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Abstract: Background: It is controversial whether exposure to insulin resistance accelerates cognitive
deterioration. The present study aimed to investigate the association between insulin resistance and
gray matter volume loss to predict the cognitive decline. Methods: We recruited 160 participants
(78 with Alzheimer’s disease and 82 without Alzheimer’s disease). Insulin resistance, regional gray
matter volume, and cognitive function were assessed. A hierarchical moderated multiple regression
(MMR) model was used to determine any associations among insulin resistance, structural changes in
the brain, and cognitive decline. Results: The volumes of 7 regions in the gray matter were negatively
related to insulin resistance in Alzheimer’s disease (p =0.032). Hierarchical MMR analysis indicated
that insulin resistance did not directly affect the cognitive decline but moderated the cognitive decline
through the decrease in gray matter volume in the key brain regions, i.e., inferior orbitofrontal gyrus
(left), middle cingulate gyrus (right), hippocampus (right), and precuneus (right) (p < 0.05 in each
case). Conclusion: Insulin resistance appears to exacerbate the cognitive decline associated with
several gray matter volume loss.
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1. Introduction

Insulin resistance is associated with obesity, hyperlipidemia, chronic low-grade inflammation,
and low levels of physical activity, which is hallmark of the metabolic syndrome and type 2 diabetes
mellitus [1,2]. Insulin resistance is a major feature of type 2 diabetes mellitus, whereas type 1 is
due to damage of pancreatic B-cells of Langerhans islets and loss of insulin [3]. Insulin signaling
dysfunction has been found to inversely affect several neural processes, and may accelerate brain
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atrophy in Alzheimer’s disease (AD) [4]. It has been reported that patients with AD have high insulin
resistance, which indicates increased insulin levels and reduced binding efficacy on neuronal synapses
and astrocytes [5]. Brain insulin resistance might be a feature of diabetes mellitus and is emerging as a
potentially important feature of AD. Some investigators refer to AD as type 3 diabetes, or an insulin
resistant brain state, because AD is closely related to dysfunction of both insulin signaling and glucose
metabolism in the brain [6].

Few studies have assessed the relationship between insulin resistance and brain atrophy.
For regional gray matter volume, clinical studies have almost focused on the hippocampus. Studies
have demonstrated a significant negative relationship between insulin resistance and the right or total
hippocampal volume, as well as overall cognitive performance [7,8]. One study suggests that insulin
resistance is associated with atrophy in regions affected by early AD in middle-aged cognitively
normal participants [9]. Although the effects of insulin resistance on the brain volume are not
well characterized, studies have demonstrated that insulin resistance is significantly associated with
brain atrophy.

Inconsistent findings between insulin resistance and cognitive decline have been reported. Insulin
resistance is found to accelerate cognitive decline and increase AD risk [10,11]. Peripheral insulin
resistance is often associated with cognitive decline in middle-aged and elderly individuals [12–15],
mild cognitive impairment (MCI) patients, and patients with accelerated conversion of MCI to
AD [16,17]. However, a few studies have shown that insulin resistance or insulin-related variables
are not associated with cognitive performance [18–20].The inconsistent results suggest that insulin
resistance act as a moderator rather than a direct effector of cognitive decline. Therefore, further
studies are needed to investigate the causative relationship between insulin resistance and cognitive
impairment or brain volume.

The major aim of this study was to investigate the relationship of insulin resistance with structural
changes of brain and cognitive decline. We hypothesized that insulin resistance may induce the
atrophy of gray matter volume, especially related with AD, and play a moderating role between brain
atrophy and cognitive decline. However, insufficient and inconsistent findings on the specific role of
insulin resistance hinder the formulation of any definitive hypotheses.

2. Material and Methods

2.1. Participants

A total of 160 participants were recruited at the dementia clinic at Seoul Metropolitan
Government-Seoul National University Boramae Medical Center of South Korea. These participants
were aged ≥65 years. AD was diagnosed by psychiatrists according to the probable or possible AD
criteria of National Institute of Neurological and Communication Disorders and Stroke/Alzheimer’s
Disease and Related Disorders Association [21].

Participants were eligible for inclusion in this study if they could read Korean, were
community-dwelling, were free of comorbid conditions that could have affected cognition at baseline,
and were capable of performing the Consortium to Establish a Registry for Alzheimer’s disease
(CERAD) battery. Exclusion criteria included no reliable informant, structural abnormalities on brain
imaging, a history of other neurological disorders or severe physical illnesses that may affect the
cognitive function, and a history of alcohol or drug abuse. All participants were invited to undergo
whole-body magnetic resonance imaging (MRI). Nine MRI head scans were excluded from evaluation
because of low image quality with artifacts.

