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a b s t r a c t

DyP-type peroxidases (DyPs) are microbial enzymes that catalyze the oxidation of a wide range of sub-
strates, including synthetic dyes, lignin-derived compounds, and metals, such as Mn2+ and Fe2+, and have
enormous biotechnological potential in biorefineries. However, many questions on the molecular basis of
enzyme function and stability remain unanswered. In this work, high-resolution structures of PpDyP
wild-type and two engineered variants (6E10 and 29E4) generated by directed evolution were obtained.
The X-ray crystal structures revealed the typical ferredoxin-like folds, with three heme access pathways,
two tunnels, and one cavity, limited by three long loops including catalytic residues. Variant 6E10 dis-
plays significantly increased loops’ flexibility that favors function over stability: despite the considerably
higher catalytic efficiency, this variant shows poorer protein stability compared to wild-type and 29E4
variants. Constant-pH MD simulations revealed a more positively charged microenvironment near the
heme pocket of variant 6E10, particularly in the neutral to alkaline pH range. This microenvironment
affects enzyme activity by modulating the pKa of essential residues in the heme vicinity and should
account for variant 6E10 improved activity at pH 7–8 compared to the wild-type and 29E4 that show
optimal enzymatic activity close to pH 4. Our findings shed light on the structure–function relationships
of DyPs at the molecular level, including their pH-dependent conformational plasticity. These are essen-
tial for understanding and engineering the catalytic properties of DyPs for future biotechnological
applications.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The conversion of lignocellulosic biomass into value-added
products has become a significant research area in pursuing alter-
native sources of fuels, chemicals, and materials. A growing scien-
tific community is seeking sustainable lignin valorization
approaches since this is the most abundant aromatic polymer on
Earth and the second most abundant raw material next to cellulose
[69,78]. Dye decolorizing peroxidases (DyPs) are microbial
peroxidases capable of efficient oxidation of a set of structurally
diverse substrates, such as synthetic anthraquinone dyes, aromatic
sulfides, metals, phenolic and nonphenolic lignin units, showing
desired activities for biotechnological purposes, in particular in
the lignocellulose biorefinery context [15,66]. DyPs (EC 1.11.1.19)
contain a ferredoxin-like fold distinct from the motifs found in
the vast majority of class II peroxidases including the ligninolytic
fungal lignin, versatile and manganese peroxidases, with an a-
helical-based structure [29,65,68]. Furthermore, DyPs lack the
highly conserved distal histidine that acts as an acid-base catalyst
in the catalytic reaction of other well-characterized peroxidases.
Instead, they possess a conserved distal carboxylate residue
(usually aspartic acid) that, together with arginine, mediates the
catalysis in DyPs. The aspartate is part of the GXXDG motif, a
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well-known conserved region among DyPs, and was suggested to
contribute to the optimal acidic pH of DyPs [49,63]. DyPs catalytic
mechanism is proposed to resemble that of classical peroxidases
[9,43,49,62,63]; the distal aspartate helps remove the proton from
the proximal oxygen atom of the bound Fe(III)–O2H2 to generate an
anionic precursor to Compound I (Cpd I) known as Compound 0
(Cpd 0; Fe(III)-O-O–H). The proton is then transferred to the distal
oxygen atom of Cpd 0 to form an oxy-water complex (Fe(III)–O–
OH2), facilitating heterolytic cleavage of the O-O bond to form
Cpd I ([Fe(IV) = O]+�) and release an H2Omolecule [12,63]. In classic
peroxidases, the distal arginine is proposed to maintain the distal
heme cavity architecture and support heterolysis of the O–O bond
by electrostatically interacting with the negatively charged distal
oxygen on the Fe(III)-O-O–H complex during the formation of
Cpd I [50,51]. The reaction of Cpd I with one equivalent of the
reducing substrate yields Compound II (Cpd II; [Fe(IV) = O]+),
which further reacts with a second equivalent of the reducing sub-
strate producing the resting state Fe(III) peroxidase. The reduction
of Cpd, I via a single 2e- reduction step was suggested in the P-class
ElDyP from Enterobacter lignolyticus [62]. In DyPs, the precise func-
tional role of the distal catalytic amino acids Asp and Arg in the
heterolytic cleavage of H2O2 is still under debate [37,68]. Three
classes based on structure-based sequence alignments, V (ad-
vanced), I (intermediate), and P (primitive), are proposed for this
family [81]. Even though DyPs have nearly identical active sites,
they exhibit a significant variation in catalytic rates and substrate
specificity. Therefore, investigating molecular details in these
enzymes can provide fundamental insight into their structure–
function relationships and smooth their biotechnological
applications.

In recent years, we have devoted efforts to the investigation of
BsDyP (class I) from Bacillus subtilis and PpDyP (class P) from Pseu-
domonas putidaMET94 [55], providing mechanistic insight into the
catalytic cycle and reaction intermediates [9,43,73], electro-
catalytic properties and interactions modulating redox properties
[42,58,59,60]. Additionally, directed evolution approaches allowed
for identifying engineered variants with improved catalytic effi-
ciency for the lignin-related phenolic 2,6-dimethoxyphenol
(DMP) [6,9,54]. We successfully engineered a highly active PpDyP
variant (6E10), the first DyP-type peroxidase with a broad pH range
and an alkaline pH optimum [9], expanding significantly the range
of applications for these enzymes.

