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Abstract: To tackle the challenge of the data accuracy issues of low-cost sensors (LCSs), the objective
of this work was to obtain robust correction equations to convert LCS signals into data comparable
to that of research-grade instruments using side-by-side comparisons. Limited sets of seed LCS
devices, after laboratory evaluations, can be installed strategically in areas of interest without official
monitoring stations to enable reading adjustments of other uncalibrated LCS devices to enhance the
data quality of sensor networks. The robustness of these equations for LCS devices (AS-LUNG with
PMS3003 sensor) under a hood and a chamber with two different burnt materials and before and after
1.5 years of field campaigns were evaluated. Correction equations with incense or mosquito coils
burning inside a chamber with segmented regressions had a high R2 of 0.999, less than 6.0% variability
in the slopes, and a mean RMSE of 1.18 µg/m3 for 0.1–200 µg/m3 of PM2.5, with a slightly higher RMSE
for 0.1–400 µg/m3 compared to EDM-180. Similar results were obtained for PM1, with an upper limit
of 200 µg/m3. Sensor signals drifted 19–24% after 1.5 years in the field. Practical recommendations
are given to obtain equations for Federal-Equivalent-Method-comparable measurements considering
variability and cost.

Keywords: air pollutant sensor; sensor evaluation; aerosol sensors; particle correction equation;
chamber evaluation; interclass correlations

1. Introduction

Particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) is a classified
human carcinogen [1]. The Global Burden of Disease Study 2015 showed that around 5.7–7.3 million
deaths could be attributable to PM2.5 exposure [2,3]. Many areas worldwide experience annual mean
levels of PM2.5 reaching 100 µg/m3 [4,5], much higher than 10 µg/m3, the value recommended by
the World Health Organization [6]. Since monitoring stations equipped with expensive instruments
established by environmental regulatory agencies are only situated in limited areas, the development
of low-cost sensors (LCSs) provides opportunities to measure pollutant levels at much higher spatial
densities than ever before [7–9]. However, most LCSs for air pollutants face the data accuracy
challenges [9,10], as they are typically not calibrated by the manufacturers due to cost considerations.
Inaccurate underestimated pollutant levels may give false impressions of acceptable air quality,
while inaccurate overestimated pollutant levels (2–3 fold, [10]) may mislead residents and result in
unnecessary societal costs. Either way, biased LCS networks have limited applications.
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In Taiwan, citizens have placed PM2.5 LCSs near their households or inside elementary schools
due to concerns about the harmful effects of PM2.5. With the assistance of information scientists
and a volunteer internet groups, since 2016 real-time PM2.5 values all over Taiwan have been made
available on a website (https://v5.airmap.g0v.tw/#/map) to show the spatial distributions of PM2.5.
The temporal trends and relative comparisons of LCS data among different areas have met the demand
of citizens who want to be informed of the PM2.5 levels in their neighborhoods. Pollution awareness
has thus been enhanced dramatically. However, overestimated PM2.5 levels from these LCSs often
needlessly alarm citizens who are unaware of the aforementioned accuracy issue, and environmental
groups have wrongly accused the Taiwan Environmental Protection Administration (Taiwan EPA) of
tampering with the data of official monitoring stations, which show consistently lower levels than
those of the LCSs (https://news.housefun.com.tw/news/article/154493172776.html). The unnecessary
distrust between citizen groups and the Taiwan EPA is an unfortunate side effect of this successful
collaboration between academics and citizens. Solving the data accuracy issue could also resolve the
dilemma of the current PM2.5 LCS network in Taiwan and in other countries, as well as enhance the
applicability of these environmental LCS networks.

Rai et al. [8] proposed a two-stage calibration process with laboratory calibration done by
the manufacturers and calibration checks performed by the end-users. This would be ideal if the
manufacturers followed the authors’ suggestions. However, demanding manufacturers to calibrate
LCSs may be unrealistic since LCSs are made in larger quantities with much lower costs than more
expensive instruments. The alternative is to obtain research-grade observations by conducting
side-by-side comparisons and establishing correction equations to accordingly convert LCS readings
into data comparable to those obtained from research-grade instruments, such as GRIMM, SidePak,
and tapered element oscillating microbalance (TEOM) analyzers [8,10–12]. However, these evaluations
are labor-intensive, time-consuming, and resource-demanding, which is not possible for the thousands
of LCSs placed by citizens in large areas. Innovative ways to correct the data of these LCSs to nearly
research-grade observations are thus urgently needed.

The alternative to correction depends on data science. A review paper [13] highlighted the growing
use of machine learning and other advanced data processing approaches to improve LCS/monitoring
agreements with reference monitors. One of the machine learning methods, random forest, has been
applied to calibrate LCSs for CO, NO2, CO2, and O3 with meteorological data and net responses from all
sensors [14]. In addition, in preliminary explorations, our group found that deviations of the LCS signals from
reference instruments are greatly reduced by applying machine learning methods to correct uncalibrated LCS
readings in sensor networks with data from research-grade instruments taken from regulatory monitoring
stations within a 3 km radius; these results will be summarized in another manuscript [15]. In short,
machine learning methods are promising for reducing LCS deviations in sensor networks. However, these
applications are restricted to the currently limited number of official monitoring stations.

Here, we propose a hybrid method for combining traditional laboratory evaluations and new data
science methods to adjust LCS readings to research-grade observations. For LCS sets located within
a 3 km radius of regulatory monitoring stations, machine learning could be applied to adjust LCS
readings based on the monitoring instruments. For other LCSs in areas without monitoring stations,
“seed” LCSs corrected with side-by-side comparisons in the laboratory could be installed strategically
in those areas to provide research-grade observations to further correct nearby uncalibrated LCSs.
This combination of traditional laboratory evaluations and new machine learning methods could
largely enhance the scientific and social values of such sensor networks. As a result, environmental
scientists with the ability to conduct laboratory evaluations could further contribute to community
monitoring and citizen science by improving the data accuracy of these LCS networks. This paper is
focused on acquiring research-grade data for the seed LCS. The second part involves applying machine
learning methods and will be presented in another manuscript [15].

