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Pleiotropy across academic 
subjects at the end of compulsory 
education
Kaili Rimfeld1, Yulia Kovas1,2,3, Philip S. Dale4 & Robert Plomin1

Research has shown that genes play an important role in educational achievement. A key question 
is the extent to which the same genes affect different academic subjects before and after controlling 
for general intelligence. The present study investigated genetic and environmental influences on, and 
links between, the various subjects of the age-16 UK-wide standardized GCSE (General Certificate of 
Secondary Education) examination results for 12,632 twins. Using the twin method that compares 
identical and non-identical twins, we found that all GCSE subjects were substantially heritable, and 
that various academic subjects correlated substantially both phenotypically and genetically, even 
after controlling for intelligence. Further evidence for pleiotropy in academic achievement was found 
using a method based directly on DNA from unrelated individuals. We conclude that performance 
differences for all subjects are highly heritable at the end of compulsory education and that many of 
the same genes affect different subjects independent of intelligence.

Academic achievement at the end of compulsory education is of major societal interest and is critical for 
students because the exam results play a substantial role in making decisions about further education 
and employment. Furthermore, educational achievement has been shown to be an independent predictor 
of many life outcomes, including career success, health and even life expectancy1,2. It is reasonable to 
assume that schools have a major effect on educational achievement, because children have to be taught, 
e.g., how to read and how to solve mathematical problems; however, children differ in their educational 
achievement within the same school and even the same classroom, indicating that factors other than 
school differences must be involved in individual differences in achievement3,4. Twin studies have shown 
that educational achievement is highly heritable in early and middle school years; that is, individual dif-
ferences in academic achievement are to a large extent (around 60%) explained by inherited differences 
in their DNA sequence5–13. The heritability for academic achievement in core subjects is also substantial 
at the end of compulsory education in the UK14.

A key unresolved question raised by the results of previous studies is the genetic architecture under-
lying the heritability of academic subjects. Do the same or specific genetic factors influence the wide 
range of academic subjects taught at school? Previous research has used multivariate genetic analysis to 
study the shared aetiology between different academic subjects. Multivariate genetic analysis estimates 
the genetic contribution to the phenotypic correlation between traits and derives the genetic correlation, 
which corresponds to the correlation between genes that affect the two traits, independent of the her-
itabilities of the traits; the genetic correlation is an index of pleiotropy (the multiple effects of genes)3. 
Previous multivariate genetic studies, which have been limited to the core academic subjects of English, 
mathematics, and science at early stages of schooling15, have reported substantial genetic correlations 
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between core academic subjects13,15–18. Further evidence for pleiotropy between core subjects was pro-
vided in a recent study, which reported a substantial genetic correlation between English and mathemat-
ics at age 12, using both the twin design and an analysis based on children’s DNA19. To our knowledge, 
no multivariate study has been conducted investigating the genetic architecture at the end of compulsory 
education for the wider range of academic subjects taught at schools, which is the purpose of the present 
study.

What drives the heritability of achievement in such different academic subjects and pleiotropy between 
subjects? The strongest predictor of general educational achievement is general cognitive ability (intel-
ligence)20,21. Intelligence, just as academic achievement, is highly heritable, as demonstrated by quanti-
tative genetic studies, with heritability estimates consistently indicating that about half of the variance 
(.50) is explained by genetic factors22. Research suggests that genetic factors substantially mediate the 
links between intelligence and academic achievement in core subjects in early school years13,20,23. These 
findings have led to the Generalist Genes Hypothesis, which posits that the same genes largely affect a 
wide range of cognitive and learning abilities15,24. Further evidence for the Generalist Genes Hypothesis 
comes from studies using the DNA of unrelated individuals in Genome-Wide Complex Trait Analysis25 
(GCTA, a method also used in the present study), where the genetic correlations between reading, math-
ematics and first language achievement and general cognitive ability were highly similar to twin study 
estimates, with an average genetic correlation of .7026. For these reasons, intelligence is a likely candidate 
contributing to pleiotropy among academic subjects.

Research to date has focused on achievement in the core subjects of language, mathematics and 
science, subjects that seem to be more closely related to intelligence in the sense that they go beyond 
learning specific content, as compared to history and geography that involve more factual knowledge. 
This suggests the possibility that intelligence might differentially contribute to pleiotropy between par-
ticular core subjects. A more general related issue is whether pleiotropy extends beyond the core subjects, 
because studies to date have not considered whether there is genetic overlap between achievement in 
other academic subjects, such as history, geography, and art. No studies have investigated either of these 
issues – the extent to which pleiotropy exists beyond core subjects or the extent to which intelligence 
mediates these pleiotropic effects.

The current study
The present study uses a large twin sample to investigate the genetic architecture of achievement across 
a wide range of standardized examination results at the end of compulsory education in the UK, rang-
ing from core academic subjects such as mathematics, English and sciences, to art, humanities and 
second language learning. Importantly, this is the first study to assess the extent of shared genetic aeti-
ology between GCSE exam grades and also the extent to which this pleiotropy is mediated by intelli-
gence. Based on previous research at earlier ages, we expected to find substantial pleiotropy between 
the achievement grades for core academic subjects and hypothesized that this association extends to a 
wider range of academic subjects. We also hypothesized that intelligence is substantially responsible for 
this pleiotropy.

In addition to twin analyses, we used GCTA to test the same hypotheses using DNA alone for unre-
lated individuals. In our twin sample, one twin per pair was randomly selected to create a sample of unre-
lated individuals. GCTA was used to estimate genetic influence that can be explained by the combined 
additive effects of many common single nucleotide polymorphisms (SNPs) of academic subjects and 
the genetic correlation between them; we also assessed genetic overlap independent of intelligence. The 
combination of these two very different genetic designs (twins and GCTA) provides a powerful approach 
to investigate pleiotropy between a wide range of academic subjects at the end of compulsory education 
in the UK, with and without controlling for intelligence.

