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Abstract: Human Metapneumovirus (HMPV) is a leading respiratory pathogen that causes lower
respiratory tract infections worldwide. Acute HMPV infection induces an exacerbated inflammatory
neutrophilic response leading to bronchiolitis and pneumonia. However, the mechanism by which the
virus regulates neutrophil infiltration into the airways still remains unexplored. In this work, we used
an experimental mouse model of HMPV infection to demonstrate that the attachment (G) protein of
HMPV contributes to the recruitment of neutrophils into the airways and modulate the production of
neutrophil chemoattractants and Type I IFN responses, specifically IFN-α. These findings provide
the first evidence that the HMPV G protein contributes to the in vivo neutrophilic response to HMPV
infection and furthers our understanding on virus induced inflammatory responses in the airways.

Keywords: human metapneumovirus; HMPV; lung; paramyxovirus; neutrophils; attachment protein;
G protein; respiratory; mouse

1. Introduction

Human metapneumovirus (HMPV) is a single negative-stranded RNA, enveloped virus classified
in the Paramyxoviridae family. Its genome, of 13,335 nt, codes for nine different proteins: the fusion (F),
attachment (G), small hydrophobic (SH), nucleocapsid (N), phosphoprotein (P), polymerase (L), matrix
(M), and second matrix (M2-1, M2-2) [1]. HMPV was first identified in 2001 from nasopharyngeal
aspirates of hospitalized infants [2], and has soon emerged to be a leading respiratory pathogen
worldwide infecting infants, elders, and immunocompromized individuals [3]. Epidemiological data
indicate that this respiratory virus represents a major respiratory pathogen worldwide. HMPV is
responsible for 5 to 15% of pediatric hospitalizations for respiratory tract infections [4–7]. Indeed, it is
second only to Respiratory Syncytial virus (RSV) infection in infants admitted with lower respiratory
tract viral infections causing mortality and morbidity [4,8–10]. In elderly adults aged ≥65 years
old, HMPV accounts for about 4.1% hospitalizations with respiratory tract infections, impacting
more severely those subjects with underlying conditions, such as cardiovascular diseases, organ
transplantation, or other hematologic malignancies [11–14]. One hallmark of HMPV infection is that it
is characterized by aggravated inflammatory responses leading to bronchiolitis and pneumonia [8].
Currently there is no approved vaccine available to protect from HMPV infection.

Inflammatory outcomes during HMPV infection are mediated by virus-induced cytopathology
and the secretion of cytokines and chemokines [15,16]. Clinical evidence indicates that HMPV induces
neutrophil infiltration and associated mediators within the airways of infants with bronchiolitis [17],
providing evidence of the neutrophilic inflammatory response in vivo and highlighting the importance
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of these cells as a potential target of therapeutic intervention for treatment of bronchiolitis in infected
children. The increased neutrophil infiltration by HMPV in the airways has been reproduced in the
mouse model of infection, including in adult [18–20] and aged mice [21], where HMPV infection
induces similar neutrophil recruitment into the airways of both age groups of mice [21]. However, the
role of HMPV in regulating the recruitment of neutrophils to the lungs remains elusive. On the other
hand, the interferon (IFN) response appears to regulate the neutrophil infiltration in some viral [22,23]
and bacterial [24] infections, as well as in tumor bearing mice [25,26]. In that regard, HMPV infection
induces a robust production of type I interferon in infected mice [27,28], which appears to be regulated
by the expression of the HMPV attachment protein (G protein) [28,29]. Therefore, we reasoned that
HMPV G protein contributes to the neutrophil recruitment into the airways during HMPV infection
through the IFN response. For that, we used an experimental mouse model to quantify IFN-α
production, neutrophil recruitment, and chemokine response to a recombinant HMPV lacking the
G protein. We found that the lack of the attachment protein increased the production of IFN-α but
decreased the production of neutrophil chemoattractants and the recruitment of neutrophils to the
alveolar spaces. These findings suggest a key role for HMPV attachment (G) protein in contributing to
the inflammatory responses in vivo.