Laboratory evaluations have been conducted for several PM LCSs, such as those from Alphasense,
Dylos, Samyoung, Sharp, Shinyei, Nova, and Plantower. Rai et al. [8] reviewed evaluations published
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before 2017. Subsequently, at least seven publications have presented results from laboratory evaluations
for various PM LCSs [16–22]. Among the sensors evaluated, Plantower sensors, which have a relatively
low cost (~35 USD), consistently performed well in terms of the intra-precision among themselves and
their precision compared to various research-grade instruments [16–22]. It was found that Plantower
sensors performed better than Shinyei ones because Plantower sensors are designed with a fan that
draws in air and a laser light source [23]. Moreover, there are more than 4000 PMS sensors in the
PM sensor network of Taiwan. Thus, a Plantower PMS3003 sensor was chosen as the target LCS in
this work for the reasons stated in the Section 2. To date, only five publications have focused on
PMS3003 [10,16,23–25]. Therefore, new laboratory evaluation results can fill the data gap for this LCS
and facilitate its application in environmental studies.

With a hybrid method of data correction in mind, it is important to provide valid and robust
laboratory correction equations for limited “seed” devices with LCSs (i.e., AS-LUNGs, Academia Sinica,
Taipei, Taiwan). In addition, “low-cost” is an important consideration for evaluating these LCS devices
to facilitate their wide application. The objective of the current work is to obtain reliable and robust
correction equations to convert LCS signals to research-grade data with side-by-side comparisons
between research instruments and LCS devices. The robustness of these equations was evaluated under
two different experimental settings with two different burnt materials and both before and after 1.5
years of field campaigns. Correction equations in different concentration ranges were also established,
and possible ceiling values were explored. Recommendations are given for evaluation methodologies
to be applied by other research groups with consideration of different financial requirements and
different degrees of variability. This work shows two candidates can be used as “seed” LCS devices.
LCS readings can be converted to data comparable to the Federal Equivalent Method (FEM) based
on side-by-side comparisons in a laboratory. For scientists with resources, evaluation experiments
can be conducted with incense burning in a customer-built chamber with FEM instruments to obtain
correction equations with coefficients of determination (R2) of 0.999, less than 6.0% variability for PM2.5

and PM1 in slopes, and mean root-mean-square-errors (RMSEs) of 1.18 and 1.56 µg/m3 for PM2.5 and
PM1, respectively, in a range of 0.1–200 µg/m3. For scientists with limited resources, experiments can
be conducted using a standard chemical fume hood with an R2 of 0.930–996, less than 15.5% variability
in the slopes, a mean RMSE of 2.4 for PM2.5, and 10.1% variability in the slopes with a mean RMSE of
1.82 for PM1.

2. Materials and Methods

2.1. Sensors and Instruments

PMS3003 (Plantower, Beijing, China) sensors were chosen based on our previous collaboration
with information scientists that found PMS3003 to have good precision, with an R2 between PMS3003
and a GRIMM sensor results as high as 0.983 for PM1 and 0.984 for PM2.5 [16]. This sensor has high
precision, but its bias needs to be corrected to acquire accurate data. PMS3003 has a laser light source,
and 90◦ scattered light is detected by a photo-diode detector with a laser wavelength (650 ± 10 nm)
close to that of GRIMM 1.109 (655 nm) [23]. It can detect particles greater than ~0.3 µm [8]. Based on
our experience, this sensor’s mean time to failure is longer than 3 years, which is close to the time to
failure claimed by the manufacturer [20]. PMS3003 with a volume-scattering detection approach can
obtain PM measurements that are independent of the flow rate [24]. Field evaluations in Taiwan also
showed that PMS3003 provides stable readings in ambient monitoring, indicating that its performance
is not interfered with by high relative humidity (RH%, 74 ± 11%) [10]. Although PMS3003 is not the
newest Plantower sensor, it has potential to be used as a “seed” LCS high due to its precision, stability,
and long lifetime.

The PMS3003 needs to be integrated with power and data transmission components to become an
LCS device for use in the relevant applications. The LCS devices with PMS3003 evaluated in this work
were the AS-LUNG-P and AS-LUNG-O, as integrated by our team (AS stands for Academia Sinica,
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the research institute supporting its development, LUNG indicates the human organ most commonly
affected by air pollutants, and O and P indicate “outdoor” and “portable” versions, respectively).
The AS-LUNG-P (~270 USD basic manufacturing cost) is 135 mm × 70 mm × 40 mm in size and 153 g
in weight and must be connected to a mobile battery or electric socket as a power supply [26]. It can be
installed in the open air under a rain cover to monitor ambient PM. For the AS-LUNG-O (~650 USD
basic manufacturing cost), the sensors are placed in a waterproof shelter connected to a solar panel
with backup batteries for the power supply, with the option of using household electricity where easily
accessible. The size of the whole set is roughly 60 cm (W) × 50 cm (D) × 50 cm (H), with a weight of
approximately 4.8 kg. Data from AS-LUNG-P and AS-LUNG-O can be transmitted wirelessly by the
built-in WiFi or 4G modules to a cloud database. An SD card was added as a complement to avoid
data loss during wireless transmission. The data correction of AS-LUNG-O with GRIMM and its
application for community source evaluations were presented in a previous study [10]. In this work,
AS-LUNG-P and AS-LUNG-O, with 15 s and 1 min resolutions, respectively, for both PM2.5 and PM1

readings, were compared against research-grade instruments in side-by-side laboratory evaluations.
The PM correction equations were established based on 1 min averages.

The research-grade instrument used for the side-by-side comparison was a GRIMM 1.109 (GRIMM
Aerosol Technik Ainring GmbH & Co, Ainring, German), which is an aerosol spectrometer that detects
aerosols in a size range of 0.25–32 µm in 31 size channels. The flow rate is 1.2 L/min with a limit of
detection of 0.1 µg/m3 and reproducibility of 5%. During the side-by-side evaluation of AS-LUNG in a
hood or chamber, as described in Section 2.2, the sampling interval was set to 1 min.

