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Pan-cancer characterisation of microRNA across
cancer hallmarks reveals microRNA-mediated
downregulation of tumour suppressors
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microRNAs are key regulators of the human transcriptome across a number of diverse
biological processes, such as development, aging and cancer, where particular miRNAs have
been identified as tumour suppressive and oncogenic. In this work, we elucidate, in a com-
prehensive manner, across 15 epithelial cancer types comprising 7316 clinical samples from
the Cancer Genome Atlas, the association of miRNA expression and target regulation with
the phenotypic hallmarks of cancer. Utilising penalised regression techniques to integrate
transcriptomic, methylation and mutation data, we find evidence for a complex map of
interactions underlying the relationship of miRNA regulation and the hallmarks of cancer.
This highlighted high redundancy for the oncomiR-1 cluster of oncogenic miRNAs, in parti-
cular hsa-miR-17-5p. In addition, we reveal extensive miRNA regulation of tumour suppressor
genes such as PTEN, FAT4 and CDK12, uncovering an alternative mechanism of repression in
the absence of mutation, methylation or copy number changes.
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he hallmarks of cancer outline the major phenotypic

changes underlying the oncogenic process!»2. These chan-

ges characterise cancer as a disease, and may define
actionable targets for therapeutic intervention. Since the defini-
tion of these characteristic hallmarks in 2001}, and the sub-
sequent genomic revolution that has occurred in the field of
cancer biology, multiple groups have proposed gene expression
signatures as biomarkers of these phenotypic hallmarks®*. These
signatures generally consist of a set of tens to several hundred
coding genes, for which a summary metric of their collective
expression is associated with a known hallmark, and may help
with defining therapeutic strategies®. Encapsulated within this
methodology and these signatures is a vast amount of biological
discovery for particular genes implicated in the development and
progression of these hallmarks. However, since the more recent
publication of the updated hallmarks in 20112, there has been a
second revolution in the field of genomics; namely, the discovery
of the diverse, critical roles of non-coding RNAs in cancer.

Previously thought to be junk DNA, non-coding RNAs do not
code for proteins, and consists of a diverse family of evolutio-
narily conserved species, including long non-coding RNAs
(IncRNAs), circular RNAs (circRNAs) and microRNAs (miR-
NAs), among others®”. Much effort has focused on the char-
acterisation of non-coding RNAs, and early work has shown that
these species, particularly miRNAs, are involved in a number of
cellular developmental, and disease processes®. miRNAs exert
their function primarily as repressors of protein production,
functioning as post-transcriptional regulators of mRNA, inhibit-
ing translation or encouraging transcript degradation. miRNAs
exert their effects by complementary base-pair binding to a short
7-8 nucleotide seed region typically located on the 3’ untrans-
lated region of the messenger RNA which they inhibit®°. Whilst
this complementary base-pair interaction defines many miRNA-
target interactions, there is a class of non-canonical miRNA
targeting that has been shown to occur throughout the tran-
scriptome!?. Such non-canonical interactions include many cases
of imperfect seed matches, often with one mismatch, but remain
difficult to predict!?. A single miRNA is thought to able to exert
its repressive effects on hundreds to thousands of transcripts,
meaning that specific miRNAs may have very wide-ranging
effects on cellular phenotype®1!. Despite this potential, due to the
highly variable effect on the single target transcripts and the many
factors involved in post-transcriptional gene regulation in addi-
tion to miRNA, the repressive signal on their target genes remains
challenging to detect in clinical datasets. However, this is being
abridged by the availability of large genomic datasets, and has
been shown through the Cancer Genome Atlas project (TCGA)
1213 Targe-scale studies for miRNA-mRNA interactions have
begun to leverage the power of clinical datasets with thousands of
patients, to detect small, context-specific effects!>14. For instance,
Jacobsen et al. studied the miRNA-target interactions recurring
across cancer types in the TCGA datasets!'>. This showed strong
evidence for multiple miRNA concurrently regulating the DNA
demethylation machinery of the cancer cell, through effectors
such as TET1 and TDG, suggesting their important role in pro-
moting cancer!”.

In addition to the difficulties of target prediction and small
repressive effect sizes, a further complicating factor in the study of
miRNAs is the relative promiscuity of their targets'®. A given
miRNA may have thousands of targets, with an increasing
number experimentally verified, but often these targets possess
significant differences in function!’. This has led to an almost
paradoxical finding about the effects of miRNAs, in that a single
miRNA may theoretically exert effects in opposing directions
within the cell'”. This paradox is resolved by the observation that
miRNAs likely play different roles depending on the environment

in which they are expressed!®!819, Therefore, in addition to the
challenge of measuring the repressive effect of miRNAs within a
transcriptome, the effect of a miRNA on a transcriptome may
vary massively, depending on the relative abundance of each of its
targets. This means that the effect of a miRNA on phenotype can
only be observed in samples for which the transcriptomes are
comparable in the expression of the key targets in consideration,
and such effects are highly context-dependent. Recent work has
aimed at generating an understanding of how competing miRNA
targets regulate each other, and work, in particular by Chiu
et al.?0 and by Xu et al.?!, has shown how these effects can be
uncovered in a high-throughput manner.

Here, we show how the miRNA context-dependent action can
be exploited to gain high confidence predictions in large clinical
cohorts, uncovering known and unknown associations between
miRNA and phenotype. Through the classification of tumour
transcriptomes by gene expression signatures, we are able to
generate hypotheses on the diverse roles of miRNAs in regulating
the hallmarks of cancer. Our results point towards a scenario
wherein the trancriptome of the cancer cell, known to be driven
by dysregulation of tumour suppressor genes and oncogenes, is
heavily regulated by miRNAs, extending the work by Jacobsen
et al. and related studies!3-1>. We show that predicted miRNA-
target associations that retain significance across multiple cancer
types involve a number of critical tumour suppressor genes and
oncogenes. Study of these tumour suppressor genes yields novel
conclusions about their regulation, particularly with respect to
their repression by miRNA, methylation and mutation, and the
exclusivity of the occurrence of these modes of regulation across
human cancers.