2. Materials and Methods

2.1. Virus Stocks

Recombinant HMPV lacking the attachment G protein (rHMPV-∆G) and full-length recombinant
HMPV (rHMPV) were generated by reverse genetics, as we previously described [28]. The viruses
were grown and titrated in LLC-MK2 cells (ATCC, Manassas, VA, USA) in the presence of trypsin
(Worthington, Lakewood, NJ, USA). Viruses were sucrose purified and not used beyond passage 5. [28].
In some experiments, rHMPV was exposed for 10 min to UV irradiation, as previously reported [30].

2.2. Ethic Statement

Animal care and use were conducted in accordance with the National Institutes of Health and
Louisiana State University institutional guidelines. The Louisiana State University Animal Care and
Use Committee specifically approved this study under the protocol number: 15-062 (15 October 2015).
Mice were housed in a temperature-controlled room with proper darkness-light cycles, fed with a
regular diet, and maintained under the care of the Division of Laboratory Animal Medicine facility,
Louisiana State University, Baton Rouge, LA. The mice were sacrificed by an intraperitoneal injection
of ketamine and xylazine, and exsanguinated via the femoral vessels.

2.3. Mice and Infection Protocol

BALB/c mice were purchased from Harlan Laboratories. Female 8- to 12-week-old mice
were used in all of the experiments. Mice were anesthetized with a combination of ketamine
and xylazine, and infected intranasally with 50 µL of hMPV diluted in phosphate-buffered saline.
A final administration dose of 5 × 104 PFU/mouse was used for the recombinant virus infections.
Mock-infected mice received 50 µL total volume of PBS.

2.4. Mouse Sample Collection

Mice were euthanized by intraperitoneal injection of ketamine and xylazine, and exsanguinated
via the femoral vessels, as previously described [20,28]. Bronchalveolar lavage (BAL) samples were
collected by flushing the lungs twice with 1 mL PBS and centrifuged 3500 rpm for 5 min at 4 ◦C.
Cell-free BAL supernatants were stored at−75 ◦C until further analysis. For viral gene expression using
qRT-PCR, lung tissue was snap frozen in liquid nitrogen and stored at −75 ◦C until further analysis.
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2.5. Differential Leukocyte Counts

Bronchalveolar lavage (BAL) fluid was used for differential leukocyte counts using cytospin
methods. Cytospin samples were subsequently prepared from BAL cells and dyed with Wright-Giemsa
staining and subjected to differential leucocyte counts under a light microscope. A total of 200 cells per
slide were counted. The total cell numbers were enumerated from BAL cell counts obtained by trypan
blue exclusion.

2.6. Detection of Cytokines and Chemokines

Levels of cytokines and chemokines in BAL fluid were determined with the Milliplex
MAPTM 32-Mouse-Plex cytokine detection system (Millipore, Billerica, MA, USA), according to the
manufacturer’s instructions. The panel included the following cytokines: IL-1α, IL-1β, IL-2, IL-3, IL-4,
IL-5, IL-6, IL-7, IL-9, IL 10, IL-12 p40, IL-12 p70, IL-13, IL-15, IL-17, M-CSF, G-CSF, GM-CSF, IFN-γ,
TNF, CXCL1, CXCL2, CXCL5, CXCL9, CXCL10, CCL2, CCL3, CCL4, CCL5, CCL11, LIF, and VEGF.
The range of sensitivity of this assay is 3.2 to 10,000 pg/mL. Cell-free BAL supernatants were also
tested for the production of type I (IFN-α) interferon using ELISA tests according to the manufacturer’s
instructions (PBL Assay Science, Piscataway, NJ, USA).