In addition, the two GRIMM instruments used in the AS-LUNG laboratory comparisons (GRIMM
A and B) were compared against an EDM-180 (GRIMM Aerosol Technik Ainring GmbH & Co,
Ainring, Germany), a Federal Equivalent Method (FEM) instrument designated by the United States
Environmental Protection Administration (USEPA) for PM2.5, which uses the light-scattering principle.
A side-by-side comparison of GRIMM and DEM-180 was conducted in the chamber described in
Section 2.2 with incense smoke used as the test material. The data agreement was quite good, with
an R2 = 0.999 and a bias of about 11% for PM2.5 and PM1. Figure 1 shows a comparison between the
results of the EDM-180 and the two GRIMM instruments for PM2.5 under the specified conditions.
In order to provide common ground to compare the evaluation results across the AS-LUNG sets with
either GRIMM A or GRIMM B, correction equations for converting AS-LUNG readings to EDM-180
comparable values are presented in this paper.
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Figure 1. Comparisons for PM2.5 with EDM-180 and (a) the first GRIMM 1.109 (GRIMM A) under a
temperature of 26.2–29.0 ◦C and humidity of 46–67%; (b) the second GRIMM 1.109 (GRIMM B) under a
temperature of 25.0–29.0 ◦C and humidity of 50–75%.

2.2. Hood and Chamber

Side-by-side comparisons of the GRIMM and AS-LUNG sensors were conducted under two
different experimental settings inside an almost closed chemical fume hood and an enclosed chamber.
The procedures for the collocated experiments inside the chemical fume hood are described in [10].
Briefly, the AS-LUNG sensor sets were evaluated in batches against one GRIMM instrument inside a
chemical fume hood (100 cm × 60 cm × 115 cm, Figure 2a,b). An incense stick was ignited in the center
on the hood and burnt for 60–70 min. After burning ceased, the GRIMM and AS-LUNG readings in
the decay periods were monitored for comparison. To avoid disturbing the internal conditions, the
front of the hood was completely closed, and the sides were sealed with tape. The ventilation system
of the hood was also turned off during the entire burning/decay period. Nevertheless, outside air
could still seep in to support incense burning, while hot air inside could leak out from the top duct.
Under slow air movement, the generated PM2.5 filled the hood and gradually vented from the top.
Tests were conducted to ensure the homogeneity of the PM2.5 levels within the hood during the decay
phase. Since the hood was not sealed tightly, the concentration decay occurred rapidly. Data were
collected starting 10 min after the end of the incense-burning and lasted about 12–14 h. As a result, the
sample sizes at relatively high levels (50–200 µg/m3) were much smaller than those in a lower range.
Potential bias could be introduced with limited observations under high levels, thereby significantly
affecting the slopes of the correction equations.

Figure 2a,b show examples of the six AS-LUNG-P sets and four AS-LUNG-O sets evaluated in the
hood experiments. To obtain correction equations suitable for actual field conditions, the sensors were
evaluated with an outer case or waterproof shelter. In this work, the results of nine AS-LUNG-P sets
and 12 AS-LUNG-O sets are reported. In addition, a duplicate experiment was conducted for each of
these AS-LUNG sets to assess the reproducibility of the correction equations in the hood experiments.

To improve the not-so-well sealed conditions, side-by-side comparisons were conducted inside
a newly constructed enclosed steel chamber (Figure 2c, ~33000 USD, Beta Science Co., Ltd., Taipei,
Taiwan), which was custom-built for the purpose of evaluating the LCS devices with research-grade
instruments. The inside of the chamber is 1 m × 1 m × 1 m with surface coatings to avoid the static
effects of particles attached to the wall. There are six sampling ports located in the chamber. Five small
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fans (12 cm in diameter) were installed, with three in the back and two in the corner of the chamber
which were turned on for 20 min at the beginning of the experiments to ensure well-mixed conditions.
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In the chamber evaluation, the AS-LUNG sets were evaluated in batches against one GRIMM
instrument with an incense stick ignited and burnt for 230 s to generate PM2.5 concentrations roughly
higher than 200 µg/m3 (GRIMM measurements) inside the chamber. After 230 s, the incense stick
was taken out quickly, and the chamber was closed tightly except for the bottom port. A filter was
connected to the bottom port since the pressure inside the chamber sometimes needs an outlet. The PM
generated inside can be captured in this filter in case the pressured air vents out. The experiments
were stopped after 48 h. The data used for the instrument comparisons were those after the maximum
PM2.5 concentrations. Again, a duplicate experiment was conducted for each of the nine AS-LUNG-P
sets to assess reproducibility. In the “high-level” experiments, the procedures were the same, except
the incense sticks were burnt for 800 s to generate concentrations above 400 µg/m3 inside the chamber.

To facilitate the application of LCS devices under real environmental conditions, it is intended
to conduct experiments under temperature and relative humidity (RH) conditions typical in Taiwan.
The concerning impacts of RH on aerosol sensing are discussed in [10]. Briefly, there is an intrinsic
difference in the PM2.5 concentrations obtained using sensors based on light scattering principles and
those measured by filter-weighing sampling devices. Water droplets suspended in the air are, by
definition, aerosols. USEPA has specified controlling filter weighing within 30–40% RH for regulatory
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purpose [27] to evaluate whether an area complies with the air quality standards. Nevertheless,
LCS devices can serve purposes other than regulatory such as community monitoring and citizen
science [28]. Actually, we argue against the need for humidity control in health-oriented studies
because inhaled PM2.5 contains water droplets, which should be taken into account due to their health
impacts. As the PM2.5 LCS devices in our research were not intended for regulatory purposes but
instead aim to ease the concern of citizens regarding high pollutant levels that are harmful for public
health, we did not control for humidity in our experiments. We specify the actual temperature and
humidity conditions in the laboratory and field evaluations in the Results section.

2.3. Burnt Materials

Since these evaluations are focused on LCS devices, a low enough cost for evaluations is also of
concern to decrease the burden of conducting LCS-related scientific studies. Thus, the burnt materials
used for evaluation were purposely chosen based on combustible materials used frequently in Taiwan
and around the world, rather than the expensive standard dust from the National Institute of Standards
and Technology. Current worldwide health concerns are mainly focused on PM2.5 rather than PM10;
thus, the present choice of combustible material (which mainly generates PM2.5) was ideal to meet
our needs. Since most high PM2.5 occurs in high-density urban areas, especially in Asia, and different
aerosols with different physio–chemical and light-scattering properties, we would like to choose test
aerosols with similar light-scattering properties to urban PM2.5. Most primary urban PM2.5 particles
are generated by combustion sources from industry, traffic, cooking, etc. Eight different PM sources
were previously tested using another sensor from the same manufacturer, a PMSA003 [22]. Among
these sources, incense, cooking, and residential air exhibited the highest accuracies and precisions.
The authors concluded that the sensors could handle more real-world scenarios with high degrees
of accuracy. The authors did not specify the cooking fuel used for their experiments, and residential
air from Baltimore (MD, USA) was difficult to reproduce in other areas. Since the evaluation results
for incense showed similar performance to the PM2.5 in residential air, suggesting incense may be a
suitable substitute for urban PM2.5.