This study was approved by the Institutional Review Board of Seoul National University Hospital
and written informed consent was obtained from all participants.
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2.2. Measures

Demographic data (i.e., sex, age, and education) were collected from each participant. In addition,
basal glucose and insulin levels were measured, and the Korean version of Consortium to Establish
a Registry for Alzheimer’s disease Assessment Packet (CERAD-K) was used to assess the cognitive
function of participants.

2.2.1. Insulin Resistance and Homeostasis Model Assessment of Insulin Resistance

The participants fasted for 12 hours before blood collection. Baseline fasting blood samples
were drawn, and the fasting duration was recorded. Serum levels of total cholesterol, high-density
lipoprotein (HDL) cholesterol, triglycerides, glucose, hemoglobin A1c (HbA1c), and insulin
were evaluated.

A well-validated index of insulin resistance (homeostasis model assessment of insulin resistance,
HOMA-IR) was calculated using fasting plasma glucose and insulin levels to assess the degree of
insulin resistance [22]. HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) is calculated
as follows:

HOMA-IR = (fasting plasma insulin (µIU/mL) × fasting plasma glucose (mg/dL) × 0.0555)/22.5.
Insulin resistance plays a major role in the development of diabetes, and the presence of insulin

resistance precedes the onset of the disease by 10–20 years [23,24]. Insulin resistance is also known as
the best predictor of diabetes in individual [23,24]. HOMA-IR is used to quantify insulin resistance
rather than merely identify the presence of diabetes.

2.2.2. Cognitive Assessment

Each participant in this study was assessed by psychiatrists with advanced training in dementia
according to CERAD-K (the Korean version of Consortium to Establish a Registry for Alzheimer’s
Disease) clinical assessment battery, which is developed and validated for the Korean elderly
populations [25].

The CERAD-K battery provides a reliable estimation of cognitive function in normal aging and
AD. The total score of the CERAD-K neuropsychological battery range from 0 to 100.The CERAD-K
battery consists of the following subtests: 15-item Boston naming test (15 points), word list memory (30
points), word list recall (10 points), word list recognition (10 points), constructional praxis (11 points),
and verbal fluency (24 points).Mini-Mental State Examination (MMSE), designed to screen cognitive
impairment, is a neurocognitive test with a score range from 0 to 30, and a higher score indicates better
cognition. This study used the Korean version of MMSE, which is composed of tests on orientation to
time and place (10 points), registration (3 points), recall (3 points), attention (5 points), repetition (1
point), language (2 points), and complex commands (6 points) [26].

2.3. Brain Imaging Analysis

A total of 160 participants underwent structural MRI (3 Tesla, Achieva, Philips Healthcare, the
Netherlands). The acquisition parameters for structural T1 imaging were listed as follows: repetition
time, 9.9 ms; echo time, 4.6 ms; voxel size, 1.00 × 0.98 × 0.98 mm. Structural images were preprocessed
for voxel-based morphometric analysis using Statistical Parametric Mapping 8 (SPM8; Wellcome
Department of Imaging Neuroscience, UCL, UK, https://www.fil.ion.ucl.ac.uk/spm) implemented in
Matlab (2014a, The MathWorks, Inc., Natick, MA, USA). The gray matter images were segmented and
normalized into a standard space using diffeomorphic anatomical registration using exponentiated
lie algebra algorithms and tissue probability maps in the SPM8 software. Subsequently, the images
were modulated to preserve tissue volume after warping and were finally smoothed with an isotropic
Gaussian kernel of 10 × 10 × 10 mm at full-width at half-maximum. Using MarsBaR (version 0.43,
Cambridge, UK) and AAL116 (Automated Anatomical Labelling) atlas, gray matter volumes in cortical
and subcortical regions were extracted.

https://www.fil.ion.ucl.ac.uk/spm
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2.4. Statistical Analyses

Statistical Package for the Social Sciences 18 (SPSS Inc., Chicago, IL, USA) was used for data
analysis, and α was set at 0.05.

Initially, to obtain the key brain regions, multivariate analysis of covariance (MANCOVA) and
the generalized linear model were used. Subsequently, features like age, sex, education, and total
intracranial volume were used as covariates. The hierarchical moderated multiple regression was used
to assess the link between moderator (M, insulin resistance), predictors (X, regional brain volumes),
and clinical results (Y, cognition).