This work contains kinetic, biochemical and structural informa-
tion of wild-type P. putida PpDyP and of two engineered variants,
6E10 and 29E4, complemented with conformational and protona-
tion analysis from constant-pH molecular dynamics simulations
(CpHMD), providing details into the features that underlie the
activity and stability of these enzymes. Further details on enzyme
interaction with substrates were also studied using ensemble
docking protocols. Our findings have fundamental importance in
understanding the molecular features of DyPs and evaluating their
biotechnological potential.
2. Material and methods

2.1. Enzyme production and purification

E. coli strain DH5a (Novagen) was used for amplification of plas-
mid constructs. E. coli Tuner (DE3, Novagen) was used to express
the ppDyP gene previously cloned in pET21-a (+) plasmid (Nova-
gen) (PRC-1 plasmid [55]) or its evolved variants (p6E10 [9],
p29E4 [6]). In the Tuner strain, genes are under the control of the
T7 promoter, and its expression is induced by isopropyl b-D-1-
thiogalactopyranoside (IPTG). Luria-Bertani medium (LB) was used
to grow E. coli strains, supplemented with 100 lg�mL�1 ampicillin.
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Recombinant enzymes were produced in 1L of LB medium in 5L-
Erlenmeyers and purified as previously described [6]. Purified
enzyme preparations of wild-type PpDyP and variant enzymes
6E10 and 29E4 show a heme b content of �1 mol per mole of pro-
tein and Reinheitszahl values between �1 and 2 (Table S1).

2.2. Apparent steady-state kinetic analysis

Enzymatic activities of PpDyP wild-type and variants were
monitored using a Synergy2 microplate reader (BioTek, Vermont,
USA) at 25 �C. The kinetic parameters for the reduced substrates
2,20-azino bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and
2,6-dimethoxy phenol (DMP) were measured in the presence of
1.5 mM H2O2 for wild-type, 29E4 and 6E10. Apparent steady-
state kinetic parameters (kcat and Km) were measured for ABTS
(e420nm = 36,000 M�1 cm�1) (0.1 – 3 mM) in 100 mM sodium
acetate at the optimal pH of the enzymes. The kinetic parameters
for DMP (e468nm = 49,600 M�1 cm�1) (0.01–2 mM) were measured
in 100 mM sodium acetate or phosphate buffer at the optimal pH
of the enzymes. The concentration of purified proteins was
estimated using the molar absorption coefficient of PpDyP
(e280 = 34,850 M�1�cm�1), calculated from the protein sequence
using the ExPASy Bioinformatics Resource Portal (http://web.
expasy.org). Kinetic data were fitted directly using the
Michaelis-Menten equation or the equation for the non-linear
curve that fits enzyme kinetics affected by substrate inhibition
(v = Vmax[S]/(Km + [S](1 + [S]/Ki))) (Origin software).

2.3. Size exclusion chromatography

The oligomerization state of PpDyP and variants was typically
assessed by injecting 100 ll of purified enzyme preparations into
a gel filtration Superose 12 10/300 GL (GE Healthcare Bio-
Sciences) column equilibrated with 20 mM Tris–HCl buffer, pH
7.6, and 0.2 M NaCl. The calibration curve was performed using
the retention times vs. molecular mass of Protein Standards prepa-
ration (Bio-Rad Laboratories, CA, USA).

2.4. Stability assays

The thermodynamic stability was assessed by steady-state flu-
orescence measured with a Carry Eclipse spectrofluorometer (Agi-
lent Technologies) at excitation wavelengths of 296 nm and
emission wavelength of 350 nm [18,23]. For the equilibrium
unfolding studies, guanidine hydrochloride (GdnHCl) concentra-
tions in the range of 0–2.5 M in 20 mM Tris–HCl, 200 mM NaCl,
pH 7.6, were used to induce protein unfolding, which was mea-
sured at room temperature. For thermal stability, the samples con-
taining the enzymes (20 lM) in 20 mM Tris-HCl with 200 mM
NaCl, pH 7.6, were placed onto a thermostatically controlled ther-
mal block and then heated at a rate of 1 �C/min until 100 �C. Pro-
tein aggregation was monitored by static light scattering at 500 nm
as excitation and emission wavelengths. The thermodynamic and
thermal stability of enzymes was analyzed based on a two-state
process using the equations previously described [23].

2.5. Crystallization and cryoprotection

Preliminary crystallization trials of PpDyP wild-type, 6E10 and
29E4 variants (in 20 mM Tris-HCl pH 7.6 and 200 mM NaCl (10–
15 mg/mL)) were performed using a mosquito crystallization robot
(TTP Labtech) and Molecular Dimensions commercial screenings,
namely JCSG+, BCS, and Morpheus. Vapor-diffusion crystallization
trials were set using round-bottom 96-well CrystalQuickTM plates
(Greiner Bio-One). The JCSG + screen produced PpDyP wild-type
crystals within two days at 20 �C in a crystallization solution com-
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posed of 0.2 M magnesium formate dihydrate and 20 % (w/v) PEG
3350, using 0.1 ll of protein and reservoir solutions. The PpDyP
6E10 crystals appeared at 20 �C after seven days in a condition part
of the BCS screen: 0.08 M sodium bromide, 0.05 M sodium fluoride,
0.08 M sodium iodide, 0.1 M HEPES pH 7.8, and 22.5 % (w/v) PEG
Smear Broad, using 0.1 ll of protein and reservoir solutions. PpDyP
29E4 crystals were grown at 20 �C in a condition from the Mor-
pheus screen: 0.02 M magnesium chloride hexahydrate, 0.02 M
calcium chloride dehydrate, 0.1 M BICINE pH 8.5 and 37.5 % (v/v)
of a precipitant mixture composed of 12.5 % (v/v) MPD, 12.5 %
(w/v) PEG 1000, and 12.5% (w/v) PEG 3350, using 0.1 ll of protein
and 0.2 ll of reservoir solutions. The crystallization hits were opti-
mized at microliter-scale using hanging drop vapor diffusion trials
in XRL 24-well crystallization plates (Molecular Dimensions). Best
wild-type crystals were obtained in 0.3 M magnesium formate
dihydrate, 17 % (w/v) PEG 3350 and 40 % (v/v) acetone. Wild-type
and 6E10 crystals were transferred to their reservoir solutions sup-
plemented with 25% (v/v) glycerol for flash-cooling in liquid nitro-
gen. Since the 29E4 crystallization condition is known to sustain
‘‘cryo-protective” properties [24], its crystals were directly flash-
cooled in liquid nitrogen.
Table 1
Data collection, processing, and refinement statistics.