Therefore, incense sticks were chosen in this work considering the aforementioned reasons
plus incense-burning is prevalent in Asia for religious purposes and around the world due to its
fragrant smell and ability to aid relaxation. The emission factors of PM2.5 were previously evaluated
in [29]. Additionally, our earlier work showed that the AS-LUNG-O data collected in the field
corrected by laboratory correction equations (based on incense-burning evaluations) had only a 10 ± 9%
absolute difference with collocated GRIMM sensors in the field, with a correlation of 0.93 ± 0.05 [10].
This demonstrated that the correction equations obtained with incense-burning were applicable to the
field in Taiwan. The incense sticks used were purchased from local Taiwan markets (Hong, Shun-Li
commercial firm, New Taipei, Taiwan). These sticks are made from sandalwood and contain several
natural fragrances. Each whole stick was 39.5 cm in length; the combustible part was 2.2 mm in
diameter and 29.0 cm in length.

The potential biases in the correction equations for the different burnt materials were also
investigated with another burnt material. To avoid a fire hazard, there are limited choices of test
materials available. A mosquito coil was chosen as another test material since it is also used frequently
in Taiwan and widely around tropical and subtropical areas. Mosquito coils were purchased from a
Taiwan market (Chung Tai Sing Chemical Industry Co., Ltd., Hsinchu, Taiwan) and burnt exactly the
same way as the incense sticks. The diameter of each whole coil was 10.0 cm with a cross sectional area
of 6.8 mm × 4.3 mm.

2.4. Sensor Drift

It is always a concern whether the sensor signals will drift over time. Thus, side-by-side
comparisons of AS-LUNG-O with GRIMM in hood experiments before and after field monitoring
were conducted to assess potential sensor drift. PM monitoring was conducted starting in July 2017
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in a community surrounded by mountains in central Taiwan with eleven sets of AS-LUNG-O. After
field operations for nearly 1.5 years, three AS-LUNG-O sets were taken back in early January 2019 for
re-evaluation under the same laboratory setup with GRIMM to assess sensor drift (CONCPost-Test) and
compared with the evaluations conducted before field monitoring (CONCPre-Test). Of these three sets,
two were cleaned once on-site, while one was not cleaned at all. The cleaning procedures included
taking apart the components to remove dust, dead bugs, and spider webs. Each sensor was also
cleaned with cotton swabs. Whether this cleaning affected the sensor drift was evaluated by comparing
the sensor drift between the devices with and without cleaning.

2.5. Data Analysis

Regression equations were established based on 1 min observations. GRIMM measurements were
converted to EDM-180 comparable data based on Figure 1a,b, which were then compared with the
AS-LUNG readings to construct regression models, with EDM-180 as an independent variable and
AS-LUNG as the dependent variable. These equations were compared with the slopes, R2, and RMSE.
Accuracy was evaluated by comparing the slopes of these regression lines with the USEPA’s criteria
(1 ± 1) [30]. Precision was evaluated against the USEPA’s criteria for continuous PM2.5 monitors (r > 0.9
or R2 > 0.81) [30] and for candidate equivalent methods (r > 0.97 or R2 > 0.94) [31]. Additionally,
inter-sensor variability was assessed with the percent coefficients of variance (%CV = standard
deviation/mean) of the slopes and the RMSE of different AS-LUNG sets under the same experimental
settings with the same materials. The %CV was compared with the USEPA’s acceptable measurement
uncertainty for continuous PM2.5 monitors (%CV < 10%) [30]. The intraclass correlation coefficient
(ICC), a widely used reliability index in test–retest analyses with a value of 0–1, was calculated to
examine the repeatability of the duplicate experiments [20,32]. A high ICC index indicates better
repeatability. For before-and-after field monitoring (mentioned in Section 2.4), the absolute percentage
difference was calculated as the absolute value of (CONCPost-Test − CONCPre-Test)/ CONCPre-Test (%) to
assess signal drift.

A breakpoint seems to have occurred around 30 µg/m3 in the PM2.5 data from the chamber
experiments. Therefore, both linear regressions and segmented regressions for a range of 0.1–200 µg/m3

were established for the chamber experiments. Segmented regressions were obtained based on
the methods presented in earlier publications [33,34]. Further, two “high-level” experiments were
conducted in the chamber for high concentrations above 400 µg/m3 to obtain correction equations
in that range and search for the possible upper limits (ceiling values) of the PMS3003 sensors since
such high levels do occur in some countries [35,36]. For chamber experiments, only the results of the
AS-LUNG-P sets are provided to focus our discussions. The concentration ranges of 200 or 400 µg/m3

were determined by EDM-180 comparable values.

3. Results

3.1. Hood Versus Chamber Experiments

Laboratory evaluations were conducted with nine AS-LUNG-P sets (A1–A9) and 12 AS-LUNG-O
sets (B1–B12) with duplicate experiments in the hood and chamber settings. To focus our discussion,
only the slope, R2, RMSE, and sample size (n) from the first batch of these experiments are presented
(Table 1). The temperature and humidity conditions are reported in the second row, and the inter-sensor
variability assessed by the %CV of these results is presented in the last row.

For PM2.5, the slopes of the correction equations for AS-LUNG-P are 2.44–3.59 with intercepts of
−2.49 to −10.1 from the hood experiments using incense and slopes of 2.80–3.10 with intercepts of −15.4
to −9.11 from the chamber experiments (Table 1a). Both results indicate that PMS3003 overestimates
PM2.5 by roughly 2–3 fold. Likewise, PMS3003 roughly overestimates PM1 by about 1.4–2.2 fold
(Table 1b). For the 12 AS-LUNG-O sets (B1–B12), the PM2.5 values are overestimated by about 2.1–2.9
fold and PM1 by about 1.5–2.0 fold (Table 1c).
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Table 1. Linear correction equations from the hood and chamber experiments with incense for
(a) PM2.5 with nine AS-LUNG-P sets, (b) PM1 with 9 AS-LUNG-P sets, and (c) PM2.5 and PM1 with 12
AS-LUNG-O sets in the range of 0.1–200 µg/m3.