Results

Evaluation of Hallmark gene signatures across cancers. We
considered 24 previously well characterised gene signatures
(Fig. 1 and Supplementary Note 2), and evaluated their perfor-
mance on 15 well-annotated datasets with genomic and tran-
scriptomic data, for a total of 7316 clinical samples!>14, We
applied sigQC version 0.1.20, an R package to evaluate the basic
statistical properties of gene signatures underlying their applic-
ability across datasets?2. We ran this package on all combinations
of 15 datasets and 24 signatures, and tested the consistency of
signature performance across cancer types, providing support to
the application of the signatures to these specific datasets (Sup-
plementary Note 2). In summary, each of the signatures con-
sidered, over the 15 epithelial cancer datasets, showed moderate
to high expression, moderate to strong compactness, and mod-
erate to high variability. This reassured us that the signal carried
by these signatures was sufficiently strong and coherent to be
unambiguously detected in these datasets, and sufficiently vari-
able to differentiate between the clinical samples, such that we
could proceed with further analysis

Hallmark signatures associate with a complex miRNA network.
To determine the association between these gene signatures and
the expression of all detectable miRNAs, we consider the sum-
mary score for each signature as the dependent variable of a linear
model consisting of all miRNAs showing at least moderate uni-
variate predictive ability for the summary score (Fig. 1a). Multi-
variable linear modelling with L1/L2 penalised regression was
used to identify the miRNAs which showed the greatest predictive
ability for each hallmark signature summary score across the
cancer types considered, thereby identifying those miRNAs
common to the gene signature across tumour types (see Methods
and Fig. 1b). miRNAs were then ranked based on their final
model coefficient (reflective of the strength of association to the
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Fig. 1 Overview of approach used to identify hallmarks-associated miRNA. a Overview of the linear model used in the fitting, for each gene signature and
cancer type under consideration. b Example of a heatmap depicting the values of the coefficients identified for the miRNA predictors (rows), across cancer
types (columns) for our previously developed angiogenesis signature®®. ¢ Consistently positive and negatively ranking miRNA coefficients, identified as
statistically significant by the rank product statistic, are taken as the positive and negative hallmark-associated miRNA for each hallmark signature.

d Network map of signatures (coloured circles) and their positively associated miRNA (grey circles), connected by edges when an association was found,

highlighting strong interconnectivity between distinct molecular signatures

signature), and miRNAs consistently ranking highly as positive
predictors of a given hallmark signature across cancer types were
aggregated, from which statistically significant miRNAs were
isolated as signature-associated miRNAs using the rank product
statistic, as depicted in Fig. 1c. Likewise, for each gene signature,
the miRNAs most consistently ranked as strong negative pre-
dictors of signature score across cancer types were aggregated by
the same rank-based methodology, as depicted in Supplementary
Figure 11 (negatively-associated miRNA). This analysis reveals
both many known and unknown significant associations between
miRNA and gene signature scores, facilitating an understanding
of the miRNA involved with hallmark phenotypes, providing
both novel hypotheses, and adding to evidence for existing ones.

To verify the validity of our predictions, we considered the
example case of miRNAs found to associate significantly with the
hypoxia signatures considered. Hypoxia is one of the most
studied microenvironmental perturbations in the context of
miRNA regulation, and one with a very well-defined pathway,
controlled largely by a single transcription factor, HIF-1a%3.
Taking the intersection of the sets of miRNAs found to associate
positively with the two previously validated hypoxia gene
signatures (Hypoxia, Buffa et al.2* and Hypoxia, MSigDb??), we
obtained high confidence predictions for hypoxia-associated
miRNAs.

As shown in the Tables associated with Supplementary Note 3,
this analysis reveals that many of the miRNAs found to be
commonly associated with both hypoxia gene signatures have
been previously identified as hypoxia regulated. High confidence
predictions are made for: hsa-miR-210-3p2°, hsa-miR-21-3p, hsa-
miR-21-5p, hsa-miR-23a-5p, hsa-miR-23a-3p, hsa-miR-24-3p,
hsa-miR24-2-5p, hsa-miR-27a-5p,%’, let-7e-5p, let-7e-3p28, let-
22-5p, let-22-3p?°. This analysis also suggests significant, pan-
cancer, potential roles for other members of the let-7 family of
miRNAs in hypoxia; namely, let-7b-5p, let-7b-3p, let-7d-5p, let-
7d-3p, as well as hsa-miR-223-3p, hsa-miR-18a-5p and hsa-miR-
28-3p, which have potentially escaped the notice of other
approaches.

In the context of all gene signatures considered, we identify a
global underlying map connecting each miRNA to each predicted
associated gene signature. As shown in Fig. 1d, this is a highly
interconnected and complex network, with the conservation of a
core set of miRNAs shared across the hallmarks of cancer. A
similar analysis reveals an analogous result for the miRNA-
hallmarks network for the miRNAs negatively associated with the
signatures, as described in Supplementary Note 4. To validate the
reproducibility of these results, we rebuilt the signature-miRNA
linear model using a large independent dataset, the Metabric
breast cancer cohort’’. The miRNA identified as positively and
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negatively associated with the hallmarks gene signatures in this
dataset showed highly significant concordance, over the majority
of signatures, with the results obtained in analysis of the TCGA
BRCA dataset (Supplementary Figure 12, Supplementary
Note 5a). Moreover, although we validate on a breast cancer
dataset, we have also been careful to show that our results are not
overfit to breast cancers. Repeating our analysis in identifying
miRNA without breast cancers included yields a very strong
overlap, at least 75% in each signature, and above 80-90% in most
cases, as we report in Supplementary Note 5b, and Supplementary
Figure 13.

miRNA family members show opposing oncogenic behaviours.
Subsets of miRNAs that share common, evolutionarily-conserved
sequences or functional motifs in their sequences are typically
organised into miRNA families®!-*2. Our analysis revealed that in
a number of cases, miRNAs from the same families were sig-
nificantly over-expressed and others significantly under-
expressed in association with each of the gene signatures of the
hallmarks of cancer, and this was consistent across cancer types
(Supplementary Note 6, Supplementary Figure 16). For example,
the miR-17/17-5p/20ab/20b-5p/93/106ab/427/518a-3p/519 and
let-7/98/4458/4500 families have multiple members across

a Signature-associated Predicted mRNA

Correlation of expression across b

signatures both in statistically significant positive and negative
associations.

This highlights once more the context-dependent nature of
miRNA regulation, and the potentially antagonistic behaviours of
miRNAs from the same family, supporting findings from ours
and collaborators’ work3>34, This suggests the need for additional
context-dependent functional miRNA classifications uncovering
key functional associations while complementing the current
sequence and motif-based classifications.