wild-type 6E1

Data collection
Beamline ID30A-3 BL13
Wavelength (Å) 0.9677 0.97
Space group P3221 P23
Unit cell parameters (Å; �) a = b = 141.9, c = 177.4;a = b = 90.0,

c = 120.0
a = b

Resolution (Å) 101.05–2.60 (2.76–2.60) 48.6
Number of observations 592,150 (68900) 73,0
Unique reflections 81,145 (12914) 14,9
Completeness (%) 99.8 (99.2) 93.5
Multiplicity 7.3 (5.3) 4.9 (
Mosaicity (�) 0.07 0.18
CC1/2 (%)a 99.6 (31.6) 99.9
Rsym (%)b 13.7 (77.3) 5.5 (
Rmeas (%)c 16.6 (196.5) 6.8 (
Rpim (%)d 5.4 (38.1) 2.8 (
<I/r(I)> 9.49 (0.72) 17.0
Wilson B-factor (Å2) 49 66
VM (Å3 Da�1) 4.1 3.4
Estimated solvent content (%) 70 64
Refinement statistics
Rfactor (%)e 22.0 22.5
Rwork (%)f 21.9 22.2
Rfree (%)f 23.5 25.5
RMSD for bond lengths (Å) 0.003 0.00
RMSD for bond angles (�) 0.615 0.55
Average chain B-factor (Å2) 50, 54, 52, 55 80
Number of residues 283 282
Ramachandran plot
Residues in favored regions (%) 97.2 98.0
Residues in allowed regions (%) 2.8 2.0
Residues in disallowed regions

(%)
0 0

PDB code 7QYQ 7QY

a CC 1/2 = Percentage of correlation between intensities from random half-datasets [3
b Rsym = Rhkl Ri |Ii(hkl) - <I(hkl)>|/ Rhkl Ri Ii (hkl), where Ii(hkl) is the observed intens

related reflections [4].
c Rmeas = Rhkl [N/(N(hkl) �1)]1/2 Ri |Ii(hkl) - <I(hkl) >|/Rhkl Ri Ii (hkl), where N(hkl) is

intensity of multiple observations from symmetry-related reflections. It is an indicator
d Rp.i.m. = Rhkl [1/(N(hkl) �1)]1/2 Ri |Ii(hkl) - <I(hkl) >|/Rhkl Ri Ii (hkl), where N(hkl) is

intensity of multiple observations from symmetry-related reflections. It is an indicator
e Rfactor = R |Fobs – Fcalc|/ R Fobs, where Fobs and Fcalc are the amplitudes of the observed

between the experimental X-ray diffraction data and the crystallographic model.
f Rwork refers to the actual working data set used in refinement, while Rfree refers to a c

refinement bias.
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2.6. Data collection and processing

PpDyP wild-type data sets were collected at 100 K in the Euro-
pean Synchrotron Radiation Facility (ESRF, Grenoble, France) at
beamline ID30A-3. 6E10 and 29E4 data sets were collected in ALBA
synchrotron (Barcelona, Spain) at beamline BL13-XALOC. Diffrac-
tion data were indexed, integrated, and scaled with the XDS pro-
gram package [31]. Data collection and processing statistics are
listed in Table 1.

2.7. Structure determination and refinement

Wild-type PpDyP data were initially processed in space group
P3221, but data analyses with programs XPREP [61], XTRIAGE
[83] and POINTLESS [22] indicated probable twinning defects in
the crystal and suggested possible merohedral twin laws. As
twinned crystals may show spurious symmetries, due to the
imbedded twinned crystals, data were processed also in space
groups C2 and P3, and tried to solve the phase problem with
MORDA [77] testing all produced data sets, including possible
alternative space groups. Two putative molecular replacement
0 29E4

-XALOC BL13-XALOC
92 0.9792

P1
= c = 108.7; a = b = c = 90.0 a = 72.9, b = 78.8, c = 98.9;a = 91.0, b = 92.9,

c = 94.0
2–2.45 (2.54–2.45) 98.78–2.70 (2.80–2.70)
15 (12699) 110,187 (14483)
87 (2546) 54,918 (7338)
(99.9) 90.9 (89.1)
5.0) 2.0 (2.0)

0.13
(46.1) 99.8 (49.7)
64.6) 4.4 (40.6)
138.8) 6.3 (70.1)
31.9) 4.0 (36.9)
3 (1.20) 11.55 (0.97)

71
2.3
46

18.9
18.1
23.6

2 0.004
3 0.752

71, 71, 76, 82, 76, 76, 76, 79
283

97.8
2.2
0

Z 7QZA

3].
ity and < I(hkl) > is the average intensity of multiple observations from symmetry-

the data multiplicity, Ii(hkl) is the observed intensity and < I(hkl) > is the average
of the agreement between symmetry related observations [17].
the data multiplicity, Ii(hkl) is the observed intensity and < I(hkl) > is the average
of the precision of the final merged and averaged data set [80].
and the model calculated structure factors, respectively. It measures the agreement