(a) PM2.5 Hood with Incense Chamber with Incense

T1: 24.7–28.6 ◦C, RH: 57.3–76.0% T: 28.0–29.9 ◦C, RH: 36.7–40.2%

Slope Intercept R2 RMSE2 n Slope Intercept R2 RMSE n

A1 3.11 −9.02 0.981 1.40 840 3.10 −15.4 0.993 4.76 1733
A2 3.19 −6.96 0.991 0.95 840 2.92 −10.8 0.996 3.56 1733
A3 3.39 −10.1 0.994 0.78 840 2.92 −12.5 0.995 4.08 1733
A4 3.59 −7.26 0.991 1.26 827 2.96 −13.1 0.994 4.27 1733
A5 2.44 −6.20 0.930 3.89 665 2.93 −9.80 0.997 3.25 1733
A6 3.52 −6.82 0.989 1.42 827 2.94 −12.7 0.994 4.11 1732
A7 2.71 −4.67 0.976 2.07 826 2.94 −13.4 0.994 4.38 1732
A8 2.51 −3.24 0.985 1.63 829 2.85 −10.6 0.996 3.54 1733
A9 2.49 −2.49 0.985 1.61 829 2.80 −9.11 0.996 3.30 1732

Average 2.99 −6.30 0.980 1.67 2.927 −11.9 0.995 3.92
SD 0.47 2.49 0.020 0.92 0.083 1.98 0.001 0.53

%CV3 15.5% −39.6% 54.9% 2.8% −16.6% 13.4%

(b) PM1 Hood with Incense Chamber with Incense

T: 24.7–28.6 ◦C, RH: 57.3–76.0% T: 28.0–29.9 ◦C, RH: 36.7–40.2%

Slope Intercept R2 RMSE n Slope Intercept R2 RMSE n

A1 1.88 −3.23 0.991 0.95 840 1.69 −1.4 0.997 2.92 1733
A2 1.90 −0.96 0.990 1.03 840 1.60 1.2 0.995 3.93 1733
A3 2.00 −3.3 0.986 1.21 840 1.62 −0.3 0.997 3.11 1733
A4 2.24 −3.72 0.988 1.47 827 1.68 −1.4 0.998 2.66 1733
A5 2.13 −5.53 0.945 3.45 665 1.48 3.40 0.991 5.15 1733
A6 2.15 −3.09 0.988 1.45 827 1.59 0.1 0.997 3.24 1732
A7 1.81 −2.71 0.994 0.99 826 1.61 −1.1 0.997 2.81 1732
A8 1.79 −2.02 0.994 1.04 829 1.59 0.7 0.996 3.50 1733
A9 1.65 −1.19 0.996 0.87 829 1.40 3.51 0.991 5.26 1732

Average 1.95 −2.86 0.986 1.38 1.58 0.53 0.995 3.62
SD 0.20 1.39 0.016 0.80 0.091 1.87 0.003 0.98

%CV 10.1% −48.5% 58.0% 5.7% 356.4% 26.9%

(c) PM Hood with Incense (PM2.5) Hood with Incense (PM1)

T: 20.8–34.1 ◦C, RH: 30.4–64.1% T: 20.8–34.1 ◦C, RH: 30.4–64.1%

Slope Intercept R2 RMSE n Slope Intercept R2 RMSE n

B1 2.27 −4.32 0.986 1.66 768 1.71 −4.41 0.993 1.19 768
B2 2.28 −3.17 0.986 1.58 819 1.69 −3.14 0.994 1.02 819
B3 2.15 −2.14 0.968 2.44 785 1.73 −4.31 0.979 2.01 785
B4 2.04 −3.73 0.982 1.85 785 1.51 −3.30 0.992 1.25 785
B5 2.55 −6.72 0.979 2.82 417 1.77 −3.59 0.987 2.21 417
B6 2.43 −7.97 0.982 2.59 419 1.69 −4.39 0.987 2.17 419
B7 2.43 −6.46 0.975 2.94 407 1.73 −5.66 0.984 2.33 407
B8 2.36 −4.68 0.985 2.33 772 1.67 −2.65 0.984 2.35 772
B9 2.08 −6.57 0.969 2.47 638 1.69 −4.86 0.983 1.85 638
B10 2.37 −6.93 0.984 2.34 620 1.81 −4.30 0.992 1.59 620
B11 2.90 −10.39 0.979 2.31 829 1.95 −4.87 0.992 1.38 829
B12 2.64 −9.22 0.985 1.93 821 1.91 −4.85 0.994 1.26 821

Average 2.42 −6.96 0.980 2.40 1.75 −4.27 0.988 1.82
SD 0.26 2.06 0.005 0.36 0.13 0.94 0.004 0.46

%CV 10.9% −29.6% 15.1% 7.6% −21.9% 25.3%
1 Temperature and humidity range of the first experiment and the duplicate run. 2 RMSE: root mean square error.
3 Inter-sensor variability was assessed with the percent coefficients of variance (%CV = standard deviation/mean) of
the results.

The AS-LUNG-O sets seem to provide less overestimation than the AS-LUNG-P sets.
The waterproof shelter may account for part of this discrepancy. Nevertheless, the overestimation of
PMS3003 is apparent.
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The high R2 values in both the hood and chamber experiments show the high correlation and
precision of the PMS3003 with EDM-180. For the AS-LUNG-P sets, the PM2.5 comparisons in the
chamber experiments with better-sealed conditions consistently provided a high R2 greater than 0.991
compared to hood experiments, with an R2 of 0.930–0.996. These high R2 values demonstrate that
the AS-LUNG readings can be converted to EDM-180 comparable measurements using the correction
equations with excellent agreement. However, the most significant problem lies in the large intercepts
in both the hood and chamber experiments, which make these LCS devices unworkable in areas with
PM2.5 levels lower than 5–10 µg/m3, which is roughly the ratio of the intercept to the slope when the
LCS reading is zero.