Hallmarks-associated miRNA targets are enriched for TSG.
Starting from the positively associated miRNAs with each hall-
mark gene signature, we aimed to identify which predicted
miRNA-target pairs showed strong evidence of negative regula-
tion across cancer types. This would confirm that the miRNA is
functional, and would reveal which targets is acting upon in the
specific context. We considered for this a comprehensive list of
predicted targets provided by the union of five miRNA target
prediction algorithms, as implemented by the package miRNAtap
version 1.14.0%> (see Methods section). Thus, we considered
miRNA and predicted target mRNA pairs for which there was a
statistically significant negative Spearman correlation of expres-
sion across at least five cancer types, hence evidence supporting
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Fig. 2 Approach used for interpreting miRNA-target interactions. a First, miRNA-target pairs for each positively associated hallmark-associated miRNA
were identified, and the correlation between these was determined. b Next, the correlations across cancer types were aggregated, and those identified as
consistently negative-ranking were identified with the rank product statistic. ¢ Among this list of miRNA-mRNA target pairs, there was highly significant
enrichment for tumour suppressor genes, as identified by the Fisher exact test. d The same procedure as described in a and b was repeated for all miRNA
and all predicted target TSG pairs, with each TSG considered individually. e From the lists identified in b and d, we identified those miRNA-TSG pairs in
common, and plot their interactions on a circos plot, showing the repressive actions of each miRNA on its predicted target TSG
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active miRNA regulation. Then we used a rank-product test to
identify the miRNA-target pairs showing consistency across
cancer types (Fig. 2a). As depicted by the process in Fig. 2b, c,
analysis of these significant miRNA-target pairs revealed a strong
enrichment for tumour suppressor genes (as defined by the
COSMIC database list of 141 TSG), as might be expected for
miRNAs associated with oncogenic processes (p = 0.0006, two-
sided Fisher’s exact test). To further test the significance of
increased number of TSG repressed by the signature-associated
miRNAs, a bootstrap resampling-based approach (see Methods
section), was devised. From all expressed miRNAs across cancer
types that could have been chosen as signature-associated miR-
NAs, random lists of the same length as the number of signature-
associated miRNAs were chosen, and, via an analogous approach
as above, the number of repressed TSG for these miRNAs was
determined. Repeating this resampling 1000x, the probability that
21 or more TSG were repressed by the chosen miRNA was p =
0.017 (empirically determined), again suggesting strong sig-
nificance in the enrichment for TSG among the repressed targets
of the hallmarks signature-associated miRNA. This suggests that
miRNA-mediated repression of tumour suppressor genes may be
relatively common, significant, and associated with the pheno-
typic hallmarks of cancer.

A different picture emerged upon repeating this analysis for
oncogenes, and for the miRNAs found to be significantly
negatively associated with one or more hallmark signatures. We
identified 1283 significantly anti-correlated miRNA-target pairs
for these downregulated hallmark-associated miRNAs. Likewise,
analysing all predicted miRNA-oncogene interactions among the
231 COSMIC oncogenes, there were only 2 showing significant
anticorrelation across tumour types with their predicted target
miRNA (ESR1 and ABL2). Taking the intersection of these lists of
2 COSMIC oncogenes and the 1283 miRNA-oncogene pairs
associated with gene signatures identified only ESR1 (interacting
with miR-18a-5p and miR-130b-3p) in common (p = 1.2 x 107>,
Fisher’s exact test). This suggests that ESR1, oestrogen receptor
alpha, may play a significant role across the hallmarks of cancer,
and de-repression by reduction of its miRNA-mediated repres-
sion may play a role in cancer phenotype, and ultimately,
oncogenesis>®7. Importantly, this result is also a strong negative
control for our analysis, and it concurs in supporting the
common oncogenic role of miRNAs via co-ordinated repression
of tumour suppressor genes.

A core set of TSG associate with hallmark signatures. Next, we
asked whether our results could be biased by the initial selection
of miRNAs, namely the ones associated with the cancer hall-
marks. To answer this, we conducted a complementary analysis.
We sought to determine which of the miRNA-mediated tumour
suppressor genes showed significance in downregulation, in the
context of all other tumour suppressor genes. Thus, we repeated
the previous analysis extended to all predicted miRNA-TSG pairs,
individually for each TSG, considering again the significant
associations across at least five cancer types, and then collated
with a rank product test (Fig. 2d). This second part of our analysis
provided the miRNAs associated to each TSG individually that
showed strong significance across cancer types, to mitigate the
bias accumulated by comparing regulation of multiple TSG in the
same analysis (flow diagram shown in Supplementary Figure 1).
Considering the miRNA-TSG pairs found to be of significance in
both analyses from Fig. 2¢, d, we identified a set of 22 miRNA-
TSG pairs, comprising 8 TSG (FAT4, TGFBR2, ARHGEF12,
DNMT3A, CDK12, ACVR2A, SFRP4 and PTEN) and 17 miR-
NAs in Fig. 2e, in common. We show also that the miRNAs
associated to each of these TSG are expressed at significantly

higher levels in wildtype cases for the associated TSG, across
multiple cancer types (Supplementary Figure 17, Supplementary
Note 7). Taken together these results demonstrate that for these
tumour suppressor genes, (i) miRNA-TSG interactions are sig-
nificantly enriched for across cancer types, (ii) miRNA-TSG
interactions are strongly associated with the phenotypic hall-
marks of cancer, and (iii) miRNA-TSG interactions may
show increased importance in cases with wild-type TSG.
Importantly, the conserved miRNA-TSG regulation across cancer
types reveals this as a potential global mechanism, alternative to
genetic mutations, to achieve functional inhibition of TSGs in
cancer.

Hallmarks-associated miRNAs show context-dependent action.
To further understand if the above presented miRNA-target
associations were cancer-specific, we sought to determine whether
similar conclusions could be reached when analysing non-tumour
tissues. Starting from the associated adjacent normal tissue
datasets from TCGA for tissue types with at least 20 samples for
both miRNA and mRNA expression (BRCA, UCEC, HNSC,
KIRC, LUAD and BLCA), we fitted a linear model for gene sig-
nature score as a function of all miRNA, for each signature, in
each of the six tissue types. Aggregating coefficients across tissue
types, we found that, while a highly significant number of miR-
NAs associated with the gene signature scores across tissue types
are the same as uncovered for the cancer tissues, there are sig-
nificant differences. Across signatures, an overlap of on average
54% was observed for signature-associated miRNAs, showing
high statistical significance for miRNAs positively and negatively
associated with signatures (p < 10719 in all cases, by Fisher’s exact
test). We note that fewer normal samples were considered in this
analysis as compared to the previous analysis in cancer samples,
due to more limited availability of matched-normal tissues. Thus,
we first ensured the validity of all gene signatures considered on
normal datasets using sigQC; this showed that normal datasets
are comparable in quality for the application of these gene sig-
natures to tumour datasets (Supplementary Figures 2-10). Fur-
ther, in Supplementary Note 5c, we describe the effects of using a
reduced set of tumour samples the same size as the normal
samples we considered; this showed a similar degree of overlap in
signature-associated miRNAs, depicted in Supplementary
Figure 14.