Results
Means and standard deviations are presented in Table 1 by sex and zygosity for five groups: MZ males, 
MZ females, DZ males, DZ females, DZ opposite-sex pairs. ANOVA results show that the sex, zygosity 
and their interaction explain around 1% of the variance in achievement measures on average. For subse-
quent analyses, sex and age effects were removed using the regression method and data were transformed 
using the rank-based van der Waerden transformation, as explained in the Methods section. We have 
previously reported the full sex-limitation modeling results, which found little evidence for sex differ-
ences in genetic or environmental effects14; therefore, to increase power in the present analyses, the full 
sample, including opposite-sex twin pairs, was used.

Twin analyses.  All GCSEs were highly heritable, demonstrating that genes explain a larger propor-
tion of the individual differences (54–65%) than shared environmental factors, such as home and school 
environment combined (14–21%), as illustrated in Fig. 1. Intelligence at 16 also demonstrates substantial 
heritability (56%), with negligible effect of shared environmental influences (5%). (Twin intraclass cor-
relations and full model fit statistics with confidence intervals are shown in Supplementary Table S1.)

Results of the multivariate genetic analyses indicated that all GCSE grades correlate substantially 
with intelligence phenotypically (.36–.56) and genetically (.44–.69). However, the correlations among 
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academic achievement measures was even higher phenotypically (.49–.77) and genetically (.51–88) than 
with intelligence, as shown in Table 2.

Next, we removed the effect of intelligence from the GCSE exam grades using the regression method. 
After removing the effect of intelligence from the exam grades, the heritability of the achievement meas-
ures did not change much, ranging from 45–58%. The additive genetic (A), shared environmental (C) 
and non-shared environmental (E) proportions of variance for GCSE exam scores, independent of intel-
ligence, are shown in Fig.  2. (Twin intraclass correlations and full model fit statistics with confidence 
intervals are listed in Supplementary Table S2.) Importantly, the heritability estimates for GCSE inde-
pendent of intelligence are highly similar to the estimates uncorrected for intelligence, and although 
not a formal test of significance, the overlapping confidence intervals of the estimates provide further 
evidence for highly similar aetiology for GCSE results with and without controlling for intelligence (see 
Supplementary Tables S1 and S2). GCSE mathematics is an exception in that its heritability estimate of 
.65 dropped to .45 when intelligence was regressed out, suggesting that intelligence may play a stronger 
role in the heritability of mathematics performance.

Multivariate genetic analyses also indicated that the association between GCSE scores did not 
change substantially phenotypically or genetically after removing the effect of intelligence. As shown 
in Table 3, phenotypic correlations were substantial between a wide range of GCSE results independent 

N
Whole 
sample Male Female MZm DZm MZf DZf DZos Sex Zyg

Sex* 
Zyg r2

Intelligence 4,481 0 (0.99) 0.05 
(1.01)

(− 0.03) 
(0.98)

0.002 
(.99)

0.06 
(1.03)

(− 0.06) 
(0.98)

(− 0.05) 
(.99)

0.003 
(0.99) 0.47 1.92 0.66 < 0.01

English 12,099 8.91 
(1.21)

8.69 
(1.25)

9.10 
(1.16)

8.65 
(1.26)

8.74 
(1.22)

9.06 
(1.15)

9.08 
(1.18)

8.93 
(1.23) 169.7** 4.53** 0.06 0.03

Mathematics 12,013 8.94 
(1.45)

9.00 
(1.44)

8.89 
(1.34)

8.98 
(1.42)

9.04 
(1.43)

8.87 
(1.44)

8.89 
(1.46)

8.94 
(1.45) 5.79* 1.16 0.14 < 0.01

Science 11,250 9.01 
(1.30)

9.01 
(1.29)

9.01 
(1.31)

9.01 
(1.28)

9.03 
(1.28)

9.00 
(1.29)

9.00 
(1.34)

9.01 
(1.30) 1.54 0.001 0.62 < 0.01

Humanities 10,183 9.00 
(1.46)

8.80 
(1.48)

9.18 
(1.41)

8.75 
(1.52)

8.86 
(1.45)

9.15 
(1.40)

9.18 
(1.44)

8.99 
(1.45) 103.57** 4.23* 0.17 0.02

Second 
language 6,896 8.82 

(1.42)
8.65 

(1.46)
8.96 

(1.36)
8.61 

(1.47)
8.69 

(1.47)
8.92 

(1.36)
8.94 

(1.36)
8.83 

(1.41) 43.45** 2.86 0.01 0.01

Art 5,460 9.08 
(1.27)

8.86 
(1.32)

9.20 
(1.22)

8.85 
(1.29)

8.90 
(1.29)

9.16 
(1.25)

9.24 
(1.22)

9.08 
(1.27) 49.71** 0.88 0.89 0.02

Business 
informatics 4,661 8.96 

(1.26)
8.83 

(1.29)
9.09 

(1.22)
8.88 

(1.33)
8.86 

(1.29)
9.13 

(1.18)
9.03 

(1.21)
8.96 

(1.26) 25.52** 0.02 1.03 0.01

Table 1.   GCSE grades and intelligence means and (standard deviations). The maximum GCSE grade is 
11 and the minimum grade is 4, representing grades A* to G. N =  sample size after exclusions (individuals); 
MZ= monozygotic; DZ= dizygotic; m =  male; f =  female; os =  opposite sex. ANOVA analyses were conducted 
after randomly selecting one twin per pair in order to test the main effect of sex and zygosity and the 
interaction between them. Results =  F statistics, r2 =  proportion of variance explained; *p <  0.05; **p <  0.01.

Figure 1.  Univariate model-fitting results. A =  additive genetic, C =  shared environmental, E =  non-shared 
environmental components of variance for GCSE exam grades and intelligence.
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of intelligence (.38–.69), as were genetic correlations (.49–81). The wide range of shared environmental 
correlations independent of intelligence (.01–.92) indicates that shared environmental influences vary 
between different subjects. The shared environmental correlations between core academic subjects of 
English, mathematics and science were substantial (.66–92), indicating that to a large extent the same 
shared environmental factors explain individual differences in these subjects, although the overall effect 
of shared environment was modest, accounting for about 20% of the variance. A possible exception is 
GCSE art, which seems influenced by different shared environmental factors compared to core academic 
subjects when the variance of intelligence is removed from exam grades.