The mean RMSEs in the hood experiments for PM2.5 (1.67) and PM1 (1.38) are both smaller than
the corresponding RMSEs (3.92 and 3.62, respectively) in the chamber experiments; this is because little
data were in the 50–200 µg/m3 range in the hood experiment. Under the better-sealed conditions in the
chamber experiments, a longer time was observed for the concentration decay; thus, observations with
larger sample sizes were obtained under higher concentration ranges, compared to those in the hood
experiments. Figure 3 shows an example of observations with sample sizes of 834, 3, and 2 at 1 min
resolutions in the range of 0–50, 50–100, and 100–200 µg/m3, respectively, as measured in the hood
experiment. More data at high levels are from the chamber experiments with sample sizes of 1104,
262, and 298, respectively. More observations at higher levels could enhance the robustness of these
correction equations.

In terms of inter-sensor variability, the %CV of the slopes and the RMSEs for PM2.5 and PM1 from
the chamber are both lower than the corresponding values from the hood for AS-LUNG-P, showing that
the inter-sensor variability is greatly reduced in better-sealed environments. For AS-LUNG-O, the %CV
of the slopes and the RMSEs for PM2.5 and PM1 are less than the corresponding %CV of AS-LUNG-P
in the hood experiments. Again, the waterproof shelter may account for the lower variability.

For duplicate experiments, only the ICC indexes, compared to the first batch, are presented
(Table 2). The ICCs for PM2.5 and PM1 for both the hood and chamber experiments using AS-LUNG-P
are all high (0.928–0.999) (Table 2a), showing great repeatability among these experiments. The same
was found for AS-LUNG-O in the hood experiments (Table 2b).
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Table 2. Intra-class correlation coefficient (ICC) from the hood and chamber experiments with duplicates
for (a) PM2.5 and PM1 with 9 AS-LUNG-P sets with incense and mosquito coils and (b) PM2.5 and PM1

with 12 AS-LUNG-O sets with incense in the range of 0.1–200 µg/m3.

(a) Hood with Incense Chamber with Incense Chamber with Mosquito Coils

PM2.5 PM1 PM2.5 PM1 PM2.5 PM1

A1 0.969 0.993 0.997 0.999 0.997 0.998
A2 0.970 0.995 0.998 0.999 0.998 0.997
A3 0.952 0.988 0.998 0.999 0.998 0.998
A4 0.928 0.970 0.998 1.000 0.997 0.997
A5 0.994 0.980 0.999 0.999 0.998 0.996
A6 0.965 0.988 0.998 0.999 0.998 0.997
A7 0.982 0.985 0.998 0.999 0.998 0.997
A8 0.979 0.981 0.999 0.999 0.998 0.997
A9 0.975 0.980 0.999 0.997 0.999 0.995

Average 0.968 0.984 0.998 0.999 0.998 0.997
SD 0.019 0.008 0.001 0.001 0.001 0.001

(b) Hood with Incense

PM2.5 PM1

B1 0.995 0.995
B2 0.997 0.998
B3 0.991 0.996
B4 0.993 0.991
B5 0.996 0.998
B6 0.988 0.981
B7 0.993 0.985
B8 0.997 0.997
B9 0.992 0.998

B10 0.998 0.992
B11 0.995 0.987
B12 0.988 0.972

Average 0.993 0.989
SD 0.004 0.009

3.2. Linear versus Segmented Regressions

There seems to be a breakpoint in PM2.5 in the chamber experiments at around 30–40 µg/m3

(Figure 4a). Therefore, segmented regressions were established and compared with the linear
regressions (0.1–200 µg/m3) in the chamber experiments with incense for both PM2.5 and PM1

(Table 3a,b). These segmented regression equations have an excellent R2 (0.999) with an overall RMSE
of 1.18 ± 0.07 µg/m3 for PM2.5 and 1.56 ± 0.15 µg/m3 for PM1 (Table 4a,b). In addition, the intercepts
(the intercept in the first range, intercept 1) are much smaller in magnitude (0.46–2.24 µg/m3) than
those in the linear regressions, allowing these LCS devices to be applicable in low-level areas. The %CV
of the slopes and overall RMSEs are both less than 6% for PM2.5 and less than 11.8% for PM1, showing
low inter-sensor variability. The RMSEs in the region with lower levels (region 1) are typically lower
than those in the region with higher levels (region 2). Figure 4a shows an example of segmented
regression in the range of 0.1–200 µg/m3 with two slopes indicated in the graph.

Moreover, segmented regressions were applied in the high-level experiments with PM2.5 levels up
to 400 µg/m3. Table 3c,d present the regressions for ranges of 0.1–300 and 0.1–400 µg/m3, respectively.
These equations have an excellent R2 (0.999), small intercepts (within absolute values of 2.2), and low
inter-sensor variability (less than 9.9% for slopes and RMSEs). The mean RMSEs are 1.49 ± 0.11 µg/m3

for 0.1–300 µg/m3 and 1.77 ± 0.09 µg/m3 for 0.1–400 µg/m3 (Table 4c,d). Thus, for areas with high
PM2.5 levels, segmented regressions up to 0.1–400 µg/m3 could be applied to obtain correction
equations. Figure 4b shows an example of high-level segmented regressions with two breakpoints and
three regressions.
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Table 3. Segmented regression equations from the chamber experiments with incense for
(a) 0.1–200 µg/m3 of PM2.5, (b) 0.1–200 µg/m3 of PM1, (c) 0.1–300 µg/m3 of PM2.5, and (d) 0.1–400 µg/m3

of PM2.5.

(a) PM2.5 Chamber with Incense (0.1–200 µg/m3) with Segmented Regressions

T: 27.5–30.7 ◦C, RH: 47.7–54.1%

Region 1 Region 2

Slope 1 Intercept 1 BP1 1 Slope 2 Intercept 2 R2 n

A1 2.48 2.21 31.7 3.06 −16.2 0.999 1909
A2 2.44 2.18 31.8 2.79 −9.1 0.999 1905
A3 2.40 2.12 33.9 2.80 −11.5 0.999 1887
A4 2.28 2.06 36.0 2.72 −13.7 0.999 1873
A5 2.47 2.16 29.6 2.75 −6.2 0.999 1913
A6 2.39 2.24 31.9 2.84 −12.0 0.999 1895
A7 2.38 2.12 34.7 2.86 −14.5 0.999 1873
A8 2.35 2.20 31.7 2.70 −8.9 0.999 1877
A9 2.70 0.46 151.7 2.44 40.2 0.999 1915