Examining the targets of these positively signature-associated
miRNA from normal tissues, we identified 233 recurrently
negatively correlated miRNA-target pairs, of which two contain
miRNA-TSG pairs (CEBPA and NCOA4). However, this overlap
of the 142 unique genes among the 233 miRNA-target pairs with
the 141 COSMIC tumour suppressor genes does not show
significance, and may be due to chance alone (p = 0.26 by Fisher’s
exact test). Thus, while the biology captured by the phenotypes of
the gene signatures may be consistent, more than chance alone
would predict, between tumour and normal samples, the resultant
miRNA-target interactions are significantly different, and
miRNA-TSG enrichment is not retained among normal tissue
samples, highlighting the strong context dependency of these
associations. Moreover, when considering a reduced set of
tumour samples, to account for the smaller number of normal
tissue samples, we are still able to capture these differences in
miRNA phenotypes, as reported in Supplementary Note 5c.

Finally, we investigated whether the context-dependence of
miRNA associations could also be detected in different breast
cancer subtypes. Comparing the miRNA identified as hallmarks-
associated between the basal and luminal B subtypes of breast
cancer in the TCGA dataset, chosen for their relatively large
sample sizes, we show that there are indeed significant differences
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Fig. 3 Approach used in determining the regulation of each TSG identified as potentially significantly miRNA-regulated. a The linear model used whilst
determining predictors of TSG mRNA expression. b Model coefficients were aggregated across cancer types with the rank product statistic, and those
identified as statistically significant positive and negative predictors are depicted alongside the -log of their rank product p-value

among key miRNA associated to the hallmarks signatures for
these two breast cancer subtypes. These results are described in
Supplementary Note 5d, and depicted graphically in Supplemen-
tary Figure 15.

Copy number and mutational status determine TSG expres-
sion. We next broadened our analysis and sought to characterise
more generally the determinants of the expression of TSG not
limited to miRNA. In particular, we consider an approach inte-
grating multiple lines of genomic information; in addition to the
miRNA expression, we considered methylation status, copy
number and mutational status of the TSG (see Methods section
and Fig. 3a). Notably, when considering the impact of miRNA
expression in this model, we considered all reported miRNAs to
potentially discover novel miRNA-target interactions instead of
limiting the model to predicted miRNA-targets pairs. We then fit
this model with penalised linear regression over the various
cancer types (see Methods section), and then subsequently
aggregated coefficients by the rank product statistic to identify
recurrently positive and negative predictors across cancer types,
for each of the 8 tumour suppressor genes identified in Fig. 2e.
This analysis yields both expected results, such as the important
predictive role of copy number for each of the tumour suppressor
genes, as seen in the left panel of Fig. 3b, and novel associations,
such as the positive association of many miRNAs, and some
methylation probes with TSG expression in some cases.
Positively-associated miRNAs arose in this analysis as a result of
the inclusion of all miRNAs expressed in each cancer type, as
opposed to those only predicted to target the TSG, so that novel
associations could be uncovered. The positively associated

miRNA may appear to be co-expressed for a variety of reasons,
such as competitive endogenous mRNA (ceRNA) interactions,
downregulation of repressors of the TSG, or presence on a nearby
genomic locus subject to the same enhancer or promoter. We do
note, however, that our approach in using penalised linear
regression works to minimise the effects of miRNAs present on a
nearby genomic locus, as copy number has been included as a
covariate in the linear model. That is, penalised linear regression
functions by adding two penalty terms in the linear model—an L1
penalty reduces the overall number of predictors, and an L2
penalty helps to distribute coefficients’ values for correlated
covariates, such as copy number and miRNA expression on the
same locus.

Likewise, the identified modes of negative regulation give
expected results, with non-sense mutations and frame shift
deletions consistently negatively associated with TSG mRNA
expression. Further, because this analysis was done with all
miRNAs, and not just those predicted to have a given TSG target,
these results may reveal novel miRNA-TSG interactions not
covered by current prediction algorithms, and represented by the
negatively correlated miRNA with each TSG. The complete rank
product tables and all autocorrelation matrices can be found in
the Supplementary Files. In addition, the listing of all probe sets
used and mutation types considered in this analysis for each TSG
is listed in Supplementary Note 8, Supplementary Tables 1 and 2.

TSG expression regulated either by miRNA or methylation.
Once the modes of regulation and their relative importance was
established (Fig. 3), we sought to determine the relative occur-
rence of each of these modes of regulation. We identified which
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Fig. 4 The approach used to determine the exclusivity of each mode of gene regulation on expression for the TSG considered. a Depiction of the
autocorrelation heatmap for the expression of the various negative regulators of the tumour suppressor gene, and the variables considered and their
meaning, as depicted. b Plots depicting the spread of the percentiles on the empiric cumulative density function (CDF) for the distributions for the pairwise
differences of the variables identified in a through a bootstrapping-based analysis, as described in the Methods section. Centre line of boxplots depicts
median, bounded by interquartile range (IQR), and whiskers extending to 1.5 times the IQR

negative regulators co-occurred with each other, and conversely
which were exclusive repressors (Fig. 4a). A cursory analysis of
autocorrelation heatmaps (e.g., Figure 4a) revealed that in some
cases, the regulation by miRNA appeared to be exclusive from the
regulation by methylation probes; methods are described in detail
in Supplementary Note 8 and Supplementary Figure 18. A full
series of heatmaps for all cancer types considered and all tumour
suppressor genes with their associated negative regulators iden-
tified is presented in Supplementary Note 9, Supplementary
Figures 19-26, and for an independent dataset in Supplementary
Figure 27, details described in Methods. These results suggest that
TSG expression can be altered by either miRNA or methylation,
in addition to deletion or mutation, in a BRCA-ness-like phe-
nomenon38, To characterise this, we devised a bootstrap resam-
pling based approach (see Methods section), to determine
significance of the difference in co-correlation between the
miRNA and the methylation probes themselves, and then with
each other. For each cancer type, we calculated the significance
value of this proportion (Fig. 4b), and from this analysis, it arose
that for each of the TSG considered, there are tumour types in
which the regulation is consistently exclusive. Further, across
multiple cancer types, three key tumour suppressor genes, PTEN,
FAT4 and CDK12, consistently tended towards exclusivity in
their regulation, lending support for the importance of miRNA-

based regulation of these genes. We further used these negatively
associated miRNA and methylation probes, along with mutation
status, to define subgroups of samples, for which we show
decreased TSG expression in the subgroups with high expression
of these miRNA or high methylation of these probes, in Sup-
plementary Figures 28-37 in Supplementary Note 10. We also
show that the miRNA-high and highly methylated samples have
transcriptomes altered in a similar manner as in TSG mutated
cases, via an analysis of differentially expressed genes in both
cases, with significantly positively associated fold changes across
cases, in Supplementary Figures 38-46 in Supplementary Note 10.