3. Results

3.1. Demographic and Clinical Characteristics of Participants

The demographic and clinical characteristics of the study population are shown in Table 1. The
included 160 participants in this study had a mean age of 74 ± 6.74 years with 28.9% males and 67.5%
females. Most participants did not have a history of diabetes (68.1%) and were not obese (body mass
index < 25 kg/m2; 68.75%). The mean HOMA-IR score (2.63 ± 1.96) was low. In addition, 34.38%
of participants had above high school education (45.8%). Mean levels of triglycerides, low-density
lipoprotein and HDL cholesterol, and total cholesterol were normal. The mean MMSE and CERAD
scores were 21.13 ± 5.51 and 48.59 ± 17.24, respectively.

Table 1. Demographic and Clinical Characteristics.

Categories Mean (Standard Deviation or Number (%))

Age (years) 74.28 (6.74)
Sex (male/female) 48/112 (28.9/67.5)
Education (years) 7.87 (4.95)

Diabetes Mellitus
DM (N, %) 51 (30.7)

Prediabetes (N, %) 80 (48.2)
Non-DM (N, %) 29 (17.5)

HbA1c (%) 6.24 (1.03)
Fasting Blood Sugar (mg/dL) 112.18 (31.96)

Fasting Insulin (mIU/L) 9.27 (5.79)
HOMA-IR 2.63 (1.96)

Total cholesterol (mg/dL) 181.9 (38.89)
HDL-cholesterol (mg/dL) 50.41 (16.86)

Triglycerides 122.69 (75.04)

Dementia
Non-Dementia 82 (50.25)

AD 78 (48.75)
MMSE 21.13 (5.51)

CERAD 48.59 (17.24)
TIV (VBM) 1.56 (0.13)

Note: Data are presented as mean (standard deviation) for continuous variables and number (%) for categorical
variables. DM, diabetes mellitus; HbA1c, hemoglobin A1c; HOMA-IR, homeostasis model assessment of insulin
resistance; HDL, high density lipoprotein; AD, Alzheimer’s disease; MMSE, mini mental state examination;
CERAD, consortium to establish a registry for Alzheimer’s disease; TIV, total intracranial volume; VBM,
voxel-based morphometry.

3.2. Structural Changes in the Brain Associated with Insulin Resistance Exposure

In order to determine the key brain regions that are affected by insulin resistance in AD,
MANCOVA with the generalized linear model was performed (control individuals with high insulin
resistance vs. AD with low insulin resistance). Only regions with p < 0.1 were selected. If either of the
right or left regions was significant, both regions were included (Table 2).
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Table 2. Structural changes relying on insulin resistance exposure in Alzheimer’s disease.

Dependent Variable
b t p

Brain Region

Left orbital part of inferior frontal gyrus −0.012 1.979 0.052
Right orbital part of inferior frontal gyrus −0.018 2.256 0.027

Left anterior cingulate gyrus −0.006 0.907 0.367
Right anterior cingulate gyrus −0.012 1.714 0.091

Left middle cingulate −0.019 2.705 0.009
Right middle cingulate −0.013 2.035 0.046

Left posterior cingulate gyrus −0.015 1.770 0.081
Right posterior cingulate gyrus −0.014 2.286 0.025

Left hippocampus −0.010 1.831 0.071
Right hippocampus −0.014 2.393 0.019

Left parahippocampal gyrus 0.079 0.910 0.366
Right parahippocampal gyrus −0.017 2.139 0.036

Left precuneus −0.010 2.000 0.049
Right precuneus −0.009 1.928 0.058

Note: MANCOVA with generalized linear model was done by using age, education, gender, and total intracranial
volume as covariates.

Statistically significant insulin resistance-related reduction was demonstrated in sevenregions:
right orbitofrontal gyrus (b = −0.018, p = 0.027), left middle cingulate (b = −0.019, p = 0.009), right
middle cingulate (b = −0.013, p = 0.046), right posterior cingulate gyrus (b = −0.014, p = 0.025), right
hippocampus (b = −0.014, p = 0.019), right parahippocampus (b = −0.017, p = 0.036) and left precuneus
(b = −0.01, p = 0.049). In a 90% confidence interval, additional 5 areas were also included: the left
orbitofrontal gyrus (b = −0.012, p = 0.052), right anterior cingulate gyrus (b = −0.012, p = 0.091), left
posterior cingulate gyrus (b = −0.015, p = 0.081), left hippocampus (b = −0.01, p = 0.071), and right
precuneus (b = −0.009, p = 0.058).

3.3. Moderating Effects of Insulin Resistance on the Relationship between Neuropathological Variations in Key
Brain Regions Sensitive to Insulin and Cognitive Deterioration

Table 3 shows the control and moderating effect of the insulin resistance on brain structure-related
cognitive deterioration.