2.7. Real-Time qRT-PCR

Lung tissue stored at −75 ◦C was used for viral gene expression using qRT-PCR, as described
previously [13]. Briefly, RNA was extracted from the lung tissue using RNeasy Plus kit (Qiagen,
Hilden, Genmany) and viral gene expression was determined using specific primers and probes
(Integrated DNA Technologies, Coralville, IA, USA) on a 7900HT Fast Real-Time PCR following
manufacturer’s instructions. Expression of target genes was quantified using the comparative cycle
threshold method and results were normalized to the endogenous GAPDH with expression levels
normalized to transcripts from mock-infected mice.

2.8. Statistical Analysis

Statistical significance was calculated by unpaired t test and one-way ANOVA to ascertain the
differences between the animal groups, followed by a Tukey-Kramer test to correct for multiple
comparisons using Graph Pad InStat 3 (GraphPad Software, La Jolla, CA, USA).

3. Results

3.1. Inhibition of IFN-α Responses by HMPV G Protein In Vivo

Previous studies in vitro have identified HMPV G protein as a negative regulator of the IFN
response [28,29]. In order to determine the effect of the HMPV G protein in the IFN response in vivo,
BALB/c mice were infected with rHMPV, rHMPV-∆G or mock infected. After 24 h of infection, BAL
supernatants were collected and tested for the IFN production by ELISA. As shown in Figure 1a,
the lack of the attachment glycoprotein resulted in a significant increase in the production of IFN-α.
We observed that mice infected with rHMPV-∆G induced a 1.3-fold increase in the production of IFN-α
as compared to full-length rHMPV infected mice. However, no difference in viral gene expression was
noted when compared between rHMPV and rHMPV-∆G after 24 h of infection (Figure 1b), confirming
that the infection of mice with rHMPV and rHMPV-∆G was comparable. Thus, validating the inhibitory
effect of G protein on the IFN response. Furthermore, in order to confirm that the observed production
of IFN-α by rHMPV was due to the viral infection, a group of mice were inoculated with UV-inactivated
rHMPV and the production of IFN was determined. Our data show that the inoculation of mice with
UV-inactivated rHMPV failed to induce any production of IFN-α showing that IFN-α production was
dependent on the rHMPV replication (Figure 1a). Together, these results demonstrate that HMPV-G
protein regulates IFN-α responses in vivo.
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Figure 1. Human Metapneumovirus (HMPV) G protein regulates interferon responses in vivo. (a) 
BALB/c mice were infected with rHMPV-ΔG or rHMPV and Bronchalveolar lavage (BAL) collected 
at day 1 after infection. Interferon-α (IFN-α) responses were determined by ELISA in BAL collected 
at day 1 after infection; (b) HMPV viral gene expression in infected mice. BALB/c mice were infected 
with rHMPV-ΔG or rHMPV and lung tissue collected at day 1 after infection. Expression of HMPV N 
was done by qRT-PCR. n = 4–10 mice/group. Mean ± SEM are shown. ** p < 0.01, *** p < 0.005. 

3.2. HMPV G Protein Contributes to Neutrophil Recruitment 

To determine whether the HMPV attachment glycoprotein plays a role in the recruitment of 
neutrophils, BAL samples were collected 24 h after inoculating mice with rHMPV, rHMPV-∆G or 
PBS, and differential cell analysis was performed. We focused on the neutrophil recruitment at 24 h 
based on previous observations that indicate that neutrophil recruitment peaks at day 1 after HMPV 
infection [20]. As shown in Figure 2a, analyses of cytospin preparations revealed a significant 
decrease in the total number of neutrophils recruited to alveolar spaces in mice infected with rHMPV-
ΔG (1.0 × 105 ± 0.2) when compared with those with rHMPV infection (3.1 × 105 ± 0.3), indicating that 
G protein contributes to the recruitment of neutrophils. Also, the levels of recruitment of neutrophils 
in rHMPV-ΔG (1.0 × 105 ± 0.2) were comparable to mice infected with UV light inactivated rHMPV 
(0.8 × 105 ± 0.3). On the other hand, there was no evident change in the recruitment of 
monocytes/macrophages (Figure 2c) or lymphocyte population (Figure 2b), suggesting that G protein 
contributes mainly to the recruitment of neutrophils to the alveolar spaces. 