ARHGEF12, SFRP4, TGFBR2 and cognate miRNA define
BRCA subtype. Next, we sought to identify associations with
tumour molecular subtypes, and as an initial analysis chose the
molecular subtypes of breast cancer, owing to both the well-
defined subtypes and the relatively large number of cases available
for each subtype. An analysis of the eight identified tumour
suppressor genes consistently negatively downregulated by
miRNA across cancer types shows that in many cases, their
mRNA levels are associated with breast cancer molecular subtype.
In particular, the basal subtype shows the lowest median
expression of ARHGEF12, SFRP4 and TGFBR2, as compared to
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normal tissue, luminal A, B, Her2 amplified, or normal subtypes
of breast cancer as shown in Supplementary Figure 47 in Sup-
plementary Note 11, and this association is retained when cases
are restricted to wildtype expression of ARHGEF12, SFRP4, and
TGFBR2. At the level of the associated miRNAs identified as
negative regulators of these TSG, we show that the median
expression of these miRNA is also significantly associated with
breast cancer molecular subtype, and this association is reversed
when related to TSG mRNA expression, as expected. We have
also shown that these associations are preserved when samples
with non-silent mutations in the TSG are removed. For further
validation, we also show reproducibility of these TSG and miRNA
associations to breast cancer subtype in the independent Metabric
dataset (N =1293)%.

Discussion

In this work we have carried out a comprehensive and rigorous
association analysis of human transcriptomic and genomic data
to leverage an understanding of the role of miRNA in regulating
complex phenotypes, through the lens of established gene
expression signatures of cancer hallmarks. Gene signatures
represent transcriptomic association and we utilised them in two
key ways, adding significant power to the analysis. Firstly, we use
gene signatures to understand the relationship between non-
coding RNA and a given cancer phenotype; this exploits the
phenotypic associations intrinsic to established gene signatures.
Secondly, because miRNA can only repress mRNA that are
present in sufficient quantity in a cell, when inferring function, it
is vital to group transcriptomic profiles by miRNA targeted gene
expression. This allows for an understanding of the context-
dependent miRNA-mediated gene regulation important to the
phenotype one wishes to uncover. Thus, this analysis represents a
novel and powerful assessment of the intricacy of miRNA reg-
ulation of phenotypes, which is particularly important in the
context of a complex disease, such as cancer.

Our work begins with ensuring applicability of the gene sig-
natures, and then for each signature, we gain an understanding of
the miRNA both significantly upregulated and downregulated in
association with the signature summary score. From this, we
obtain the network shown in Fig. 1, which describes in a detailed
fashion across cancer types, the contribution of individual
miRNA to cancer phenotypes. We also show reproducibility of
this network in an independent dataset, by considering the
overlap with the network reconstructed using the Metabric
dataset and the same gene signatures. Moreover, repeating this
analysis by grouping the miRNAs significantly upregulated and
downregulated by miRNA family, illustrates that many miRNA
families participate with members acting antagonistically across
the hallmarks of cancer; including 4 of the top 5 most common
miRNA families in our analysis (miR-25 family, miR-17 family,
miR-15abc family and let-7 family). By virtue of the high simi-
larity between their seed regions, often resulting from common
evolutionary ancestry, miRNA families are thought to consist of
miRNAs with similar biological function, and to a certain extent
redundantly targeting the same mRNAs31:3. Our results chal-
lenge the prevailing hypothesis of miRNA families acting in a
generally coordinated fashion across multiple phenotypic states,
and highlights the frequent context dependent behaviour of
individual miRNA themselves, regardless of grouping by
family31:32. Further strengthening the argument for context-
dependent actions of miRNA is the observation that we have
made for the gene signature network reconstructed from six tis-
sue types with samples of adjacent normal, non-tumour tissue.
While a significant proportion (54%) of miRNA found to be
associated with the gene signatures are the same as for the tumour

tissues, which can be expected due to the common tissue origin,
the analysis of the targets of these miRNA reveals that they do not
show enrichment for TSG in the normal tissue, again highlighting
the context dependency in miRNA-mediated gene regulation. We
note that this analysis of context dependence could have been
repeated using different subgroups of cancers, or tumour sub-
types, instead of tumour samples versus normal samples. How-
ever, in our work, we sought to retain as much statistical power as
possible, and confidence in our analysis, by comparing large
groups of tumours in multiple datasets with meaningful distinc-
tion to reduce the impacts of noise and of model overfitting, but
future studies with larger cohorts may hone in on these
differences.

Related to the discussion of statistical power, is the discussion
of the validity of the miRNA-target interactions inferred from
various target prediction algorithms. In this study, miRNA-target
gene interactions are predicted using the miRNAtap database in
R, version 1.14.0, as described in the Methods section. While we
have not repeated our analysis further to include greater strin-
gency in the target selection (e.g., requiring a miRNA-target
interaction predicted by more than two independent sources to be
considered), the analysis methodology itself was designed to
obtain high-confidence targets. Initially, we retained many pos-
sible miRNA/mRNA targets, with a balance of potential false-
positives, requiring a minimum of two sources predicting the
interaction. In this way, we sought to include a reasonable
number of interactions, while not restricting to those which are
predicted by the commonalities of each algorithm. With this
more comprehensive list, we tested directly which of these
miRNA/target pairs themselves show repressive potential using
correlations in the data, and then further refine this list using the
rank product statistic. Thus, for the analysis we present, we move
from a reasonably wide and comprehensive list of potential tar-
gets initially, and refine these using the power afforded by the
large datasets used.

As might be expected, given the complexity of the action of
non-coding RNA, we show in this work that for a given pheno-
type, single miRNA-target interactions do not account for
observed behaviour; rather it appears to be that these changes
come from an expressed network of miRNAs, interacting with a
set of targets in a coordinated manner, tuning the transcriptome
to achieve the complex phenotypes of cancer. That is, because the
targets of a given miRNA are predicted to be variable in their
function, and are not all present in every sample at repressible
concentrations (often necessitating the use of an expression level
filter in our analysis), the same miRNA can be associated with
opposing phenotypic effects in different contexts, as reported by
Denzler et al*0 for competing endogenous mRNA (ceRNA).
ceRNA have also been identified in a high-throughput fashion by
Chiu et al.?% and Xu et al.?! and an approach to their identifi-
cation, describing the necessary experimental and statistical pre-
requisites has been reported by Smillie et al.4!, with recent work
identifying such networks involving PTEN, for instance*?. We
show that the behaviour of miRNAs is highly context dependent,
and through our pan-cancer analysis, we have aimed to reduce
the complexity of this context dependency by only selecting those
interactions significantly occurring across cancer types. However,
we caution that because miRNAs are so context dependent,
sample purity arises as an important issue in identifying pan-
cancer miRNA signals. Further study into deconvolution meth-
odologies enabling more accurate quantification of miRNA
abundance from purely tumour samples will likely elucidate a
clearer  picture of miRNA-target interactions.  Such
deconvolution-based methods would need to ensure that both the
expression of miRNA and mRNA are corrected for purity before
testing for any such correlations, using methods such
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DeconRNASeq*? or Cibersort4. Alternatives to these methods
may involve removing samples with low estimates of tumour
purity, or removing the miRNA with strong correlations to
tumour purity from analysis.

