micelles (ΔGθ
CH2) indicated that 

steadiness of solvation free energy as function of alkyl chain length made SDS, SdecS and SOS have 

similar solvation energy. An important conclusion was drawn from this that the solute existed in polar 

hydrophobic moiety of micelles, rather than in the nonpolar core part. In addition, an effect of solute 

functional group on its internal positioning and orientation was also discussed in this work. 

For predicting the interaction parameters 
t  of surfactants or organic substances in aqueous 

solution, by using MNDO-MOPAC7.0 software Wang et al. have obtained a quantitative 

structure-property relationship (QSPR) for 30 compounds belonging to six classes with their molecular 

forms as follows: CnH2n+1COOH, CnH2n+1OH, CnH2n+1NO2, CmH2m+1COCnH2n+1, n-CmH2m+2 and 

CnH2n+1 pyrrolidone [21]. By combining the principal component analysis (PCA) with the best 

multilinear regression analysis together in the heuristic method, multiple linear regression analysis 

among the more than 30 descriptors and 
t  was made. Principal component analysis (PCA) involves 

a mathematical procedure that transforms a number of possibly correlated variables into a smaller 

number of uncorrelated variables called principal components. The best correlation model contains 7 

descriptors shown in Equation 20 [21]: 

tcal  = 58.274 + 0.009987ΔHf – 0.01241Et + 0.0022905Ee + 5.401EHOMO + 3.101ELUMO + 

1.752KH0 + 576.2RNNO 

(n = 30, R2 = 0.925, F = 38.68, s2 = 0.000)      (20) 

where ΔHf is the heat of formation of molecule, Et is the total electronic energy, ELUMO and EHOMO are 

the energies of the lowest unoccupied molecular orbit and the highest occupied molecular orbit, KH0 is 

the Kier and Hall index of zero order of the hydrophobic fragment of compound and RNNO is the 

relative number of oxygen and nitrogen atoms of the hydrophilic segment. R2, F, s2, and n are the 

correlation coefficient, the F-test, the standard error, and the number of the regression  

model, respectively.  

It is known that when more than two surfactants with different molecular structures are mixed, their 

surface activities often can be increased intensively (synergism) [101]. The interaction between two 

surfactants is mainly due to electrostatic forces. The strength of attractive electrostatic interaction 

decreases in the order anionic–cationic > anionic–zwitterionic capable of accepting a proton > 

cation–zwitterionic capable of losing a proton > anionic–POE nonionic > cationic–POE nonionic. 

Mixtures of surfactants of the same charge type can show significant interaction at other interfaces 

interaction, although they show very weak effect at the aqueous solution–air interface [102]. Some 

studies addressed on this phenomenon have also been conducted. Tu et al. established two kinds of 

equations of the surface tension vs. the concentration for ideal binary mixtures of surfactants with 

Newton iterative method [103]. Their accuracy was verified by comparison among the values obtained 

respectively from the iterative, the numerical and observable approaches for surface tension of the 

ideal binary mixed homology systems C12H25PO(CH3)2/C10H21PO(CH3)2, C12H25 (CH3)3NBr/C16H33 

(CH3)3NBr in aqueous solutions (25 °C), C8F15O2NH4/C9F17O2NH4 in 0.1 mol·L-1 ammonium chloride 

solution (25 °C). Their research also suggested that the astringency velocity of the two kinds of 
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iterative methods was very fast and the relative error of expression was below 1%. Wang et al. have 

defined synergisms in surface tension reduction efficiency and mixed micelle formation of binary 

surfactant mixtures in aqueous solution by appointing the ideal mixture system of surfactants as the 

standard of comparison, and they have deduced the conditions and the corresponding optimum point 

values of these two kinds of synergisms based on the regular solution theory and the ideal solution 

theory [104]. 

8. Conclusions and Prospects  

In previous paragraphs, the progress in the QSPR studies on surfactants relating to cloud points, 

charge distribution, surface tension, degradation and other properties have been reviewed (Table 2). In 

earlier QSPR studies for surfactants cited in the present review, topological descriptors were mostly 

adopted to correlate activities/properties, however theses studies may lack insightfulness since there 

have been few investigations involving effects of electronic motion in molecules (or at intermolecular 

level) on their properties and functions that is highly critical to development and application of 

surfactants. Therefore quantum mechanical descriptors have been introduced to solve this problem. 

More recently, higher level of theory and larger basis sets have been used instead of semiempirical 

methods to get a higher accuracy for descriptors. For statistical methods, PLS, PCA and neural 

network are more and more improtant in this field for supplement of MLR. The model statistics 

developed by MLR are very often too optimistic, therefore the reliability of models should be checked 

by running for example leave-one-out, randomization or bootstrapping test. In addition, 

three-dimensional quantitative structure-property relationship (3D-QSPR) models can also be used to 

surfactants, especially in their biodegradation properties prediction. 

Table 2. The reviewed contents. 

1 Introduction 

2 Studies on Relationships between CMC And Molecular Structures 

2.1 QSPR Studies on CMC of Surfactants Based on Molecular Connectivity Index 

2.2 QSPR Studies of CMC of Surfactants Based on Quantum Mechanical Descriptors 

2.3 QSPR Studies of CMC of Surfactants Using Neural Network 

2.4 QSPR Studies of CMC of Surfactants Using Other Methods 

3 Charge Distribution of Surfactants and Its Influence on Their Properties 

3.1 Computation of Charge Distribution in Ionic Surfactant Molecules and Their 

Effects 

3.2 Descriptors Related to Molecular Surface Area — CPSA 

4 Surface Tension Prediction Models 

5 QSAR Studies on Cloud Point of Nonionic Surfactants 

6 Studies on Degradation of Surfactants 

7 QSPR Studies on Other Properties of Surfactants 

8 Conclusions and Prospects 

 

At present, it has been understood that biological surfactants have some properties which synthetic 

surfactants do not have, especially in the aspects of biological degradation, safety and physiological 
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activity. For surfactants or molecule with amphiphilic structure [105,106], effects of their structures on 

the functions mainly depend on various interfacial behavior and this is unavoidably related to 

intermolecular interactions between surfactant molecules and between surfactant molecules and 

between surfactant molecules and those of a solvent. Presently, for treatment of intermolecular 

interactions in surfactant solution, various approximate models based on classical electrostatic 

potential theory, such as multiple expansion approach (MPE), IC (image charge approximation) and 

apparent surface charge (ASC) approach, have been developed following continuum medium model 

[107]. In these models, using quantum mechanical ab initio and semiempirical methods, intermolecular 

interactions can be studied based on various cavity models and corresponding energies and charge 

distribution [108–110]. In addition, electrostatic interactions of charge fields force field calculations 

describing intermolecular interactions was used to correlate properties of small molecules and 

aggregates [111]. However, this method can only be applied to those small systems at this stage, and 

application of more advanced models to surfactants or molecules with amphiphilic to perform 

quantitative modeling still needs breakthrough in system interaction mechanism studies and  

theoretical calculations. 
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