 
Figure 2. HMPV G protein contributes to neutrophil infiltration into the airways of infected mice. 
BALB/c mice were infected with rHMPV-ΔG or rHMPV and BAL collected at day 1 after infection. 
Total number of (a) neutrophils; (b) lymphocytes and (c) monocytes/macrophages was determined 
by cytospin analysis and total number of cells enumerated by total BAL cell counts. n = 4–10 
mice/group. Mean ± SEM are shown. *** p < 0.005. 

3.3. HMPV G Regulates Lung Cytokine and Chemokine Profile in the Lungs of Infected Mice 

To further elucidate the role of G protein in the production of neutrophil chemoattractants and 
proinflammatory cytokines, we sought to assess the production of lung cytokine and chemokine 
profile after 24 h of rHMPV-ΔG infection and compare it to that of rHMPV. Cell-free supernatants 
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Figure 1. Human Metapneumovirus (HMPV) G protein regulates interferon responses in vivo.
(a) BALB/c mice were infected with rHMPV-∆G or rHMPV and Bronchalveolar lavage (BAL) collected
at day 1 after infection. Interferon-α (IFN-α) responses were determined by ELISA in BAL collected at
day 1 after infection; (b) HMPV viral gene expression in infected mice. BALB/c mice were infected
with rHMPV-∆G or rHMPV and lung tissue collected at day 1 after infection. Expression of HMPV N
was done by qRT-PCR. n = 4–10 mice/group. Mean ± SEM are shown. ** p < 0.01, *** p < 0.005.

3.2. HMPV G Protein Contributes to Neutrophil Recruitment

To determine whether the HMPV attachment glycoprotein plays a role in the recruitment of
neutrophils, BAL samples were collected 24 h after inoculating mice with rHMPV, rHMPV-∆G
or PBS, and differential cell analysis was performed. We focused on the neutrophil recruitment
at 24 h based on previous observations that indicate that neutrophil recruitment peaks at day 1
after HMPV infection [20]. As shown in Figure 2a, analyses of cytospin preparations revealed a
significant decrease in the total number of neutrophils recruited to alveolar spaces in mice infected
with rHMPV-∆G (1.0 × 105 ± 0.2) when compared with those with rHMPV infection (3.1 × 105 ± 0.3),
indicating that G protein contributes to the recruitment of neutrophils. Also, the levels of recruitment of
neutrophils in rHMPV-∆G (1.0× 105 ± 0.2) were comparable to mice infected with UV light inactivated
rHMPV (0.8 × 105 ± 0.3). On the other hand, there was no evident change in the recruitment of
monocytes/macrophages (Figure 2c) or lymphocyte population (Figure 2b), suggesting that G protein
contributes mainly to the recruitment of neutrophils to the alveolar spaces.
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Figure 2. HMPV G protein contributes to neutrophil infiltration into the airways of infected mice.
BALB/c mice were infected with rHMPV-∆G or rHMPV and BAL collected at day 1 after infection.
Total number of (a) neutrophils; (b) lymphocytes and (c) monocytes/macrophages was determined by
cytospin analysis and total number of cells enumerated by total BAL cell counts. n = 4–10 mice/group.
Mean ± SEM are shown. *** p < 0.005.
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3.3. HMPV G Regulates Lung Cytokine and Chemokine Profile in the Lungs of Infected Mice