As miRNA are increasingly thought of as potential therapeutic
agents, if miRNA are to have effective therapeutic function, a
single miRNA may be an ineffective strategy. Rather, a cocktail of
miRNA may be needed to modify the tune of the symphony
playing within the cancer cell. This has been shown in vitro, with
comparisons of multiple miRNA versus a single miRNA targeted
highlighting that when multiple miRNA with co-ordinated
function are modified, greater phenotypic change is seen, as
reported in multiple publications*>®, Potentially, for miRNA
therapeutics to achieve function, we pose that these may have to
be based on a number of miRNA, given to a highly selected group
of patients with transcriptomes deemed to be responsive to this
network perturbation. Further, by using more than a single
miRNA as a therapeutic agent, the off-target effects that have
significantly limited development in this field may be mitigated,
by buffering for this with other miRNA in off-target tissues*’+48.
In fact, a recent Phase I trial of delivering miR-34a to patients
with solid tumours identified acceptable safety overall, but many
patients in this trial suffered from off-target immune-related
toxicities, such as fever, lymphopenia, and neutropenia, necessi-
tating pre-treatment with dexamethasone*®. However, we note
that this field is in its infancy, and will absolutely require sig-
nificant further study before even considering clinical translat-
ability, and we offer these ideas as potential avenues to be
explored.

In this work we further the knowledge of which miRNA are
involved in creating the phenotypes of cancer, across tissue types,
to identify miRNA-TSG targets showing exclusive miRNA-
mediated suppression. This suggests that a phenomenon similar
to that of the previously described BRCA-ness, wherein a miRNA,
miR-182, has been shown to repress BRCA and confer sensitivity
to PARP inhibitors in a subset of tumours8, may be at work
within many cases, and across multiple tumour suppressor genes.
Additionally, recent work has shown how epimutations may
result in aberrantly methylated sites that can recapitulate the
phenotype of a mutated tumour suppressor such as DNMT3A in
leukaemia®®. This raises the suggestion that there are tumour
suppressor genes for which a mutation is not requisite for inac-
tivation, but rather, inactivation is achieved through miRNA-
mediated repression or methylation-mediated repression alone.
For the TSG we have identified, we have also shown (see Methods
section), that the TSG mutations are occurring independently of
MYC amplification status, which has been recently identified as
an independent regulator of miRNAs. In addition, we show that
such MYC amplification status is indeed associated with miRNA
expression for the miRNAs found to be negatively associated with
each of the TSG in a majority of cases (Supplementary Figure 48,
Supplementary Note 12). Further, we have shown that in parti-
cular tumours, for PTEN, CDK12 and FAT4, this miRNA or
methylation-based suppression happens independently of other
gene regulatory factors, such as mutations and copy number
changes.

We show how using generally validated, and specifically
quality-controlled, gene signatures describing biologically con-
served phenotypes can be used to collate large datasets to derive
inference about miRNAs, a species whose activation signal has
been traditionally hard to detect in smaller cohorts. The ability of
this approach to capture tumour biology is highlighted through
the identification of tumour suppressor genes showing miRNA-
mediated regulation across tumour types, which we have shown
have a very strong association to breast cancer molecular subtype.
Specifically, this analysis points towards the role of decreased

mRNA levels of ARHGEF12, SFRP4 and TGFBR?2 in association
with the poor-prognosis basal breast cancer subtype®!>2, Having
identified potential negative regulators of these TSG, we show
how these miRNAs alone associate with breast cancer subtype,
elevated in the basal subtype, capturing a potentially novel bio-
logical association.

Finally, the presented methodology may be used in future work
encompassing both more specific signatures, as well as larger,
more expansive datasets to derive even greater confidence in
particular associations. This approach will enable the functional
annotation of a greater variety of miRNAs, illuminating their
critical role in post-transcriptional gene regulation.

Methods

Gene signatures considered. We consider a wide variety of gene signatures,
touching upon many of the hallmarks of cancer, explained in the original and
updated work by Hanahan and Weinberg!-2. Signatures were selected through a
review of MSigDB hallmarks signatures, as well as through a review of the litera-
ture, and those used are summarised in Table 12°. We note that while many of
these signatures were derived for a particular tumour type, we have applied them
across many different tumour types, but before doing so, we have performed an
evaluation step (sigQC) to ensure that each signature used has suitable properties
for application to the datasets under consideration (including normal tissues), in
Supplementary Note 1, Supplementary Figures 2-10.

Datasets considered. In selecting datasets for this analysis, we initially aimed to
select those comprising a comprehensive set of cancer types, with each type
represented by a sufficient number of clinical samples, so as to reduce the effects of
noise. Thus, we initially began with a consideration of all cancer types represented
within the Cancer Genome Atlas datasets (TCGA), and limited based on origin of
neoplasm and number of patients for whom miRNA-sequencing was carried out>>.
The RSEM normalised gene expression, mature miRNA normalised expression
data, copy number, mutation, and methylation data were accessed from the Fire-
browse database at http://www.firebrowse.org. In particular, we considered all
cancer types which were epithelial or glandular with respect to histology, and with
at least 200 samples with miRNA-sequencing data. These two filters limit the
cancers considered to a total of 15 epithelial or glandular neoplasms, comprising a
wide variety of cancer types, enabling the strong detection of fundamental biology.
Furthermore, among these tumour types, there are 7738 clinical samples, for which
7316 have miRNA-sequencing data. The tumour types, along with their sample
counts are presented in Table 2. Details of the number of samples included for each
data type are presented in Table 3, and we note that for any analysis presented, any
dataset present with fewer than nine samples was excluded from analysis. This
restriction excluded the analysis of COAD, OV and UCEC datasets from the
analysis of tumour suppressor genes, oncogenes, and exclusivity of regulation.

miRNA family database. miRNA ranked across different cancer types were fur-
ther grouped together by microRNA family, as defined by the targetscan database,
implemented in R as the targetscan.Hs.eg.db package, version 0.6.1%4,

Transcriptomic data. Data were taken from the GDAC Firebrowse TCGA portal
provided by the Broad Institute. miRNA datasets used were log2 normalised
mature miRNA counts for all cancer types. mRNA datasets used were normalised
RSEM genes taken from data through the Illumina HiSeq RNAseq v2 platform.
These expression data were then transformed by the transformation log,(x + 1), for
x as the original expression value, and this was used in all further computation for
all cancer types and signatures. Where not otherwise specified, signature scores are
taken as the median of log2-transformed expression of all signature genes for each
sample. Metabric datasets for normalised miRNA and mRNA expression were
taken from the European Genome-Phenome Archive (EGA) under study accession
numbers EGAD00010000434 and EGAD00010000438. In all analyses, only
miRNA and mRNA expressed at a non-zero level in at least 80% of samples were
considered.