ross-validation set that is not directly used in refinement and is therefore free from
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solutions were produced, showing similar probabilities and Rwork
values, in space groups P32 or P3221, with 99 % and 0.395, or 99 %
and 0.388 values, respectively. In each model was inserted the cor-
responding heme B groups fitting them with COOT [19] in the elec-
tron density. Twinned refinement of each model using REFMAC5
[45] with intensities data and twin laws H, K, L and -H, -K, -L led
to Rwork/Rfree = 0.394/0.395 for space group P32, while space
group P3221 showed Rwork/Rfree = 0.233/0.254, thus solving the
previous space group ambiguity. Further three cycles of REFMAC5
twin refinement and manual improvement with COOT led to
Rwork/Rfree = 0.227/0.247 and twin fractions 0.181/0.819.The
two variants 6E10 and 29E4 structures were determined by molec-
ular replacement using PHASER [41] within the PHENIX suite [3]
and the previously solved PpDyP wild-type structure as a search
model. For cross-validation purposes, approximately 4% of reflec-
tions were randomly excluded from refinement. The TLSMD server
(http://skuld.bmsc.washington.edu/~tlsmd) [47] was used to
define polypeptide chain regions for translation, libration, and
screw refinement of anisotropic atomic displacement parameters
(a.d.p.s). PHENIX.REFINE [2] was used to proceed with the twinned
structure refinement of PpDyP wild-type, as well as with the struc-
ture refinements of the two variants. Cycles of iterative structure
refinements were followed by inspection of rA-weighted 2|Fo|-|
Fc| and |Fo|-|Fc| electron density Fourier maps for manual model
improvement and completion using COOT [19]. Standard stereo-
chemical dictionary [20] assisted the refinement program, except
for inter-atomic distances involving iron sites that were refined
without target restraints. The stereochemistry of the refined struc-
tures was analysed with MOLPROBITY [13]. All figures were pre-
pared with PyMOL [16]. Analysis of molecular tunnels was
performed with CAVER [14]. Three-dimensional superposition of
polypeptide chains was performed with MODELLER [79]. Structure
factors and atomic coordinates were deposited in the Protein Data
Bank (PDB) [8] with accession codes 7QYQ, 7QYZ, and 7QZA for the
PpDyP wild-type, 6E10, and 29E4 structures, respectively. The
refinement statistics are present in Table 1.

2.8. Computational methods for pH titration

The PpDyP systems were set up using the X-ray structures of
wild-type, and 6E10 (E188K/A142V/H125Y) proteins at resting
state (RS) and Cpd I states from the PDB as a starting point. First,
all titrating residues were renamed to match the CpHMD method
nomenclature [38]). Each was assigned an initial protonation state
at physiological pH, based on their pKa. The MD simulations were
performed using GROMACS 5.1.5 [1], the GROMOS 54A7 force field
[56], and the SPC water model [26]. Each system was minimized
(104 steps) using the steepest descent method. The initialization
procedure consisted of a three-step protocol, starting with a
restraint placed on all protein atoms: initially, the system is cou-
pled to a v-rescale thermal bath at 310 K in a 1 ns step [10]; then,
a 1 ns step on the NPT ensemble is performed using the Parrinello-
Rahman barostat [46,48] until the average pressure is converged to
1 bar with a relaxation time of 5 ps and isothermal compressibility
of 4.5 � 105 bar�1; a final 1 ns MD step without atom restraints
allowed the proteins to equilibrate to the system temperature
and pressure. All non-bonded interactions within a 1.4 nm single
cutoff scheme (list updated every five steps) were included.
Beyond this cutoff, the Van der Waals interactions were truncated.
The electrostatic interactions were treated with the Generalized
Reaction-Field method (dielectric constant of 61 and ionic strength
of 0.1 M) [72]. Protein bonds were constrained with the P-LINCS
methods [27], while the water molecules were used and treated
with the SETTLE algorithm [44]. The integrator time-step was 2 fs.

The Poisson-Boltzmann (PB) calculations were performed using
Delphi V5.1 [53] using radii calculated using the Lennard-Jones
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parameters [71] obtained from the GROMOS 54A7 force field.
The molecular surface of the protein was defined using a probe
with a radius of 1.4 Å. At the same time, the ion exclusion layer
was 2.0 Å, and the ionic strength was set to 0.1 M. The dielectric
constants used were 2 and 80 for the solute and solvent, respec-
tively. Each PB calculation requires a two-step focusing procedure.
Initially, the titrating group was centered in a cubic grid with 81
points with a 1 Å spacing (coarse grid), followed by a focus grid
with a smaller spacing between grid points (0.25 Å). The relaxation
factors used in the linear and nonlinear iteration processes for the
coarse grid were 0.75. A convergence threshold of 0.01 was used
for the electrostatic potential. Monte Carlo (MC) calculations were
performed with the PETIT program [5] to sample the protonation
states of each residue using the free-energy terms obtained from
the PB calculations. We performed five replicates for each system
at both RS (FeIII) and Cpd I (FeIV = O) states. Each replicate consisted
of 50 ns CpHMD simulations ranging from pH 2.75 to 9.50 with
0.75 pH steps. Each MM/MD step was 20 ps (spr,t), and each solvent
relaxation step was 0.2 ps (srlx). All 61 titratable residues were
allowed to titrate, including the termini and the heme propionate
groups. To study the electrostatics and evaluate the local charge
of the heme pocket, we also created a subset of charged/titrable
sites restricted to residues with side chains located within �15 Å
of the heme Fe atom, namely: H/Y125, D126, E131, D132, E134,
H162, D176, R181, E/K188, K199, R200, R214, R215, R245, D255,
PA, PD, and the heme group. All error values shown were obtained
using the standard error of the mean over the five replicates. For
the pKa error values, a modified resampling method based on the
leave-one-out strategy (jackknife) was used [64].

2.9. Molecular dynamics and ensemble docking

MD simulations of the wild-type enzyme and the 6E10 variant
were set up and ran with Yasara [34] using the AMBER force field
[30] and TIP3P [39] water model. The protonation states of titrat-
able residues correspond to those predicted at pH 8 according to
the pKa values observed in the CpHMD simulations. Periodic
boundary conditions were used with a solvation cubic box with a
0.9 nm water buffer, and the system was neutralized with Na+