An alternative, mathematically equivalent, way of investigating the extent to which intelligence 
mediates pleiotropy between GCSE subjects is to use multivariate Cholesky decomposition. Entering 

Intelligence English Mathematics Science Humanities
Second 

language Art
Business 

informatics

rPh

  Intelligence 1

  English 0.52 (0.50–0.54) 1

  Mathematics 0.56 (0.53–0.58) 0.69 (0.69–0.70) 1

  Science 0.48 (0.46–0.51) 0.66 (0.65–0.67) 0.71 (0.70–0.72) 1

  Humanities 0.48 (0.45–0.50) 0.77 (0.76–0.78) 0.69 (0.68–0.70) 0.67 (0.66–0.69) 1

  Second language 0.48 (0.45–0.51) 0.71 (0.70–0.73) 0.67 (0.65–0.68) 0.63 (0.62–0.65) 0.68 (0.66–0.69) 1

  Art 0.36 (0.33–0.39) 0.57 (0.55–0.59) 0.50 (0.48–0.52) 0.49 (0.46–0.51) 0.57 (0.55–0.59) 0.53 (0.50–0.55) 1

  Business informatics 0.44 (0.40–0.47) 0.62 (0.60–0.63) 0.63 (0.61–0.64) 0.58 (0.56–0.60) 0.62 (0.60–0.63) 0.57 (0.55–0.60) 0.49 (0.46–0.51) 1

rG

  Intelligence 1

  English 0.65 (0.57–0.75) 1

  Mathematics 0.69 (0.62–0.76) 0.73 (0.70–0.75) 1

  Science 0.61 (0.51–0.73) 0.73 (0.69–0.78) 0.78 (0.75–0.82) 1

  Humanities 0.58 (0.48–0.69) 0.88 (0.84–0.92) 0.74 (0.71–0.78) 0.75 (0.70–0.80) 1

  Second language 0.59 (0.49–0.71) 0.83 (0.78–0.88) 0.72 (0.71–0.76) 0.68 (0.62–0.74) 0.76 (0.70–0.83) 1

  Art 0.44 (0.31–0.60) 0.65 (0.58–0.73) 0.56 (0.49–0.64) 0.51 (0.49–0.61) 0.62 (0.54–0.71) 0.56 (0.48–0.67) 1

  Business informatics 0.56 (0.44–0.72) 0.72 (0.64–0.81) 0.70 (0.63–0.77) 0.70 (0.60–0.80) 0.69 (0.61–0.78) 0.64 (0.54–0.75) 0.59 (0.43–0.75) 1

rC

  Intelligence 1

  English 0.79 (0.41–0.82) 1

  Mathematics 0.88 (0.51–1.00) 0.98 (0.93–1.00) 1

  Science 0.85 (0.41–1.00) 0.84 (0.74–0.93) 0.91 (0.84–0.91) 1

  Humanities 0.94 (0.54–0.94) 0.91 (0.84–0.97) 0.95 (0.90–1.00) 0.90 (0.80–0.98) 1

  Second language 0.93 (0.46–1.00) 0.83 (0.71–0.93) 0.88 (0.77–0.88) 0.89 (0.77–0.89) 0.90 (0.78–0.97) 1

  Art 0.82 (0.25–1.00) 0.81 (0.63–0.88) 0.83 (0.62–1.00) 0.87 (0.65–1.00) 0.91 (0.73–1.00) 0.91 (0.70–1.00) 1

  Business informatics 0.94 (0.40–1.00) 0.79 (0.79–0.96) 0.86 (0.71–0.90) 0.71 (0.54–0.71) 0.89 (0.73–1.00) 0.79 (0.58–0.96) 0.66 (0.35–0.98) 1

rE

  Intelligence 1

  English 0.19 (0.12–0.25) 1

  Mathematics 0.21 (0.19–0.27) 0.26 (0.22–0.30) 1

  Science 0.16 (0.08–0.23) 0.27 (0.23–0.31) 0.32 (0.28–0.36) 1

  Humanities 0.17 (0.09–0.24) 0.35 (0.31–0.39) 0.29 (0.25–0.33) 0.28 (0.23–0.32) 1

  Second language 0.15 (0.06–0.18) 0.23 (0.18–0.28) 0.31 (0.25–0.36) 0.26 (0.20–0.31) 0.22 (0.16–0.27) 1

  Art 0.10 (0.01–0.20) 0.18 (0.12–0.24) 0.10 (0.10–0.16) 0.14 (0.14–0.20) 0.20 (0.13–0.27) 0.12 (0.04–0.20) 1

Business informatics 0.09 (–0.01–0.19) 0.21 (0.14–0.26) 0.27 (0.21–0.33) 0.23 (0.16–0.26) 0.23 (0.21–0.29) 0.24 (0.15–0.33) 0.17 (0.06–0.28) 1

Table 2.   Correlated factor solution for multivariate genetic analyses, showing phenotypic correlations 
(rPh), genetic correlations (rG), shared-environmental (rC) and non-shared environmental (rE) 
correlations between intelligence and GCSE exam grades, with 95% confidence intervals in parentheses.
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intelligence as the first variable in the model tests (i) the genetic overlap between intelligence and GCSE 
subjects, and (ii) the extent to which genetic overlap between GCSE subjects remains after controlling for 
intelligence. The results of Cholesky decomposition confirm the results of the correlated factor solution 
(Tables 2 and 3), as indicated by the standardized residual paths estimates presented in Supplementary 
Table S3. The paths for the first latent variable (A1 in Supplementary Table S3) with intelligence entered 
as the first variable indicate that intelligence is significantly related genetically with all of the GCSE sub-
jects, which reflects the substantial genetic correlations between intelligence and GCSE subjects seen in 
Table 2. However, the paths for the second latent variable (A2 in Supplementary Table S3), indicate that, 
independent of intelligence, significant genetic pleiotropy remains for all GCSE subjects. The subsequent 
latent variables show that significant genetic specificity also exists for all GCSE subjects beyond the plei-
otropy shared with intelligence and beyond the pleiotropy shared with other GCSE subjects independent 
of intelligence. The order of the variables entered into the Cholesky decomposition can affect the results; 
therefore, we conducted the analyses by changing the order of the academic achievement measures in 
the analyses, but the results remained the same.