Penalised linear regression. The aim of the penalised linear regression metho-
dology was to determine those miRNA which most strongly predict (positively or
negatively), the gene expression summary score for each signature. With con-
sideration of this, the linear regression was designed such that the model utilised
the expression levels of each individual miRNA as a covariate, in order to predict
the signature score, taken as the median of the log-transformed expression levels of
the signature genes. We note that in order to facilitate direct comparability between
distinct signatures and cancer types, we first normalised both the scores and
miRNA expression levels to a mean of zero and unit variance. This transformation
ensures that the coefficients and their relative values are comparable between
cancer types and signatures.
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Table 1 Gene signatures considered and associated hallmarks of cancer

Signature name Reference Number of genes Associated hallmarks

Epithelial mesenchymal transition, MSigDB  MSigDB2> 200 Activating invasion and metastasis

Invasiveness Marsan et al., 201470 16 Activating invasion and metastasis

Oxidative phosphorylation, MSigDB MSigDB2> 200 Deregulating cellular energetics

Reactive oxygen species pathway, MSigDB  MSigDB2> 49 Deregulating cellular energetics

G2M checkpoint, MSigDB MSigDB2> 200 Enabling replicative immortality

PI3K-AKT-MTor signalling, MSigDB MSigDB25 105 Evading growth suppressors

Xenobiotic metabolism, MSigDB MSigDB25 200 Evading growth suppressors

DNA repair, MSigDB MSigDB25 150 Genome instability and mutation, enabling replicative
immortality

p53 Pathway, MSigDB MSigDB25 200 Genome instability and mutation, enabling replicative
immortality

Hypoxia Buffa et al.24 51 Inducing angiogenesis

Angiogenesis, MSigDB MSigDB25 36 Inducing angiogenesis

Hypoxia, MSigDB MSigDB2> 200 Inducing angiogenesis

Angiogenesis, upregulated Desmedt et al.”! 5 Inducing angiogenesis

Angiogenesis Masiero et al.6? 43 Inducing angiogenesis

Apoptosis, MSigDB MSigDB25 161 Enabling replicative immortality

Apoptosis Desmedt et al.”! 4 Enabling replicative immortality

Proliferation, upregulated Desmedt et al.”! 140 Sustaining proliferative signalling

KRAS signalling, up, MSigDB MSigDB25 200 Sustaining proliferative signalling

Inflammatory response, MSigDB MSigDB2> 200 Tumour-promoting inflammation, avoiding immune
destruction

IL2-STATS signalling, MSigDB MSigDB25 200 Tumour-promoting inflammation, avoiding immune
destruction

IL6-JAK-STAT3 signalling, MSigDB MSigDB25 87 Tumour-promoting inflammation, avoiding immune
destruction

TGFp signalling, MSigDB MSigDB25 54 Tumour-promoting inflammation, avoiding immune
destruction

TNFa signalling via NF-«xB, MSigDB MSigDB25 200 Tumour-promoting inflammation, avoiding immune
destruction

Immune invasion, upregulated Desmedt et al.”! 92 Tumour-promoting inflammation, avoiding immune

destruction

Table 2 TCGA datasets considered and associated total
clinical sample counts
Dataset Abbreviation Clinical
samples
Breast invasive carcinoma BRCA 1098
Ovarian serous cystadenocarcinoma ov 602
Lung adenocarcinoma LUAD 585
Uterine corpus endometrial carcinoma UCEC 560
Kidney renal clear cell carcinoma KIRC 537
Head and neck squamous cell carcinoma HNSC 528
Lung squamous cell carcinoma LUSC 504
Thyroid carcinoma THCA 503
Prostate adenocarcinoma PRAD 499
Colon adenocarcinoma COAD 460
Stomach adenocarcinoma STAD 443
Bladder urothelial carcinoma BLCA 412
Liver hepatocellular carcinoma LIHC 377
Kidney renal papillary cell carcinoma KIRP 323
Cervical squamous cell carcinoma and CESC 307
endocervical adenocarcinoma

We used multivariate penalised linear regression, with 10-fold cross validation,
as previously described!? to infer significant relationships between miRNA and
gene signatures without overfitting our model. Specifically, first a univariate model
filter was applied to the data to select miRNA used for penalised multivariate linear
regression. Then, the penalised multivariate linear model with the least predictive
error (as assessed on the validating folds) was selected, and coefficients for these
miRNA were used for further analysis. All model-fitting, including the initial
filtering, was done with 10-fold cross-validation, and was carried out using the
penalised package in R, version 0.9-50°%°7. The initial univariate filter was applied

Table 3 Counts of samples with miRNA, mRNA, mutation,
methylation and copy number data

Dataset mRNA samples miRNA mRNA and miRNA All data
BRCA 782 755 499 324
oV 307 461 291 0
LUAD 517 452 449 181
UCEC 177 412 174 4
KIRC 534 255 255 121
HNSC 520 486 478 244
LUSC 501 342 342 51
THCA 501 502 500 396
PRAD 497 494 493 329
COAD 286 221 221 0
STAD 415 389 370 230
BLCA 408 409 405 128
LIHC 373 374 369 186
KIRP 291 292 291 148
CESC 304 307 304 190

to remove miRNA showing little predictive power from the multivariate linear
model, and only those miRNA with p < 0.2 significance by F-test in the univariate
linear model predicting signature score were considered. This permissive p-value
was used to assure that the multivariate linear model did not contain artificially
stringent associations, as the penalisation procedure also functions as a stringency
filter, reducing the false discovery rate. The multivariate linear regression was
carried out as a penalised L1/L2 regression to reduce complicating effects of co-
correlated miRNAs as predictors of the signature scores. To tune the parameters
for the combined L1/L2 regression, a range of values (0, 0.01, 0.1, 1, 10, 100), was
tested for the L2 parameter, while in each case the L1 parameter was optimised.
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Following computation of all models, the model with the greatest log-likelihood
was chosen.

Rank product analysis. Once coefficients were obtained for the linear model
via the penalised regression approach described earlier, these were collated into
matrices with columns defined by cancer type, for each of the gene signatures
considered. These coefficients were then fractionally-ranked both from most
negative to most positive, and most positive to most negative in value. The
rank product statistic, described by Breitling et al. for these fractional ranks
was then considered, and the coefficients were ranked in terms of their sig-
nificance of rank product test statistic, as implemented by the RankProd R
package, version 3.6.05%5%. This was used to give high-confidence rankings of
miRNA associated both positively and negatively with the various signatures
considered.