and Cl– ions. The system’s energy was minimized, with the steepest
descendent and simulated annealing, and equilibrated for 5 ns
with a time step of 1 fs. In the first half of equilibration, the tem-
perature was gradually increased to 300 K, then kept constant (to-
gether with the box volume). The temperature was controlled with
the Berendsen thermostat variation [7] as implemented in Yasara.
Production of MD runs was carried out at the same temperature
and volume, updating the bonded- and non-bonded forces every
5 and 2 fs, respectively. We run 300 ns simulations for each
enzyme, taking into account the tetrameric oligomerization state.
Thus, conformations of the binding site and the surrounding loops
for subsequent docking calculations are obtained for 4 � 300 ns.
The van der Waals forces cutoff was set at 0.8 nm, while long-
range electrostatics forces were treated with the Particle Mesh
Ewald algorithm [21]. LINCS [28] and SETTLE [44] were adopted
to restrain stretching and bending terms involving hydrogen atoms
and water molecules in the system. All docking simulations were
set up and run with Yasara on 166 equally spaced simulation
frames from wild-type and 6E10 variant MD trajectories mimick-
ing pH 8. Docking calculations were computed over each chain of
every MD snapshot, giving 664 structures per system. DMP was
prepared fully protonated (neutral), which is the most predomi-
nant form at pH 8. The prepared DMP was first docked on the com-
plete protein with Autodock Vina [74], finding the heme and
propionate sites (essential for catalysis) as the significant binding
locations. Docking of ABTS was also carried out. Then, the second
round of docking calculations was centered on each of these sites
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to enhance the sampling of those regions of the protein. Molecular
graphics showing the docking results were created with PyMOL
[57].
3. Results and discussion

3.1. PpDyP displays a tetrameric structure

A structure-based sequence alignment revealed that PpDyP is
homologous to the available DyPs structures deposited in PDB,
with root-mean-square-deviation (RMSD) values ranging from
1.90 to 2.30 Å (defined within a radius cut-off of 1.75 Å) for equiv-
alent Ca atoms (Fig. 1). The monomeric unit shows the typical a + b
ferredoxin-like fold, consisting of two similar domains containing
four and three-strand antiparallel b-sheets (b1-b4 and b5-b7)
flanked on either side by two groups of a-helices (a1-a4 and a5-
a9) (Fig. 1 and Fig S1 a, b) [29,67,82]. The crystal structures of
6E10 (E188K, H125Y, and A142V) and 29E4 (E188K and H125Y)
variants share the same three-dimensional architecture and are
superimposable with RMSDs of 0.40–0.48 Å (Fig. 1).

In the wild-type structure, calculations using the Matthews
coefficient estimated the presence of four monomers in the asym-
metric unit (a.u.), indicating a crystallographic tetramer (Fig. 2a)
with a solvent content of 70% [32,40] (Table 1). The a.u. in the
6E10 variant structure displays a single monomer, but the crystal-
lographic symmetry also suggests a tetrameric assembly. In the
29E4 variant structure, the a.u. consists of eight monomers, four
subunits forming one tetramer, and the remaining four by crystal-
lographic symmetry led to tetramer units. Overall, the dimeric
interfaces (structurally conserved in other DyPs) exhibit a slightly
higher number of interactions (20) than the tetrameric interfaces
(17); however, the salt bridges, hydrogen bonds, and hydrophobic
interactions between PpDyP interfaces are comparable among the
three structures (Fig. 1 and Fig. 2b-e). The dimeric interfaces
involve two groups of a-helices (a3 and a5) and one b-strand
(b4), while the tetrameric ones include two groups of a-helices
(a2 and a9) and two b-strands (b1 and b3) (Fig. 1 and Fig S1 a,
b). The total buried surface area upon tetrameric or dimeric
oligomerization is similar in wild-type and 29E4 (�30 and �8%,
Fig. 1. Amino acid sequence alignment based on the known X-ray crystal structures o
peptide chains was performed with MODELLER [79]. The PpDyP secondary structure is s
yellow and red boxes, respectively. The tetrameric polar and apolar interactions are show
*. Strictly conserved amino acids are represented as black boxes, whereas dark and lig
sequences. (For interpretation of the references to color in this figure legend, the reader
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respectively) but significantly lower in the 6E10 variant (�10 and
�4%, respectively) [35]; however, in solution the three proteins
accumulate in the tetrameric and dimeric states as assessed by
size-exclusion chromatography [55]) (Fig S2). Fungal DyPs are
exclusively monomers as C-terminal insertion regions seem to pre-
vent their dimerization [82], whereas bacterial DyPs are mainly
described as assembled in dimers [11]; and high order oligomer-
ization as a hexameric state was observed in BtDyP from Bac-
teroides thetaiotaomicron (PDB 2GVK) [82] and DyPB from
Rhodococcus jostii RHA1 (PDB 3QNS) [52].
3.2. Variant 6E10 shows an activity-stability trade-off

The heme access to the solvent, as defined using a 1.4 Å rolling
probe, is made through two molecular tunnels (T1 and T2) and one
cavity with similar dimensions in wild-type and variants’ struc-
tures (Fig. 3a and Table S2). T1 is considered the main entrance
to H2O2, and it is where the conserved distal catalytic residues
D132 and R214 are located (Fig. 1 and Fig. 3b). T2 has a similar
diameter (�3.0 Å) to T1 and a slightly lower length (11.5 Å vs.
14.0 Å) (Fig. 3c,d,e). T2 is not present in other DyPs with known
structures because the H125 residue of PpDyP is replaced in others
DyPs by a conserved arginine, which long side chain appears to
occlude this tunnel (Fig. 1). The open cavity that gives access to
the solvent-exposed heme propionate has an area of approxi-
mately 275 Å2, with a depth of 7.5 Å (Fig. 3a,f), slightly smaller than
cavities in other characterized DyPs that show areas of �400 Å2

and depths of �12 Å [36,49,52,62,76]. The cavity represents an
electron-transfer route from the porphyrin radical to the bound
substrate in peroxidases [50]. In PpDyP, it is delimited by an exten-
sive network of hydrogen bonds, including four charged residues,
E135, R181, E188, and E204 (Fig. 3f).