GCTA.  Multivariate GCTA analysis is currently limited to the bivariate case, therefore, we focused on 
the exam results of compulsory core subjects of English, mathematics and science as the exam grades 
of the compulsory subjects also provided us with the largest sample size. GCTA was conducted using 
those participants who had GCSE grades for core subjects (English, mathematics and science) as well as 
genome-wide genotype data. Table  4 presents the results of bivariate GCTA analyses, investigating the 
genetic relationship between core subjects, before and after regressing out intelligence. GCTA heritability 
(heritability due to the additive combined effects of common SNPs) was .21 for GCSE mathematics, .15 
for GCSE English and .17 for GCSE science, although these estimates did not reach significance because 
of the limited power, as indicated by their large standard errors. These GCTA heritability estimates are 
lower than the heritability estimates calculated with the twin method because GCTA relies on additive 
genetic influence and variants tagged by the common SNPs genotyped on current DNA arrays. The 
genetic correlations between the grades for core academic subjects were near unity.

GCTAs were repeated with GCSE mathematics, GCSE English and GCSE science grades after remov-
ing the effect of intelligence. GCTA heritability independent of intelligence was .14 for GCSE mathe-
matics, .13 for GCSE English and .11 for GCSE science. The genetic correlation remained near unity, 
indicating that the same SNPs explain the genetic variance in all three core academic subjects, independ-
ent of intelligence.

Discussion
Our results demonstrate that educational achievement across a wide range of academic subjects from 
traditional core subjects of English, mathematics and science, to humanities, second language learning, 
business informatics and art at the end of compulsory education in the UK is highly heritable, with over 
half of the variance in children’s educational achievement explained by inherited differences in their 
DNA, rather than school, family and other environmental influences. These results are in line with our 
previous research at earlier school years and with results reported for core GCSE subjects13,14. The slight 
difference in heritability estimates in core GCSE subjects results from including opposite sex twin pairs 
in the sample, which were not included in our previous study, resulting in more conservative heritability 
estimates14. We have also demonstrated that this high heritability is not explained by intelligence alone, as 
the heritability remained high even after removing intelligence from the GCSE grades. This is consistent 

Figure 2.  Univariate model-fitting results with GCSE exam grades corrected for intelligence. A =  additive 
genetic, C =  shared environmental, E =  non-shared environmental components of variance.
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with our recent study that showed that high heritability of educational achievement is explained by many 
genetically influenced traits, not just intelligence20.

In the most novel contribution of the present study, we showed that academic subjects at the end 
of compulsory education in the UK are to a large extent influenced by the same genes, even when 
intelligence is controlled. The genetic correlation between various academic achievement measures was 
substantial (.51–.88) and this includes traditional academic subjects of English, mathematics and science 
as well as art and language learning. The genetic overlap between GCSE scores and intelligence at age 
16 was also substantial (.44–.69); however, genetic correlations were higher between GCSE scores than 
between GCSE scores and intelligence. Despite the genetic overlap between GCSE scores and intelligence, 
an intriguing finding is that pleiotropy among academic subjects is to a large extent independent of 
intelligence, as the genetic correlations were still substantial even after statistically removing intelligence 
from the GCSE scores (.49–.81). The results were also confirmed using Cholesky decomposition of the 
same multivariate genetic analyses in which intelligence was included as the first variable in the model.

We have previously shown that heritability of educational achievement at the end of compulsory 
education (mean of English, mathematics and science GCSEs) is influenced by a range of cognitive and 
non-cognitive factors, not just intelligence20. The present study showed that even after intelligence has 

English Mathematics Science Humanities Second language Art
Business 

informatics

rPh

  English 1

  Mathematics 0.57 (0.54–0.59) 1

  Science 0.58 (0.55–0.60) 0.65 (0.63–0.67) 1

  Humanities 0.69 (0.67–0.71) 0.58 (0.55–0.60) 0.60 (0.58–0.62) 1

  Second language 0.62 (0.60–0.65) 0.55 (0.52–0.58) 0.55 (0.52–0.55) 0.57 (0.54–0.60) 1

  Art 0.47 (0.43–0.50) 0.40 (0.36–0.43) 0.39 (0.35–0.43) 0.48 (0.44–0.52) 0.40 (0.36–0.47) 1

  Business informatics 0.52 (0.48–0.55) 0.54 (0.50–0.57) 0.52 (0.49–0.56) 0.51 (0.48–0.55) 0.47 (0.42–0.51) 0.38 (0.32–0.43) 1

rG

  English 1

  Mathematics 0.54 (0.54–0.64) 1

  Science 0.64 (0.54–0.74) 0.69 (0.59–0.78) 1

  Humanities 0.81 (0.73–0.90) 0.57 (0.44–0.69) 0.68 (0.56–0.80) 1

  Second language 0.72 (0.59–0.85) 0.49 (0.31–0.65) 0.56 (0.40–0.71) 0.66 (0.51–0.83) 1

  Art 0.69 (0.52–0.89) 0.66 (0.44–0.90) 0.51 (0.30–0.73) 0.56 (0.37–0.75) 0.60 (0.34–0.88) 1

  Business informatics 0.62 (0.42–0.86) 0.57 (0.35–0.77) 0.63 (0.41–0.87) 0.65 (0.44–0.90) 0.58 (0.29–0.88) 0.65 (0.32–0.98) 1

rC

  English 1

  Mathematics 0.92 (0.72–0.94) 1

  Science 0.66 (0.31–0.94) 0.81 (0.62–0.95) 1

  Humanities 0.85 (0.59–0.99) 0.83 (0.61–0.98) 0.79 (0.52–1.00) 1

  Second language 0.81 (0.48–1.00) 0.81 (0.62–0.95) 0.75 (0.41–1.00) 0.8 (0.48–1.00) 1

  Art 0.27 (− 0.39–0.72) 0.15 (− 0.44–0.61) 0.40 (− 0.20–0.86) 0.66 (0.15–0.93) 0.26 (− 0.38–0.79) 1

  Business informatics 0.63 (0.06–1.00) 0.82 (0.38–1.00) 0.57 (− 0.02–0.86) 0.65 (0.08–1.00) 0.6 (− 0.04–1.00) 0.01 (− 0.79–0.80) 1

rE

  English 1

  Mathematics 0.43 (0.37–0.48) 1

  Science 0.42 (0.36–0.48) 0.51 (0.45–0.56) 1

  Humanities 0.42 (0.35–0.48) 0.42 (0.35–0.48) 0.36 (0.29–0.43) 1

  Second language 0.37 (0.28–0.44) 0.45 (0.38–0.52) 0.39 (0.31–0.47) 0.28 (0.25–0.37) 1