Average 2.43 1.97 2.77 0.999
SD 0.12 0.57 0.16 0.000

%CV 4.8% 28.9% 5.9%

(b) PM1 Chamber with Incense (0.1–200 µg/m3) with Segmented Regressions

T: 27.5–30.7 ◦C, RH: 47.7–54.1%

Region 1 Region 2

Slope 1 Intercept 1 BP 1 Slope 2 Intercept 2 R2 n

A1 1.64 1.28 107.8 1.03 66.8 0.999 1909
A2 1.51 1.70 103.1 0.89 65.3 0.999 1905
A3 1.53 1.52 104.1 0.96 60.2 0.999 1887
A4 1.47 1.21 110.3 0.97 56.3 0.999 1873
A5 1.43 2.06 97.7 0.75 67.8 0.999 1913
A6 1.52 1.64 103.1 0.93 63.0 0.999 1895
A7 1.49 1.28 105.8 0.99 54.5 0.999 1873
A8 1.45 1.71 101.7 0.84 63.5 0.999 1877
A9 1.50 2.24 95.2 0.72 76.5 0.999 1915

Average 1.50 1.63 0.90 0.999
SD 0.061 0.35 0.11 0.000

%CV 4.0% 21.8% 11.8%

(c) PM2.5 Chamber with Incense (0.1–300 µg/m3) with Segmented Regressions

T: 27.5–30.7 ◦C, RH: 47.7–54.1%

Region 1 Region 2

Slope 1 Intercept 1 BP 1 Slope 2 Intercept 2 R2 n

A1 2.50 2.11 28.8 3.01 −12.7 0.999 2113
A2 2.72 −1.18 184.7 2.60 22.0 0.999 2109
A3 2.43 1.95 29.2 2.74 −7.2 0.999 2091
A4 2.30 1.94 31.6 2.67 −9.7 0.999 2077
A5 2.71 −0.51 170.7 2.55 26.2 0.999 2117
A6 2.43 2.04 28.2 2.78 −8.0 0.999 2099
A7 2.40 2.02 30.7 2.81 −10.7 0.999 2077
A8 2.63 −1.20 182.8 2.50 23.3 0.999 2081
A9 2.70 0.47 145.2 2.50 29.6 0.999 2119

Average 2.53 0.85 2.68 0.999
SD 0.16 1.46 0.17 0.000

%CV 6.2% 172.1% 6.3%
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Table 3. Cont.

(d) PM2.5 Chamber with Incense (0.1–400 µg/m3) with Segmented Regressions

T: 27.1–30.7 ◦C, RH: 47.7–54.7%

Region 1 Region 2 Region 3

Slope 1 Intercept 1 BP 1 Slope 2 Intercept 2 BP 2 Slope 3 Intercept 3 R2 n

A1 2.48 2.17 30.1 3.03 −14.2 342.6 5.08 −716.6 0.999 2359
A2 2.69 −0.30 332.2 3.45 −251.5 377.7 5.36 −971.7 0.999 2355
A3 2.41 2.02 30.3 2.75 −8.19 349.9 4.78 −717.7 0.999 2337
A4 2.30 1.98 32.5 2.68 −10.5 351.3 4.60 −684.2 0.999 2323
A5 2.71 −0.49 150.8 2.60 14.8 348.6 4.11 −508.8 0.999 2363
A6 2.42 2.11 29.2 2.80 −8.96 347.4 4.86 −726.9 0.999 2345
A7 2.40 2.05 31.6 2.82 −11.4 348.1 4.59 −627.7 0.999 2323
A8 2.43 1.74 26.2 2.62 −3.02 355.3 4.05 −510.7 0.999 2327
A9 2.70 0.51 131.1 2.55 19.7 336.4 4.18 −528.3 0.999 2365

Average 2.50 1.31 2.81 4.62 0.999
SD 0.15 1.09 0.28 0.45 0.000

%CV 6.2% 83.3% 9.9% 9.8%
1 BP: break point.

Table 4. Root mean square errors (RMSEs) of different regions based on the segmented regression
equations from the chamber experiments with incense and mosquito coils for (a) 0.1–200 µg/m3 of
PM2.5, (b) 0.1–200 µg/m3 of PM1, (c) 0.1–300 µg/m3 of PM2.5, and (d) 0.1–400 µg/m3 of PM2.5.

(a) PM2.5 Chamber with Incense (0.1–200 µg/m3) Chamber with Mosquito Coils (0.1–200 µg/m3)

Region 1 Region 2 Overall Region 1 Region 2 Overall

A1 1.08 1.21 1.13 1.11 1.00 1.07
A2 1.11 1.25 1.16 1.09 1.03 1.07
A3 1.11 1.19 1.14 1.08 1.00 1.05
A4 1.15 1.18 1.16 1.13 0.98 1.08
A5 1.09 1.42 1.22 1.06 1.18 1.10
A6 1.13 1.20 1.15 1.13 0.97 1.07
A7 1.12 1.06 1.09 1.13 1.01 1.09
A8 1.15 1.29 1.20 1.14 0.98 1.08
A9 1.31 1.64 1.33 1.11 1.14 1.12

Average 1.14 1.27 1.18 1.11 1.03 1.08
SD 0.07 0.17 0.07 0.03 0.08 0.02

%CV 6.0% 1.9%

(b) PM1 Chamber with Incense (0.1–200 µg/m3) Chamber with Mosquito Coils (0.1–200 µg/m3)

Region 1 Region 2 Overall Region 1 Region 2 Overall

A1 1.21 2.83 1.51 1.62 2.53 1.73
A2 1.27 2.52 1.51 1.47 2.05 1.56
A3 1.24 2.25 1.42 1.50 1.89 1.55
A4 1.30 2.13 1.41 1.67 1.97 1.71
A5 1.36 3.16 1.77 1.32 2.79 1.62
A6 1.28 2.59 1.53 1.44 2.46 1.60
A7 1.27 2.32 1.45 1.63 2.32 1.72
A8 1.33 2.45 1.55 1.41 2.16 1.53
A9 1.34 3.41 1.85 1.28 2.94 1.64

Average 1.29 2.63 1.56 1.48 2.35 1.63
SD 0.05 0.43 0.15 0.14 0.37 0.08

%CV 9.9% 4.7%
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Table 4. Cont.