To further elucidate the role of G protein in the production of neutrophil chemoattractants and
proinflammatory cytokines, we sought to assess the production of lung cytokine and chemokine
profile after 24 h of rHMPV-∆G infection and compare it to that of rHMPV. Cell-free supernatants from
BAL samples were analyzed by multiplex assay, using multi-Plex cytokine detection, as described in
methods. As shown in Figure 3, the levels of TNF (↓58%), IL-17(↓44%), CXCL2(↓40%), VEGF (↓46%),
CCL3(↓54%), and CCL4 (↓68%), were decreased (as indicated) in mice infected with rHMPV-∆G as
compared with those infected with full-length rHMPV, suggesting that G protein contributes to the
production of these chemokines in vivo. However, when compared between both groups of infected
animals, no significant difference was observed in the production of IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-9,
IL 10, IL-12 p70, IL-13, IL-15, M-CSF, G-CSF, GM-CSF, IFN-γ, CXCL1, CXCL5, CXCL9, CXCL10, CCL2,
CCL5, CCL11, and LIF. Other cytokines were not induced by the recombinant viruses in the infected
mice (IL-2, IL-3, IL-7, and IL-12 p40).
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Figure 3. HMPV G alters cytokine profile in infected mice. BALB/c mice were infected with rHMPV-∆G
or rHMPV and BAL collected next day. BAL samples from each group of mice were assessed for
cytokine/chemokine production by a multi-Plex cytokine detection system. n = 4–10 mice/group.
Mean ± SEM are shown. * p < 0.05, ** p < 0.01, *** p < 0.005.

4. Discussion

The regulation of the inflammatory immune response by infectious agents involves several factors
from the host and the pathogen. Viral infections are known to alter the innate immune response [31,32].
In fact, several viral proteins are known to inhibit the IFN response in vitro [29,33,34] and in vivo [35].
In that regard, despite previous studies have demonstrated that the attachment glycoprotein (G) of
HMPV inhibits the IFN response in vitro [28,29], this work demonstrates, for the first time, that the
HMPV G protein inhibits the IFN response in vivo. Due to the restriction of high viral titers of the
purified recombinant viruses, the final administered viral inoculum was 5× 104 PFU/mouse. However,
that amount of viral inoculum was enough to induce an IFN-α response that allowed us to define the
inhibitory effect of the HMPV G protein in vivo. That inhibitory effect was validated by the fact that
both viral inoculums (rHMPV and rHMPV-∆G) were comparable as they were purified and titrated by
the same methods, and no difference was observed in the viral gene expression when measured in the
lung samples from the infected mice (Figure 1b).

There is evidence that interferons have pleiotropic immune functions in several models. In an
experimental mouse model, type I IFN suppresses neutrophil recruitment by negatively regulating
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CXC chemokine expression in influenza [23,36], herpes simplex-1 [22], Listeria monocytogenes [24],
and tumor-associated diseases [26]. Thus, the observed increased production of IFN-α by rHMPV-∆G,
due to its regulatory effect [22,37], may contribute to the suppression of the recruitment of neutrophils
induced by HMPV. On this subject, several studies indicate that neutrophils are the predominant
cell population recruited to the alveolar spaces in HMPV-infected mice during the early phase of the
infection (Figure 2 and [18–20]). However, to the best of our knowledge, these findings represent the
first evidence that the HMPV attachment protein contributes to the recruitment of neutrophils into
the lungs. Moreover, the UV treatment of rHMPV significantly reduced the number of neutrophils,
indicating that the recruitment of these cells is dependent on viral replication and the de novo synthesis
of the G protein. These observations are in line with studies with other respiratory viruses, including
those with respiratory syncytial virus (RSV), an HMPV-close-related human paramyxovirus, in which
it has been shown that the fusion (F) protein, of the RSV 2–20 strain, contributes to the infiltration of
neutrophils into the lungs of infected mice [38]. Similarly, influenza A virus, a ssRNA ortomyxovirus,
appears to regulate neutrophil infiltration into the alveolar spaces through the expression of the
PB1-F2 protein [39]. This suggests that different surface viral proteins can specifically contribute to the
infiltration of neutrophils to the respiratory tract.