  Art 0.20 (0.10–0.30) 0.17 (0.06–0.27) 0.21 (0.10–0.31) 0.26 (0.15–0.37) 0.20 (0.06–0.33) 1

  Business informatics 0.34 (0.23–0.43) 0.37 (0.27–0.47) 0.37 (0.26–0.46) 0.28 (0.17–0.39) 0.27 (0.14–0.40) 0.18 (0.01–0.35) 1

Table 3.   Correlated factor solution for multivariate genetic analyses, showing phenotypic correlations 
(rPh), genetic correlations (rG), shared-environmental (rC) and non-shared environmental (rE) correlations 
between GCSE exam grades after correcting for intelligence, with 95% confidence intervals in parentheses.
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been controlled for, the academic subjects still correlate substantially both phenotypically and genetically. 
It is possible that the genetic mechanisms responsible for these associations are also influenced by many 
genetically influenced traits, such as personality, motivation, and psychopathology.

Further evidence for the strong pleiotropy in academic achievement at age 16 was provided by the 
GCTA results. Genetic influence on the core subjects of English, mathematics and science was shown by 
the amount of variance explained by the genome-wide SNPs of unrelated individuals. This GCTA her-
itability estimate is lower than the heritability estimate calculated with the twin method because GCTA 
relies on additive genetic influence and variants tagged by the common SNPs genotyped on current DNA 
arrays. However, our index of pleiotropy, the genetic correlation, is not biased, for reasons explained else-
where26. Similar to the twin results, the GCTA genetic correlations between GCSE English, mathematics 
and science were near unity, and after regressing out intelligence, the genetic correlations remained 
close to unity. These results indicate that the same SNPs influence academic achievement grades in core 
subjects, independent of intelligence.

We could not mirror the full multivariate analyses we conducted using the twin design because GCTA 
analysis is so far limited to the bivariate case. As described in the method section, GCTA needs large 
samples to detect SNP heritability, and even larger sample sizes are necessary for bivariate GCTA anal-
yses. The results reported here have large standard errors, which is a limitation of the study. The results 
show, however, that even with limited power, we were able to detect significant GCTA genetic correla-
tions between English, mathematics and science.

This is the first large-scale twin study that used standardized examination grades for a wide range of 
academic subjects from mathematics to art. The GCSE exams are standardized and blind-graded, so are 
arguably a better measure of achievement than teacher ratings. Even though teacher ratings are based 
on more evidence than single exam grades, the estimates could be biased, especially during primary 
school education, as students are often taught by the same teacher in all classes during the early years 
of education.

The strong genetic influence seen here across a wide range of academic subjects and the high genetic 
correlations between all these subjects – especially after controlling for intelligence – is intriguing. It is 
possible that the strong genetic influence compared to the modest effects of shared family and school 
environments on academic achievement occurs because of the standardized curriculum in the UK. 
Environmental differences may be reduced in the UK because of its national standardized curriculum; 
heritability estimates could be high precisely because environmental differences are attenuated. In fact, it 
has been proposed that the heritability of educational achievement could be viewed as an index of equal 

Additive genetic effects

Genetic 
correlation

Residual (non-genetic) effects Environmental 
(non-genetic 

residual) 
correlation* Variance_tr1 Variance_tr2

N_tr1/ 
N_tr2

Genetic 
variance_tr1

Genetic 
variance_tr2

Genetic 
covariance

Residual 
variance_tr1

Residual 
variance)_tr2

Residual 
covariance

Maths- 
Science 0.21 (0.11) 0.19 (0.12) 0.19 (0.09) 0.96 (0.16) 0.71 (0.11) 0.80 (0.12) 0.49 (0.10) 0.65 (0.06) 0.92 (0.03) 0.99 (0.03) 2502/2381

Maths- 
English 0.19 (0.11) 0.15 (0.10) 0.17 (0.09) 1.00 (0.19) 0.74 (0.11) 0.75 (0.11) 0.46 (0.09) 0.62 (0.06) 0.93 (0.03) 0.90 (0.03) 2502/2529

Science- 
English 0.17 (0.11) 0.15 (0.10) 0.16 (0.09) 1.00 (0.28) 0.81 (0.12) 0.75 (0.11) 0.41 (0.09) 0.53 (0.07) 0.97 (0.03) 0.90 (0.03) 2381/2529

English- 
Maths g 
regressed

0.13 (0.11) 0.14 (0.11) 0.14 (0.09) 1.00 (0.33) 0.81 (0.11) 0.78 (0.11) 0.41 (0.09) 0.52 (0.07) 0.94 (0.03) 0.93 (0.03) 2491/2458

English- 
Science g 
regressed

0.14 (0.11) 0.11 (0.11) 0.12 (0.09) 1.00 (0.49) 0.80 (0.11) 0.86 (0.12) 0.35 (0.09) 0.42 (0.08) 0.93 (0.03) 0.97 (0.03) 2491/2345

Maths- 
Science g 
regressed

0.19 (0.11) 0.15 (0.12) 0.17 (0.09) 1.00 (0.26) 0.74 (0.11) 0.83 (0.12) 0.44 (0.09) 0.57 (0.07) 0.93 (0.03) 0.97 (0.03) 2458/2345