Age (b = −0.140, p = 0.004) and education (b = 0.629, p < 0.001) could be used to predict the
cognitive function in the initial phase. The value of explanatory power of control variables was 30.6%
(p < 0.001). In the second phase, the right orbitofrontal gyrus (b = 21.655, p = 0.053), left anterior
cingulate gyrus (b = 18.026, p = 0.025), right anterior cingulate gyrus (b = 20.131, p = 0.005), left middle
cingulate gyrus (b = 63.659, p = 0.059), and right parahippocampal gyrus (b = 31.469, p = 0.079) were
significantly related to cognitive function. The explanatory power that cognitive function is predictable
by brain structure was 12.3% (p < 0.012).

HOMA-IR (b = 0.706, p = 0.706) and the decision coefficient had no statistical relevance in the third
phase. In the final phase, the analysis of the adjustment effect revealed the interaction between the
brain volume and HOMA-IR (as a moderator). After applying the adjustment effect to the model, the
cognitive function explanation power increased to up to 52.6% by a margin of 9.6% (p = 0.042). Table 3
shows the results of the interactions of HOMA-IR with several brain regions: the left orbitofrontal gyrus
(b = −160.049, p = 0.014), right middle cingulate gyrus (b = −293.304, p = 0.047), right hippocampus
(b = −216.084, p = 0.099), and right precuneus (b = −98.985, p = 0.095).
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Table 3. Analysis for moderating effect of insulin resistance by the hierarchical moderated multiple
regression model.

Coefficients R2 b β p

(constant) 0.526 32.056 0.031
Age −0.126 −0.155 0.017

Gender −0.184 −0.015 0.961
Education 0.614 0.553 <0.001

Total intracranial volume −3.540 −0.084 0.774
Left orbital part of inferior frontal gyrus 24.130 0.163 0.249

Right orbital part of inferior frontal gyrus 28.515 0.176 0.043
Left anterior cingulate gyrus −3.883 −0.031 0.181

Right anterior cingulate gyrus 20.603 0.163 0.017
Left middle cingulate 97.188 0.608 0.017

Right middle cingulate 81.576 0.532 0.020
Left posterior cingulate gyrus 18.788 0.120 0.396

Right posterior cingulate gyrus −24.494 −0.145 0.797
Left hippocampus 8.727 0.080 0.468

Right hippocampus 77.891 0.669 0.039
Left parahippocampal gyrus 7.829 0.074 0.272

Right parahippocampal gyrus 60.357 0.554 0.014
Left precuneus 15.296 0.088 0.087

Right precuneus 27.050 0.166 0.221
HOMA-IR 0.895 0.067 0.471

(Left orbital part of inferior frontal gyrus) × (HOMA-IR) −160.049 −0.445 0.014
(Right orbital part of inferior frontal gyrus) × (HOMA-IR) −97.260 −0.219 0.316

(Left anterior cingulate gyrus) × (HOMA-IR) −7.900 −0.031 0.489
(Right anterior cingulate gyrus) × (HOMA-IR) −115.485 −0.364 0.281

(Left middle cingulate) × (HOMA-IR) −161.328 −0.532 0.177
(Right middle cingulate)×(HOMA-IR) −293.304 −0.881 0.047

(Left posterior cingulate gyrus)×(HOMA-IR) 0.849 0.002 0.489
(Right posterior cingulate gyrus)×(HOMA-IR) 11.730 0.033 0.422

(Left hippocampus) × (HOMA-IR) 125.596 0.413 0.414
(Right hippocampus) × (HOMA-IR) −216.084 −0.671 0.099

(Left parahippocampal gyrus) × (HOMA-IR) −24.386 −0.085 0.518
(Right parahippocampal gyrus) × (HOMA-IR) −133.345 −0.430 0.654

(Left precuneus) × (HOMA-IR) −65.383 −0.142 0.366
(Right precuneus) × (HOMA-IR) −98.985 −0.264 0.095

Note. Hierarchical moderated multiple regression models were done by using age, education, gender, and total
intracranial volume as covariates.HOMA-IR, homeostasis model assessment of insulin resistance.

4. Discussion

In this study, separate voxel-wise analyses indicate that HOMA-IR acts as a moderator between
decreased gray matter, affected by insulin resistance in AD, and cognitive decline, although it
cannot directly predict cognitive decline. Therefore, HOMA-IR is a pure moderator, rather than
a direct predictor, on the relationship between structural changes in the brain and cognitive decline.
Most studies to date have focused on the direct association between insulin resistance and cognitive
decline or brain atrophy [9,16,27,28]. Our study is meaningful because it reveals the moderating effect
of insulin resistance on the relationship between gray matter volumes and cognitive function.