The observed contribution of the HMPV G protein to the recruitment of neutrophils in the infected
mice, suggest that G protein may also regulate the expression of those cytokines and/or chemokines
that control the recruitment of neutrophils to the alveolar spaces. Opposite to the effect of HMPV G
protein on the IFN response, we observed some changes in CCL3, CCL4, VEGF, TNF, IL17, and CXCL2,
which are all recognized mediators involved in the neutrophil recruitment to the sites of insult. In this
work, we observed that the lack of G protein in HMPV resulted in the reduced expression of TNF and
IL-17, which are known to promote the expression of neutrophil chemotactic cytokines. In fact, IL-17
together with TNF can synergistically induce the endothelial expression of neutrophilic chemokines
including CXCL2 [40], which may explain also the reduced expression of CXCL2 observed in the
rHMPV-∆G-infected mice. In addition, we speculate that due to its suppressive effect on TNF [41],
the IFN-α response in rHMPV-∆G could be linked to the reduced production of TNF. In the same
context, IFN-α has been reported to inhibit IL-17 production in PBMC’s from patients with chronic
active Hepatitis B infection (CAHB), suggesting the pleiotropic effect IFN-α has on proinflammatory
cytokines associated with neutrophil activation and chemotaxis [42]. Moreover, type I IFN has also
been shown to repress CXCL2 production in in vivo [23] and in vitro [36] settings, suggesting that the
increased IFN-α response in rHMPV-∆G could contribute to the observed diminished production of
CXCL2. Furthermore, the absence of G protein led to a decrease in the expression of VEGF, which could
also impact the neutrophil numbers to the site of infection since VEGF contributes to the recruitment
of proangiogenic neutrophils from the circulation to the tissues [43]. These results are in line with
data from melanoma studies in vitro, where IFN-α treatment significantly reduced the expression of
VEGF suggesting a suppressive effect of Type I IFN on this cytokine [44,45]. Finally, the neutrophil
recruitment after rHMPV-∆G infection could have also been altered by the reduced expression of CCL3
and CCL4, which are neutrophil-active chemokines [46]. However, studies in vitro in an epithelial cell
line (A549) indicate that the HMPV G protein rather inhibited the expression of CCL3 and some other
cytokines [29]. This discrepancy might be due not only to the inherent differences of the experimental
models, but also to the exerted effect of HMPV G protein on the complex microenvironment in vivo,
where several cellular populations, including macrophages, lymphocytes, endothelial, and epithelial
cells, mediate the overall cytokine/chemokine production. In fact, similar observations to the current
work have been reported in a mouse model of pneumonia virus, where the nonstructural (NS) proteins
NS1 and NS2 (rPVM ∆NS1∆NS2; rPVM ∆NS2) antagonize IFN responses in vivo, but on the other
hand, induced lower amounts of proinflammatory cytokines in the airways when compared to
rPVM virus [35]. However, data on viral proteins regulating neutrophilic responses to the sites of
inflammation is limited and further work is warranted. Overall, data from this work suggest that
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the attachment protein of HMPV regulates neutrophil recruitment to the lungs by modulating the
production of neutrophil chemoattractants.

In summary, the above results demonstrate a novel role for the attachment protein of HMPV
as a contributing factor for neutrophil recruitment to the sites of infection. This effect appears to
be influenced by the regulation of neutrophil chemoattractants and an exacerbated response of
type I IFN production. We have recently demonstrated that neutrophils exert a protective effect
to HMPV-induced pathogenesis in mice [20]. However, an exacerbated accumulation of neutrophils
contribute to severe pulmonary inflammation [17]. Therefore, a controlled balance of neutrophil
accumulation in the airways after HMPV infection would be helpful for the outcome of the infected
individuals. In this regard, the attachment protein of HMPV represents an attractive target for future
therapeutic applications to reduce an excessive accumulation of neutrophils in the airways.
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