Table 4.   Age-, sex-, and population stratification-adjusted univariate and bivariate genome-wide 
complex trait analysis (GCTA) for GCSE mathematics, science and English; N- number of individuals in 
the analyses; tr1- trait one; tr2- trait 2. Standard error in parentheses. *The current version of GCTA does 
not report the ‘environmental’ (i.e., non-genetic residual) correlation or its standard error. The environmental 
correlation (residual correlation) was derived here from the GCTA estimates using the following algorithm: 
C(e)_tr12/(√V(e)_tr1 ×  √V(e)_tr2), and the standard error was calculated using: Var(re) =  re ×  re ×  
(VarVe1/(4 ×  Ve1 ×  Ve1) +  VarVe2/(4 ×  Ve2 ×  Ve2) +  VarCe/(Ce×  Ce) +  CovVe1Ve2/(2 ×  Ve1 ×  Ve2 −  
CovVe1Ce/(Ve1 ×  Ce) −  CovVe2Ce/(Ve2 ×  Ce)); SE(re) =  sqrt[Var(re)], where re is the environmental 
correlation, Ve1 is the residual variance for trait 1, Ce is the residual covariance between two traits, VarVe1 
is the sampling variance for Ve1 (residual variance for trait 1), VarCe is the sampling variance for Ce, 
CovVe1Ve2 is the sampling covariance between Ve1 and Ve2, and CovVe1Ce is the sampling covariance 
between Ve1 and Ce26.
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educational opportunities4. Empirical evidence provides some support for this hypothesis as the herit-
ability of educational attainment has been reported to be higher and shared environmental influences 
lower in a centralized educational system as compared to a decentralized educational system, such as 
the United States27.

We have demonstrated here that the high heritability of educational achievement extends from pri-
mary education to the end of compulsory education. This might be due to teachers preparing children for 
standardized UK-wide exams. Given the importance of GCSE grades for both schools and individuals, 
the preparation for exams is done in a relatively standardized way; therefore, the impact of environment 
on GCSE variance is reduced, which would increase the heritability estimate.

The high heritability could also be explained in terms of gene-environment correlation. 
Genotype-environment correlation is increasingly important during adolescent development, as children 
select, modify and evoke their experiences partly based on their genetic propensities. Gene-environment 
correlation does not only happen passively as children inherit both genes and home environment from 
their parents4. Notably, genes also affect the environment children choose; thus influencing both the 
aptitude and appetite for learning14.

The present study is the first multivariate research to demonstrate pleiotropy across a wide range of 
academic subjects at the end of compulsory education, using both the classic twin method and the new 
quantitative genetic method, GCTA. This evidence for the highly pleiotropic nature of achievement in 
academic subjects and intelligence goes against the belief of specific learning abilities, such as mathe-
matics ability versus ability in language. It is important to note, however, that not all genetic effects are 
pleiotropic: the results also indicate specific genetic influence as the twin study estimates of genetic cor-
relations are less than 1.0. Additionally, the shared environmental correlations show substantial overlap 
between academic subjects as well as some specificity, and the non-shared environmental influences 
between academic subjects are largely not overlapping. Discrepancies between exam grades at age 16 can 
be used to explore the distinct genetic and environmental factors involved in different areas of academic 
achievement. Identifying these subject-specific effects could lead to better understanding of possible 
candidates of early intervention for specific learning disabilities.

Limitations of our study begin with the standard assumptions of the twin design, which are described 
in detail elsewhere3,28. Another limitation involves assortative mating in which mate selection is based on 
trait similarity rather than at random. While assortative mating for personality measures is typically low 
(~.10), assortative mating on intelligence, especially on verbal ability, is substantial (~.40)3,29. Assortative 
mating could decrease the heritability estimates provided by the twin design as it would increase the DZ 
twin correlations relative to MZ twin correlations3,29. Because of these assumptions and limitations of 
the twin design, corroboration of the twin results using a completely different method based on DNA 
alone is important. Here we show that both the twin and GCTA methods yield extremely high estimates 
of genetic correlations among academic subjects, even when intelligence is controlled. Another possible 
limitation is the intelligence measure used in the twin analyses. Although verbal and non-verbal abilities 
capture major components of intelligence, there could be aspects of general cognitive ability that are not 
assessed by our index and could contribute to the genetic covariance between the range of exam grades 
at the end of compulsory education. It is notable, though, that the GCTA results yield similar results 
to those of twin analyses even though the twin analyses used different measures to index intelligence, 
including general knowledge and spatial ability tests. The similarity of results provides further evidence 
for genetic pleiotropy across GCSE subjects independent of intelligence.

Achievement at the end of compulsory education is of major societal and individual importance 
because results of the GCSE exams are used as a basis when making decisions regarding further edu-
cation and employment. We have demonstrated here that genetic factors explain a large proportion of 
individual differences in academic achievement at the end of compulsory education in the UK. Our 
results also indicate that, to a large extent, the same genes influence achievement across a wide range 
of academic subjects, even when controlling for intelligence. When genes are found to be associated 
with one learning ability the same genes would likely be associated with other learning abilities. The 
results of this study could lead to new multivariate molecular genetic research that aims to identify genes 
responsible for the pleiotropy across academic subjects. Understanding the specific genetic and unique 
environmental factors influencing individual differences in educational achievement, and the complex 
interplay between them, could help educationalists develop effective personalized learning programs, so 
that every child could reach their maximum potential by the end of compulsory education.

Methods
Participants.  The Twin Early Development Study (TEDS) sample was used. TEDS is a longitudinal 
study that has recruited over 16,000 twin pairs born in England and Wales between 1994–1996. Currently, 
more than 10,000 twin pairs remain actively involved in the study. The sample is a representative sample 
of the UK when compared to the UK National Statistics. Rich behavioural and cognitive data have been 
collected over many years from the participants, including measures of academic achievement. The twins 
have now completed compulsory education and are moving on to further education or the workforce13,30.

We included all twins with available GCSE achievement measures in the analyses. Participants with 
major medical or psychiatric conditions were removed from the analyses, as were those individuals with 
severe perinatal complications. Additionally, we excluded all twins who did not have English as their 
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first language. Zygosity was assessed by the parent-questionnaire of physical similarity. This measure has 
previously been shown to be highly reliable (95%)31. DNA testing was conducted where zygosity was 
unclear from this questionnaire. The present study employed all individuals with available GCSE grades 
comprising an overall sample of 6,316 twin pairs (12,632 individuals): 2,245 monozygotic (MZ) twin 
pairs, 2,069 dizygotic (DZ) same-sex twin pairs and 2,002 opposite-sex twin pairs.