Based on previous studies, insulin receptors are expressed in the astrocytes and neurons and are
densely distributed throughout the brain, including the olfactory bulbs, cerebral cortex, hippocampus,
hypothalamus, amygdala, and septum [29,30]. In our study, regions, including the orbital part of
the inferior frontal gyrus, cingulum, hippocampus, and precuneus, were shown as the candidates of
insulin-sensitive key brain areas. These regions are associated with insulin-related changes in central
nervous system (CNS) pathophysiology. Among these, four regions (the orbitofrontal gyrus, right
middle cingulate gyrus, right hippocampus, and right precuneus) had significant interaction with
insulin resistance, resulting in cognitive decline. The results are partly consistent with those in previous
studies, which indicate that insulin resistance is associated with low volumes of the orbitofrontal
cortex, middle cingulate, and precuneus and has similar patterns in patients with very early MCI up to



J. Clin. Med. 2018, 7, 413 7 of 10

early AD [9,31] and that the increased insulin response is positively associated with longitudinal brain
volume in non-diabetic AD subjects [32].

The fundamental mechanisms underlying the association between insulin resistance, decreased
gray matter volume, and cognitive performance are largely unclear, and further investigation might
explain the association. We incorporated various risk factors in the hierarchical moderated multiple
regression models, and the findings suggest a moderating (rather than direct) effect of insulin resistance
on the relation between decreased brain volume and cognitive decline. The results indicate that insulin
resistance, accompanied by changes in insulin-sensitive brain regions, might accelerate cognitive
decline. However, it is important to note that no definite evidence indicates that brain atrophy relates
to specific etiologies; therefore, further studies are needed to evaluate the association between insulin
resistance and cognitive decline.

Many previous studies have investigated the relationship between diabetes-associated factors
(such as HbA1c, diabetes status, blood glucose, cognitive function, and brain atrophy and/or
metabolism), in addition to insulin resistance and cognitive impairment [33–35]. The current study
indicates that only insulin resistance has a significant effect on the relationship between structural
changes in key brain regions sensitive to insulin and cognitive deterioration. The present results
suggest that insulin resistance is associated with cognitive decline, but HbA1c or blood glucose is not
(Figure 1).
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Figure 1. Representation of Hierarchical Moderated Multiple Regression. The orbital area of inferior
the frontal gyrus (left), the middle cingulate gyrus (right), the hippocampus (right), and the precuneus
(right) are regions where insulin resistance has a moderating effect between structural changes and
cognitive deterioration.

Insulin, a peptide secreted by pancreatic beta cells, enters the CNS by penetrating the blood-brain
barrier. The brain insulin signaling plays critical roles in regulating food intake, body reproduction,
and learning and memory [36] and is essential to proper synaptic metabolism, protein synthesis,
and neuronal survival. Chronic hyperinsulinemia leads to the downregulation of insulin receptors
located in the blood-brain barrier, thus resulting in brain insulin resistance, which might cause
neurodegeneration. Disruption of the insulin signaling makes renders neurons vulnerable to metabolic
stress, resulting in acceleration of neuronal dysfunction. Defects in the insulin receptor signaling
are reported to be associated with decreased cognitive function and the development of dementia,
including AD [37]. Loss of glial cells and axons, white matter rarefaction and shrinkage, and
arteriolosclerosis may cause changes in the brain volume. Therefore, imaging and histopathological
findings should be integratedly analyzed to better understand the pathological process of the effect of
insulin resistance on brain atrophy.

This study has several limitations. First, the sample size was relatively small. This limitation may
lead to a low statistical power and reduced chance of detecting a true interaction. Second, not enough
information is available on the duration of diabetes mellitus or the diet pattern known to be associated
with cognitive impairment. Third, the analyses in this study were cross-sectional. Therefore, this study
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could not examine possible associations between insulin resistance and changes in brain volumes over
time. Future studies should use functional MRI to investigate the impacts of neural networks and their
clinical significance in the analysis of the white matter. Thus, more information about the association
between AD and insulin resistance would be obtained if positron emission tomography imaging with
the 11C-Pittsburgh Compound-B ligand is used in future studies. Despite the limitations of this study,
our findings showed its role as a moderator of insulin resistance, different from previous research.
The study also suggests a link between insulin resistance, cognitive function and brain atrophy, which
is a meaningful finding.

5. Conclusion

Only insulin resistance has a moderating effect on the association between volume loss of several
gray matter regions and cognitive decline. Further investigation is needed to clarify the interaction
between insulin resistance, brain atrophy, and cognitive function.
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