The heme pocket of PpDyP is delimited by three conserved loop
regions, L1 (120–139), L2 (179–205), and L3 (206–226) (Fig. 3a,b).
Loops L1 and L3 are located on the distal side of the heme and
include the conserved catalytic residues D132 and R214, and L2
is at the heme proximal side and contains the conserved H197
heme ligand (Fig. 1 and Fig. 3a). The mutated residues H125Y
and E188K present in variants 6E10 and 29E4 variants, are in L1
f DyPs belonging to class P. Three-dimensional multi-body superposition of poly-
hown above the alignment. The dimeric polar and apolar interactions are shown as
n as blue and pink boxes, respectively. Distal catalytic residues are highlighted with
ht grey boxes represent the most and less conserved residues among the selected
is referred to the web version of this article.)



Fig. 2. Overall structure and heme access pathways in PpDyP. (a) Dimeric and tetrameric interface interactions are involved in PpDyP oligomerization. Analysis of the PpDyP
interfaces: the subunits AD/BC and BD/AC are the dimeric and tetrameric interfaces, respectively. Polar (b) and apolar (c) interactions in the canonical dimer, respectively.
Polar (d) and apolar (e) interactions of the tetrameric interface, respectively. The amino acid residues are shown as sticks with carbon atoms in the same color as the
corresponding chain. The oxygen and nitrogen atoms are shown in red and blue, respectively. The heme group is shown as sticks with carbon, nitrogen, and oxygen atoms in
light pink, blue and red, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Molecular pathways that give access to the heme cofactor in PpDyP: tunnels 1 (T1) and 2 (T2), and cavity, surrounded by loops L1 (120–139, yellow), L2 (179–205,
green), and L3 (206–226, orange) represented as solvent accessible surface area (a) and cartoon (b). The heme group is shown as sticks with carbon, nitrogen, and oxygen in
light pink, blue and red, respectively. The iron atom is shown as an orange sphere. The distal catalytic residues, D132 and R214, are shown as sticks. The heme proximal ligand
H197 is shown as sticks with carbon atoms colored in green. The oxygen and nitrogen atoms are shown in red and blue, respectively. In (c), T1 and T2 were calculated with
CAVER program and are shown in red and green mesh, respectively. The mutated residues (H125Y, A142V, and E188K in 6E10 and H125Y and E188K in 29E4) are shown as
sticks and colored in cyan. (d-f) Solvent accessible surface area representing residues limiting the T1 (d), T2 (e), and cavity (f) are colored in red, green, and blue, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and L2, respectively, whereas mutated residue A142V of 6E10 is
located in a sort of hinge region in a small a-helix (a4) adjacent
to the L1 area (Fig. 1 and Fig. 3c).
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The comparison of normalized B-factors [70] in the three struc-
tures revealed a significantly different profile pattern (Fig. 4). Vari-
ant 6E10 shows the highest overall B-factor value (�80 Å2),



Fig. 4. Cartoon representations of the main chain of (a) wild-type, (b) 29E4, and (c) 6E10 variant structures with thickness proportional to normalized B-factor values color-
coded as a blue-white-red color ramp with blue indicating the most negative value (less flexibility) and red the most positive value (more flexibility). The zoomed-view
represents the loop regions L1 (120–139), L2 (179–205), and L3 (206–226), limiting the heme cofactor. The heme and mutated residues are shown as sticks. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Root mean square deviation (RMSD) per residue in wild-type PpDyP and 6E10 variant at pH values 4.25 and 8.0. The RMSD values were calculated relative to the initial
X-ray structure for resting-state (RS) and compound I (Cpd I). The loops are colored differently for visual clarity: L1 (green), L2 (yellow), and L3 (orange). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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followed by 29E4 (�71 Å2) and wild-type (�50 Å2) (Table 1). The
insertion of mutations, in particular of A142V, triggered structural
changes leading to fluctuations in the solvent exposure of residues
in the loops regions (Fig. 4a-c and Table S3). This view is supported
by molecular dynamics simulations, where a higher displacement
is observed in the loop regions (Fig. 5). A tendency to higher RMSD
values was observed along with pH increase and enzyme activa-
tion, i.e., after the H2O2-dependent reactions that change Fe(III)
in RS to Fe(IV) in Cpd I during the catalytic mechanism. Notably,
in the X-ray structures, the entrance to the T1 is more prominent
in 6E10, and the conformations of its distal catalytic residues show
slightly longer D132OD1-R214NH1 interatomic distances (Fig. S3).
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The cavity entrance area in 6E10 is also enlarged, probably due
to the higher flexibility of delimiting residues (Fig. S4). The extra
plasticity of the molecular access pathways to the heme can posi-
tively impact enzyme catalysis facilitating substrate binding and
product release and contributing to the highest measured catalytic
efficiency (kcat/Km) of 6E10 for the substrates tested, particularly at
the neutral to the alkaline range (Table 2) [6,9].

To explore this further, the binding of the lignin-related pheno-
lic DMP substrate - for which a significantly higher activity was
measured in the 6E10 variant at pH 8 (Table 2) - was investigated
with ensemble docking calculations using snapshots from the Cpd I
MD trajectories. The docking results confirm that DMP can bind



Table 2
Apparent steady-state kinetic parameters for the oxidation of ABTS and DMP of wild-type and variants.

ABTS DMP

pH kcat (s�1) Km (lM) kcat/Km (M�1s�1) kcat (s�1) Km (lM) kcat/Km (M�1s�1)

Wild-type 4.3 28 ± 3 300 ± 20 (5.5 ± 0.1) � 104 0.10 ± 0.01 80 ± 20 (1.3 ± 0.2) � 103

7-8a 6 ± 1 nd nd 0.08 ± 0.01 60 ± 11 (1.2 ± 0.2) � 103

29E4 4.3 60 ± 5 810 ± 190 (7.4 ± 0.9) � 104 0.10 ± 0.01 40 ± 10 (2.5 ± 0.2) � 103

7–8 a 4.1 ± 0.3 nd nd 0.07 ± 0.02 43 ± 9 (1.6 ± 0.5) � 103

6E10 4.3 12 ± 3 44 ± 5 (2.7 ± 0.3) � 105 0.0035 ± 0.0001 nd nd
7-8a 20 ± 2 100 ± 30 (12.0 ± 0.1) � 104 3.5 ± 0.1 80 ± 10 (4.3 ± 0.4) � 104

a reactions using ABTS were performed at pH 4.3 and 7, and reactions using DMP at pH 4.3 and pH 8; nd-not determined