DNA has been genotyped for subsample of TEDS twins (one twin per pair), see Genotyping. 
Genome-wide genotypes were available for 3,152 individuals, which were matched to those participants 
with available grades for GCSE mathematics, GCSE English and GCSE science. This led to a sample of 
2,572 unrelated individuals with GCSE mathematics grades, 2,601 individuals with GCSE English grades 
and 2,381 individuals with GCSE science grades; this sample was used to conduct the GCTA analyses. As 
intelligence scores were not available for all individuals, after correcting the GCSE grades for intelligence, 
the sample comprised 2,526, 2,561 and 2,345 individuals respectively.

Measures.  General Certificate of Secondary Education (GCSE) grades were used. GCSE is a stand-
ardized examination taken at the end of compulsory education in the UK. Children typically start GCSE 
courses at the age of 14 and the exams are taken at the age of 16. Students can choose from a variety of 
different courses such as mathematics, science, history, music, physical education, and modern foreign lan-
guages. English, mathematics and science are compulsory subjects. Some schools also require students to 
take one GCSE in a second language. Importantly, the subjects that students choose and their performance 
in the GCSE exams have profound impact on their further education and employment. The exams are 
graded from A* to G, with a U grade given for failed exams. Grades were coded from 11(A*) to 4(G) to 
have equivalent numerical comparisons. No information about the failed courses was available. Most pupils 
receive 5 or more grades between A* and C, which is the requirement for further education in the UK. 
GCSE grades were collected from parents or the twins themselves via questionnaires sent by mail or over 
the telephone. For 7,367 twins the grades were verified using the National Pupil Database (NPD; https://
www.gov.uk/government/uploads/system/uploads/attachment_data/file/251184/SFR40_2013_FINALv2.
pdf), yielding a correlation of 0.99 for mathematics, 0.98 for English and > 0.95 for all the sciences.

We created composite measures for English (mean of English language and English literature grades), 
science (mean of single or double-weighted science, or, when taken separately chemistry, physics and 
biology grade), second language achievement (mean of any second language grade available), human-
ities (mean of history, religious studies, geography and media studies), business informatics (mean of 
statistics, business studies and ICT - information and communication technology), and art (mean of art, 
drama and music grades). Additionally, we used the GCSE grade for mathematics.

Intelligence was assessed at age 16 using verbal and non-verbal abilities administered online. Verbal 
ability was measured by Mill Hill Vocabulary test, a multiple-choice test32. Twins were presented with 
the target word on a computer screen and they had to choose a word that was closest in meaning to the 
target words. Non-verbal ability was measured by Ravens Progressive Matrices33, collected from the twins 
via internet at the age of 16. Twins were presented with incomplete patterns (‘matrices’) and were asked 
to identify the missing part to complete the pattern. Intelligence (general cognitive ability) was indexed 
by taking the mean of verbal and non-verbal abilities.

Because not all the TEDS birth cohorts participated in the intelligence assessment at 16, and not all of 
those had been genotyped, the sample with all relevant measures would not have been sufficient for the 
GCTA analysis of grades corrected for intelligence. For that reason, we chose to construct a composite 
measure of ‘g‘ using all earlier measures from the longitudinal study. A composite was used to assess 
intelligence in order to control for intelligence in GCSE mathematics, GCSE English and GCSE science: 
a robust measure of ‘g’ derived from intelligence data collected longitudinally across nine ages from early 
childhood to age 16. At age 2, mean ‘g’ measure was calculated as a mean of a parent-administered design 
drawing task34, a matching task (match to design)35, a brick building task, a folding task and a copy 
task36–40; at age 3, mean ‘g’ was calculated as a mean of a parent-administered oddity task (odd-one-out)35, 
a design drawing task34 , a matching task35, and a parent-reported conceptual knowledge task36,37,39; at 
age 4, ‘g’ was calculated as a mean of parent- administered oddity task (an odd one out task)35, a design 
drawing task, a draw a man task34, and a puzzle task33,38 ; at age 7, ‘g’ was calculated as a mean of con-
ceptual grouping34 , a WISC similarities test41, a WISC vocabulary test41, and a WISC picture completion 
test41 all collected over telephone testing; age 9, ‘g’ was calculated as a mean of a shapes test42, a WISC 
vocabulary test43, a WISC general knowledge task43, and a puzzle test42 all collected by the booklets sent 
to the twins by post; age 10, ‘g’ measure was calculated as a mean of the Ravens standard Progressive 
Matrices33, a WISC vocabulary43, WISC picture completion41, and a WISC general knowledge test43 all 
collected via internet testing; at age 12, ‘g’ was calculated as a mean of the Ravens Progressive Matrices33, 
a WISC picture completion41, a WISC vocabulary43, and a WISC general knowledge test43 all collected 
via internet testing; at age 14, ‘g’ was computed as a mean of the Raven’s Progressive Matrices33 and a 
WISC vocabulary43; and age 16, ‘g’ was measured as described above. The mean score of intelligence was 
calculated across the nine ages.

Prior to any genetic analyses all measures were corrected for small age and sex differences (see 
Table 1), using the regression method, which is a standard practice in twin analyses. Standardized resid-
uals of the variables were used in all further analyses. This method avoids overestimation of shared 
environmental influences, as twins are identical for age, and MZ twins are also identical for sex44. All 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/251184/SFR40_2013_FINALv2.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/251184/SFR40_2013_FINALv2.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/251184/SFR40_2013_FINALv2.pdf


www.nature.com/scientificreports/

1 0Scientific Reports | 5:11713 | DOI: 10.1038/srep11713

outliers beyond three standard deviations from the mean were also removed from the analyses. The 
GCSE grades also showed negative skew, indicating a ceiling effect. Similar ceiling effect is observed in 
the UK population as demonstrated in the data from the National Statistics (NPD; https://www.gov.uk/
government/uploads/system/uploads/attachment_data/file/251184/SFR40_2013_FINALv2.pdf). To cor-
rect for the ceiling effect, all measures were transformed to the standard normal distribution using the 
rank-based van der Waerden transformation45,46.

Analyses.  The measures were described in terms of means and variance, comparing boys and girls 
and identical and non-identical twins; mean differences for age and sex and their interaction were tested 
using univariate analysis of variance (ANOVA).