Validation of miRNA-signature interactions. In order to ensure reproducibility
of the approach used to identify gene signature-associated miRNA, we repeated the
linear modelling procedure across the independent Metabric matched miRNA and
mRNA microarray dataset of 1293 samples>’. We mapped each gene signature to
corresponding Ensembl IDs, and repeated the combined univariate-multivariate
linear modelling approach over all miRNA probes. The miRNA probes identified
as positive and negative coefficients were then identified, and mapped to their
corresponding mature miRNA ID. The statistical significance of this overlap is
shown in Supplementary Figure 12, and was calculated using the Fisher exact test.
Nearly all signatures show strong statistical significance, and in the majority of
cases not reaching statistical significance, signature applicability to the Metabric
dataset may present an issue, as signatures contained a high proportion of genes
with low variance, which presents an issue for signature applicability in linear
regression, particularly for microarray-based datasets.

Target analysis. Targets were aggregated for each miRNA using the miRNAtap
database in R, version 1.14.0, as implemented through the Bioconductor targetscan.
Hs.eg.db package, version 0.6.1°0. The default settings of using all 5 possible target
databases: DIANA version 5.0!, Miranda 2010 release®2, PicTar 2005 releaseS3,
TargetScan 7.1%% and miRDB 5.0%%, with a minimum source number of 2 were
used, and the union of all targets found was taken as the set of targets for a given
miRNA.

For each of these target-miRNA pairs, the Spearman correlation coefficient was
calculated across every cancer type for miRNA versus target mRNA expression,
partial to mutation status of the mRNA, and if this value reached statistical
significance of p <0.05 (using Spearman correlation asymptotic t-approximation),
it was recorded, and otherwise was omitted and recorded as NA. Note that
mutational status was reported as a binary variable with a value of 1 for any non-
silent, non-intronic mutation, and 0 otherwise. The target-miRNA pairs with at
least 5 non-zero entries across cancer types were kept for further analysis, and
subsequently were analysed using the rank product statistic, to identify those pairs
with consistently negative correlations, across cancer types, with respect to all other
hallmarks-miRNA pairs. Partial correlations were done in R using the ppcor
package, version 1.1,

Furthermore, in the global analysis of all TSG-miRNA pairs, we considered
every TSG-miRNA predicted target pair, and again considered the Spearman
correlation partial to mutation status, omitting the value as NA if significance p <
0.05 (by Spearman correlation asymptotic t-approximation). The rank product
statistic was again considered on those pairs with at least 5 non-zero values across
cancer types, thereby identifying those TSG-miRNA pairs consistently negatively
correlated across cancer types, significantly with respect to all other TSG. Lists of
known oncogenes and tumour suppressor genes were taken from the COSMIC
database®’”. Because MYC amplification is a possible confounder to the miRNA
identified as associated with TSG across cancer types, we checked to ensure that
mutation of the 8 TSG identified, across cancer types, does not co-occur
significantly with MYC amplification. Of the 96 TSG-cancer type pairs (8 TSG over
12 cancer types), none showed significance in the over-enrichment by a one-sided
Fisher exact test for MYC amplification and TSG mutation after correcting for
multiple testing.

Resampling gives significance of TSG among miRNA targets. To determine the
significance of the number of the TSG repressed among the repressed targets of the
miRNA identified as signature-associated, we resampled from all miRNA that
could possibly selected as signature associated (i.e., those with at least 80% non-
zero expression across samples in at least one tumour type), and created 1000
resampled lists of random miRNA of the same length as the number of signature-
associated miRNA. Using these lists and the methodology above, miRNA targets
were identified, and those miRNA-target correlations (partial to mutation status)
consistently negatively ranking compared to all others across tumour types were
recorded for each list. Among these repressed targets, we identified the number
overlapping with the COSMIC TSG list, and used this to define the empirical
distribution of the number of TSG overlapping with the miRNA targets. Then from
this distribution, to determine the significance for the 21 TSG overlapping the

repressed TSG targets of the signature-associated miRNA, we determined the
empirical CDF percentile for the value 21, reported as 0.983, yielding p = 0.017
(empirically determined) from this analysis. To ensure that 1000x bootstrap
resampling was sufficient, we used the QQ plot for the empirical distribution to
ensure close adherence to normality for this distribution.

Analysis of TSG regulation. In analysing the regulation of the TSG identified as
related to the hallmarks of cancer and potentially amenable to miRNA regulation,
we first limited the samples under consideration to those where copy number data,
gene expression data, miRNA expression, mutation data, and methylation data
were all present. Mutation data was again taken as a binary variable, but as opposed
to the partial correlation analysis, mutations were stratified into their reported
types (e.g., missense mutations are all grouped together, etc.). That is, the missense
mutation variable would only contain a value of 1 if the sample had a missense
mutation in the gene of interest, and 0 otherwise. All variables considered in the
linear regression were standardised to a mean of 0, and a standard deviation of 1.

L1/2 penalty-based penalised linear regression was then performed, in the same
manner as above, for the linear model described in Fig. 3a. Subsequently,
coefficients were aggregated across the various cancer types and after the rank
product test was applied, those predictors showing statistically consistent positive
or negative coefficients were identified. Following this, the autocorrelation of each
of these predictor variables was considered, for each of the TSG in each cancer
type, as depicted by the heatmap in Fig. 4a.

Analysis of the exclusivity of gene regulation. To determine the exclusivity of
gene regulation, we calculated the empiric distributions of the variables I1, as
defined graphically in Fig. 4. These represent the proportion of miRNA-miRNA or
miRNA-methylation or methylation probe-methylation probe pairs that show
significant positive Spearman co-correlation (p < 0.05, by Spearman correlation
asymptotic t-approximation). For the bootstrapping analysis, we resampled the
datasets, choosing miRNA and methylation probes in the same number as the
heatmap in question, and then considered the distributions of the pairwise dif-
ferences in the variables I« From these distributions for the pairwise differences,
we were able to infer the percentile on the empirically constructed CDF that the
true case represented, the results of which are depicted in Fig. 4b, showing, for each
gene and cancer type, the percentile on the pairwise difference empiric distribution
for the observed heatmap.

The calculations for the analysis of TSG regulation and analysis for the
exclusivity of gene regulation were repeated for an independent dataset comprising
matched mRNA, miRNA, CNV, mutation and methylation data for 93 patients
with ovarian cancer, from the OV-AU project from the ICGC data portal®S. Results
of this analysis are highlighted in Supplementary Note 9, Figure 27.

Data availability

All data used to generate the figures in this paper comes from the GDAC Fire-
browse TCGA portal and the EGA as outlined in the methods section above. All
code used to generate the data in this paper can be found at https://github.com/
andrewdhawan/miRNA_hallmarks_of_cancer/, and cited with: https://doi.org/
10.5281/zenodo.1453559.
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