Fig. 6. Docking of DMP into wild-type (magenta) and 6E10 (dark blue) heme sites. (a) Binding energy vs. catalytic distances (distance between DMP hydroxyl oxygen
atom and heme-bound oxygen). Each point represents a simulated conformation of the enzyme-substrate complex. (b) Binding energy vs. catalytic distances plot close-up
showing docking poses with catalytic distances below 5 Å. (c,d) Molecular representation of the lowest energy enzyme-substrate complex for DMP in the heme-binding sites
of the enzymes. The L1 loop is shown in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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into the heme pocket. Moreover, the average volume of this
pocket along the MDs is significantly larger for 6E10 than for
wild-type (408.2 Å3 vs. 326.8 Å3), in part due to the presence of a
hydrogen bond between Asp132 and Ser216. These differences
may explain the appearance of a well-defined energy minimum
for DMP in a catalytic position (catalytic distance �2.7 Å) at the
heme site in the 6E10 variant (Fig. 6a,b). In the wild-type enzyme,
DMP is stabilized at a farther position (catalytic distance �4 Å) and
tends to bind closer to the propionate (Fig. 6c,d). While catalysis
can also occur at this longer distance, an optimal substrate posi-
tioning, like in the 6E10 variant, can have positively impacted
the catalytic machinery and led to the higher activity observed
experimentally. We hypothesize that entrance to the heme pocket
is facilitated in the 6E10 variant thanks to the enlarged entrance
cavity and increased loop flexibility (especially for L1 in Cpd I,
Fig. 5) commented above. This idea is also supported by the global
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docking results, where DMP binding is observed all along T1, a tun-
nel that connects the protein surface with the heme pocket and
shows an enlarged entrance in the case of 6E10 (Fig. S3c,f and
Fig. S5).

In contrast, variant 6E10 displayed the lowest overall stability
compared with 29E4 and wild-type enzymes as assessed by fluo-
rescence spectroscopy that monitored its chemical and thermal
unfolding (Table 3, Fig. S6 and S7). Thermal unfolding profiles were
measured to calculate the mid-point thermal temperatures, i.e. the
melting temperatures (Tm) (Fig S7a). However, protein aggregation
assessed by static light scattering reveals the onset of protein
aggregation (Tagg) at lower temperatures than Tm values invalidat-
ing the measured thermal unfolding mid-points (Table 3 and Fig
S7b).

Nevertheless, variant 6E10 displayed the lowest Tagg compared
with 29E4 and wild-type enzymes. These results indicate the



Table 3
Thermodynamic stability of the tertiary structure of PpDyP wild-type and variants 29E4 and 6E10 as assessed by fluorescence spectroscopy.

DGwater (kJ.mol�1) m (kJ.mol�1.M�1) [GdnHCl]50% (M) Tagg (�C)

Wild-type 25.9 ± 2.1 �18.0 ± 0.8 1.4 ± 0.1 60.9 ± 0.2
29E4 10.5 ± 0.8 �8.4 ± 0.8 1.23 ± 0.02 58 ± 3
6E10 9.6 ± 0.8 �10.4 ± 0.4 0.9 ± 0.1 53 ± 3

Fig. 7. (a) Total charge titration curve for Resting-State (RS) and Compound I (CPDI) systems for wild-type and 6E10 variants. Each colored region indicates a different average
DCharge between the 6E10 variant and wild-type. These region limits are defined by the pKa values of the mutated residues, E188 (�5.1) and H125 (�6.4). (b) Partial titration
curve including only residues with side chains located within �15 Å of the heme Fe atom. The gray-shaded region corresponds to the negative charges that should generate an
overall negative electrostatic potential.
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occurrence of a stability-activity trade-off at the level of A142V
residue, as variant 6E10 displays 2- and 50-fold increased catalytic
efficiency for ABTS and the lignin-phenolic substrate DMP, respec-
tively, as compared to variant 29E4 and the wild-type (Table 2).
These observations corroborate previous data obtained with an
engineered variant of B. subtilis BsDyP that displays higher activity
but reduced stability upon introducing mutations in the loops sur-
rounding the heme pocket [54].

3.3. Variations in the electrostatic network in the heme vicinity affect
the pH dependence of 6E10

The molecular details of the electrostatic network were investi-
gated considering that two out of the three mutations in the 6E10
variant (H125Y and E188K) are pH-titratable residues located near
the heme pocket (Fig. 3c). This is an electrostatically-rich environ-
ment that changes conformation and suffers charge fluctuations
during the catalytic mechanism. The pH titration curves in the RS
and Cpd I, in both wild-type and 6E10, show a total charge at pH
2.75 of � +20 and an almost linear decrease in the acidic region
Table 4
pKa values of selected key residues near the heme pocket and the surrounding loops of wild
PD: propionate A/D.

wild-type

Residue RS Cpd I

H125 6.3 ± 0.2 6.5 ± 0.2
D126 <2.8 <2.8
D132 <2.8 <2.8
E135 4.2 ± 0.4 4.3 ± 0.2
H162 <2.8 3.6 ± 0.5
E188 4.9 ± 0.1 5.3 ± 0.1
E204 4.0 ± 0.1 4.0 ± 0.1
D255 <2.8 <2.8
Y258 >9.5 >9.5
PA 6.7 ± 0.2 6.6 ± 0.2
PD 6.6 ± 0.1 6.9 ± 0.2
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between pH 3 and 5, where most Asp and Glu residues are titrating
(Fig. 7a). The titration behavior in this pH range is comparable in all
analyzed systems and is in agreement with the estimated isoelec-
tric point values (4.6–4.7). At pH values higher than �5.1 and, in
particular, higher than�6.4, the differences observed can be attrib-
uted mainly to H125Y and E188K mutations since when these resi-
dues were excluded, the titration curves almost overlap (Fig. S8).
At neutral pH, the titration curves for RS and Cpd I show nearly
double the negatively charged residues (Asp, Glu, and propionates)
as compared with positively charged ones (Lys and Arg) in both
wild-type and 6E10 (Fig. 7a). However, when only residues that
have their side-chain within a �15 Å distance from the heme are
included, a more clear impact of mutations H125Y and E188K in
the electrostatic potential of the heme cavity is observed: the neg-
ative charge of the wild-type is mitigated or even inverted in 6E10
systems at pH 8.0 (Fig. 7b).