Twin Design.  The twin method was used to conduct univariate and multivariate genetic analyses. 
The twin method can be used to estimate the relative contribution of additive genetic (A), shared envi-
ronmental (C) and non-shared environmental (E) effects on the variance and covariance of academic 
achievement measures and intelligence, by comparing monozygotic (MZ) correlations to dizygotic (DZ) 
correlations. MZ twins share 100% of their segregating genes, while DZ twins share around 50% of the 
segregating genes, just like any other siblings. Both MZ and DZ twin pairs are assumed to share 100% of 
their shared environmental influences, when growing up in the same family. Non-shared environmental 
influences are assumed to be unique to individuals, that is, uncorrelated between twins and not con-
tributing to similarities between them. Heritability can be roughly calculated by doubling the difference 
between MZ and DZ correlations; shared environmental influences can be calculated by deducting the 
heritability estimate from the MZ correlations; and non-shared environmental influences can be calcu-
lated by deducting the MZ correlation from unity (following the Falconer’s formula)28. These parameters 
can be estimated more accurately, including calculating the confidence intervals, using structural equa-
tion modeling with maximum likelihood estimation, which also provides estimates for the model fit. 
Structural equation modeling program OpenMx was used for all model fitting analyses47.

Multivariate genetic analysis is the extension of univariate genetic analysis. While univariate twin 
analysis investigates the variance of one trait, multivariate genetic analysis investigates the genetic and 
environmental nature of covariance between multiple traits. Multivariate genetic analyses is a method 
that compares the MZ and DZ cross-twin cross-trait correlations to decompose the covariance between 
two or more traits of interest into additive genetic (A), shared environmental (C) and non-shared envi-
ronmental (C) components3,28. As shown in Supplementary Fig. S1 for the correlated factor solution, 
the genetic correlation (rG) assesses the extent to which the same genes influence two traits; the shared 
environmental correlation (rC) indicates the extent to which the same shared environmental influences 
that make twins more similar on trait one, also make the twins more similar on trait two; and non-shared 
environmental correlations (rE), indicating the extent to which the same non-shared factors influence 
two traits. Importantly, genetic correlation is different from bivariate heritability estimate, as it does not 
take into account the heritability of two traits, which means that trait one and trait two can have low 
heritabilities, but the genetic correlation could be high, implying that if a gene were found for one trait, 
there would be a good chance that this gene would also be associated with trait two3. Alternative rep-
resentation of the same analyses is the Cholesky decomposition (see Supplementary Fig. S1). The central 
question of Cholesky decomposition is the extent to which the heritability of trait one can be accounted 
for by the heritability of the other trait, thus answering the question ‘to what extent does the heritability 
of one variable explain the heritability of the other variables’. In the multivariate model, when studying 
how much variance in trait three is accounted for by trait two, the model controls for the variance of 
trait one. The Cholesky decomposition is conceptually similar to hierarchical regression, therefore, the 
order of the variables entered influences the results. Each variable in the model controls for the variance 
in the previous variable, as illustrated in Supplementary Fig. S1.

Genome-Wide Complex Trait Analysis (GCTA).  GCTA is a technique that estimates genetic and 
residual components of variance directly from the DNA of unrelated individuals, unlike twin analysis 
that relies on family resemblance data3. In order to create a sample of unrelated individuals, we ran-
domly selected one twin per pair for GCTA analyses. Studies to date have shown that the heritability 
of complex behaviours, such as academic achievement, is highly polygenic, influenced by a large num-
ber of genes, each having only a small effect25. This explains the relatively slow progress in identifying 
the specific genes involved in educational achievement, as well as most other traits in the life sciences. 
GCTA can estimate heritability directly from DNA while not identifying the specific genes involved. The 
GCTA method uses hundreds of thousands of SNPs (single nucleotide polymorphisms) from thousands 
of individuals to calculate the proportion of phenotypic variance due to the additive effects of com-
mon SNPs3. First, the genetic relatedness matrix (GRM) is calculated by weighing the pairwise genetic 
similarities with the allele frequencies across all SNPs on the array. All participants who are found to 
be even remotely related (genetic relatedness 0.025 or greater) are removed from the analyses, as this 
would otherwise bias the results48. The matrix of pair-by-pair genetic similarity of all the participants is 
compared to the matrix of their phenotypic similarity using residual maximum likelihood estimation, 
without testing the association of any single SNP individually25,49,50. The advantage of this method is that 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/251184/SFR40_2013_FINALv2.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/251184/SFR40_2013_FINALv2.pdf
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heritability estimates can be calculated using a sample of unrelated individuals; the disadvantage is that 
very large pools of participants are needed to detect overall genetic similarity from the matrix of hun-
dreds of thousands of SNPs. Notably, the heritability estimate calculated using the GCTA method only 
assesses additive genetic effects, not gene-gene or gene-environment interactions and only common SNPs 
are analysed50. Univariate GCTA analyses can be extended to bivariate analyses by comparing the phe-
notypic covariance matrix to the GRM51,52. Prior to the GCTA analyses we adjusted the GCSE English, 
GCSE mathematics and GCSE science grades for age and sex, using the regression method. Additionally, 
to control for population stratification, the principal component analysis was conducted for 100,000 
quality-controlled SNPs, and eight axes were identified with p <  0.05 using the Tracy Wisdom test; these 
eight principal components were added as covariates in the bivariate GCTA analyses53.

Power was calculated using an online tool for calculating power for GCTA heritability and genetic 
correlation in both univariate and bivariate GCTA analyses (http://spark.rstudio.com/ctgg/gctaPower/)54.

Genotyping.  The analysis is based on the genotypic data generated for 3,665 TEDS unrelated individ-
uals by Wellcome Trust Sanger Institute, Hinxton, UK as part of the Wellcome Trust Case Consortium. 
Briefly, DNA was collected from 3,665 individuals using buccal swabs, which was thereafter genotyped 
using AffyrmetrixGeneChip 6.0 genotyping array. This yielded to genome-wide genotype calls for all 
individuals for around 600,000 SNPs (See Trzaskowski et al., 2013 for full details)55. The data were there-
after imputed to 1000 genomes reference data using Impute 2 software and the standard quality control 
was applied. This left over 5.2 million SNPs available for molecular and GCTA analyses.

All analyses were carried out in accordance with the approved guidelines.
Ethical approval was received from King’s College London Ethics Committee: PNM/09/10-104 Twin 

Early Development Study; and informed consent was obtained from all subjects.
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