Notably, the pKa values of pH-sensitive residues surrounding
the heme group and located in the nearby loop regions are compa-
rable in both enzymes (Table 4), except for the distal D132 cat-
alytic residue and H162 near the T2 and buried under L1 (Fig. 8).
-type and 6E10 variant proteins. RS: resting state; Cpd I: compound I active state; PA/

6E10

Residue RS Cpd I

Y125 >9.5 >9.5
D126 <2.8 <2.8
D132 4.1 ± 0.8 2.8 ± 1.1
E135 3.8 ± 0.1 3.8 ± 0.2
H162 <2.8 <2.8
K188 >9.5 >9.5
E204 3.6 ± 0.3 3.7 ± 0.1
D255 <2.8 < 2.8
Y258 >9.5 >9.5
PA 6.2 ± 0.2 6.6 ± 0.3
PD 5.8 ± 0.1 6.7 ± 0.1



Fig. 8. Structural highlights of the heme group region in wild-type PpDyP (left) and 6E10 variant (right). The wild-type structure is shown in its resting state (RS), and the
6E10 variant is shown in its activated form (Cpd I). In labeled sticks are shown several critical residues, including residue A142, mutated from Ala to Val in the 6E10 variant.
The green, yellow, and orange regions correspond to loops L1, L2, and L3, respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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D132 often establishes interactions with nearby cationic residues
expected to lower its pKa value, including the distal R214 catalytic
residue and H125. The replacement of H125 residue with the neu-
tral tyrosine in the 6E10 variant, results in a less positive environ-
ment and increased pKa values. Furthermore, the slightly longer
interatomic distances (5.1 Å) between D132OD1 and R214NH1 in
the 6E10 X-ray structure when compared to wild-type (4.1 Å)
(Fig. S3) might also contribute to the protonation of D132 [25].
The limited access to the solvent of H162 stabilizes its neutral
state, leading to very low pKa values (Table 4). Still, during activa-
tion at low pH, there is an increase in the population where the
H162 side chain is facing away from the heme (Fig. S9), resulting
in increased solvation and a shift in the pKa value towards their
water reference (�6.5).

The negative electrostatic potential of the wild-type heme
pocket at pH 8.0 can impair the access and oxidation of, e.g., ABTS,
a substrate with a formal charge of �2. In contrast, this barrier
would be reverted by the positive electrostatic potential in the
6E10 variant. Furthermore, docking calculations of ABTS to the
enzymes suggest that, contrary to what is observed for DMP, the
larger substrate cannot fully access the heme cavity in wild-type
and in the 6E10 variant (Fig. S10). Instead, ABTS reaches the heme
by interacting from the propionates side, indicating an important
role of the local electrostatics in this initial binding step. The more
positive pocket of variant 6E10 at neutral to alkaline values, men-
tioned above is also in good agreement with its redox transition
(E0’ Fe2+/Fe3+ = �60 mV) that is >0.2 V higher than the respective
value for wild-type PpDyP (E0’ Fe2+/Fe3+ = �260 mV) [9]. This is in
excellent agreement with the deviation of the optimum pH from
acidic in wild-type (pHop �4) to more neutral and alkaline values
in the 6E10 variant for both ABTS (pHop = 7) and DMP (pHop = 8)
oxidation (Table 2) [9]. The distal Asp residue is generally assumed
to be the key in defining the optimum acidic pH observed in DyPs,
even if recognizing a putative role of other acidic residues around
the heme center [49,62,63]. In variant 6E10, D132 would be proto-
nated at pH around 4, which may prevent activation by H2O2 at
this pH in contrast to the wild-type. Furthermore, our results point
to an essential role of other charged residues in the heme pocket, in
line with the observation that the hydrogen bond network
between carboxylate and His residues in the heme vicinity is piv-
otal in the enzyme pH dependence of VcDyP [75]. Overall, the data
obtained indicate that changes in loops’ flexibility and conforma-
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tion have a crucial impact on the electrostatics of the heme
microenvironment, which in turn influences the enzyme’s optimal
pH for activity.
4. Concluding remarks

In this work, we solved the crystal structure of the PpDyP wild-
type and engineered variants 29E4 and 6E10. Both variants harbor
pH-titrable mutations H125Y and E188K, whereas mutation A142V
is only present in variant 6E10, which shifts the optimal pH from
pH �4 to pH �8. Structural analysis, molecular dynamics simula-
tions, and substrate docking show that insertion of A142V leads
to changes in the conformational flexibility of loop regions of
PpDyP that, despite resulting in the lower overall stability of the
enzyme, have facilitated the access of substrates to the heme
cofactor promoting increased catalytic rates. Furthermore, analysis
of 6E10 points to alterations in the electrostatic and hydrogen
bond network in the heme pocket: a more positive electrostatic
environment emerged, and a deviation of the optimal pH from
acidic in wild-type enzyme to more neutral and alkaline in this
variant. Understanding the importance of local flexibility around
the DyPs heme pocket in modulating enzymes’ activity, specificity,
and stability is critical for advancing fundamental biochemical
insights and allowing for the more efficient design of novel
enzymes with tailored physicochemical properties. It is expected
that DyPs will be an essential tool to achieve selective oxidation
of lignin-derived phenolics and afford high-value products in the
lignocellulose biorefinery realm.
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