(c) PM2.5 Chamber with Incense (0.1–300 µg/m3) Chamber with Mosquito Coils (0.1–300 µg/m3)

Region 1 Region 2 Overall Region 1 Region 2 Overall

A1 1.08 1.68 1.38 1.11 1.31 1.19
A2 1.56 2.17 1.64 1.11 1.77 1.45
A3 1.11 1.83 1.48 1.09 1.36 1.22
A4 1.15 1.69 1.41 1.13 1.41 1.26
A5 1.44 2.26 1.57 1.06 2.09 1.64
A6 1.11 1.80 1.46 1.13 1.37 1.24
A7 1.12 1.61 1.36 1.13 1.44 1.28
A8 1.61 2.13 1.68 1.15 1.87 1.53
A9 1.31 2.04 1.45 1.12 1.63 1.39

Average 1.28 1.91 1.49 1.12 1.58 1.36
SD 0.21 0.24 0.11 0.03 0.27 0.16

%CV 7.6% 11.6%

(d) PM2.5 Chamber with Incense (0.1–400 µg/m3) Chamber with Mosquito Coils (0.1–400 µg/m3)

Region 1 Region 2 Region 3 Overall Region 1 Region 2 Region 3 Overall

A1 1.08 1.93 3.31 1.71 1.11 1.34 4.31 1.44
A2 1.83 2.46 2.45 1.88 1.11 1.63 4.17 1.63
A3 1.11 2.04 2.96 1.73 1.09 1.37 4.73 1.52
A4 1.15 1.94 3.15 1.70 1.13 1.34 4.01 1.49
A5 1.44 2.57 3.55 1.88 1.06 1.98 5.18 1.92
A6 1.12 2.00 3.10 1.73 1.13 1.37 4.24 1.50
A7 1.12 1.83 3.06 1.64 1.13 1.36 4.11 1.50
A8 1.25 2.21 3.13 1.90 1.15 1.53 3.92 1.63
A9 1.31 2.43 3.31 1.79 1.12 1.53 3.67 1.54

Average 1.27 2.16 3.11 1.77 1.11 1.50 4.26 1.57
SD 0.24 0.27 0.30 0.09 0.03 0.21 0.45 0.14

%CV 5.3% 9.0%
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3.3. High-Level Curves and Ceiling Values for PM1

For PM1, the correction curves turned downward above 200 µg/m3 (Figure 5), indicating possible
saturation of the sensors. Different sensors from the same batch turned downward at different
points. Therefore, 200 µg/m3 was taken as the upper limit of PM1. The correction equations of PM1

chosen for further applications are shown in Table 3b. For PM2.5, no ceiling values were observed in
our experiments.
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3.4. Incense Versus Mosquito Coils

In the comparison between the incense and mosquito coils, we found that the linear regressions
for the mosquito coils have slightly lower slopes than those of incense (Table 5): 2.65–2.89 for PM2.5

and 1.34–1.56 for PM1, with an R2 of 0.987–0.998. The linear regressions from the chamber experiments
with the mosquito coils have similar %CVs in their slopes and RMSEs for PM2.5 and PM1 compared
to those of the incense. The ICC indexes (0.995–0.999) are excellent, indicating good repeatability in
these experiments (Table 2a). However, these linear regressions with mosquito coils still have large
intercepts for PM2.5.

Table 5. Linear correction Equations from the chamber experiments using mosquito coils with 9
AS-LUNG-P sets for PM2.5 and PM1 in a range of 0.1–200 µg/m3.

Chamber with Mosquito Coils (PM2.5) Chamber with Mosquito Coils (PM1)

T: 28.0–31.4 ◦C, RH: 60.9–66.0% T: 28.0–31.4 ◦C, RH: 60.9–66.0%

Slope Intercept R2 RMSE n Slope Intercept R2 RMSE n

A1 2.89 −9.20 0.995 3.54 1831 1.56 0.87 0.997 3.10 1831
A2 2.72 −6.41 0.997 2.80 1826 1.45 2.44 0.994 3.97 1826
A3 2.72 −7.19 0.997 3.05 1819 1.47 1.68 0.996 3.30 1819
A4 2.68 −8.00 0.996 3.36 1805 1.46 0.63 0.997 2.81 1805
A5 2.74 −5.05 0.998 2.33 1842 1.35 4.31 0.990 5.32 1842
A6 2.79 −7.36 0.997 3.04 1824 1.48 2.27 0.995 3.71 1824
A7 2.78 −8.18 0.996 3.29 1800 1.47 1.06 0.997 3.04 1800
A8 2.65 −6.01 0.997 2.70 1821 1.40 2.70 0.994 4.08 1821
A9 2.71 −4.01 0.998 2.18 1846 1.34 5.22 0.987 5.96 1846

Average 2.74 −6.82 0.997 2.92 1.44 2.35 0.994 3.92
SD 0.072 1.63 0.001 0.46 0.069 1.56 0.003 1.08

%CV 2.6% −23.9% 15.8% 4.8% 66.3% 27.4%

The same as in the case of the incense, PM1 turned downward above 200 µg/m3. Thus, segmented
regressions were applied for PM2.5 values up to 400 µg/m3 and up to 200 µg/m3 for PM1; these
regressions are shown in Table 6a–d. The equations have excellent R2 values (0.999) and small
intercepts (less than 2.1), which are similar to those from the incense experiments. For PM1, the
regressions have intercepts of ± 1, which are even better than those from the incense experiments.
They also have low inter-sensor variability, with a %CV less than 11.1% for the slopes and RMSEs for
both PM2.5 and PM1 of 0.1–200 µg/m3. The overall RMSEs for PM2.5 are 1.08 ± 0.02, 1.36 ± 0.16, and
1.57 ± 0.14 µg/m3 for 0.1–200, 0.1–300, and 0.1–400 µg/m3, respectively (Table 4).

Table 6. Segmented regression equations from the chamber experiments with mosquito coils for
(a) 0.1–200 µg/m3 of PM2.5, (b) 0.1–200 µg/m3 of PM1, (c) 0.1–300 µg/m3 of PM2.5, and (d) 0.1–400 µg/m3

of PM2.5.

(a) PM2.5 Chamber with Mosquito Coils (0.1–200 µg/m3) with Segmented Regressions

T: 27.5–30.7 ◦C, RH: 47.7–54.1%

Region 1 Region 2

Slope 1 Intercept 1 BP1 1 Slope 2 Intercept 2 R2 n

A1 2.19 1.35 42.7 3.15 −39.7 0.999 1831
A2 2.17 1.58 39.6 2.90 −27.3 0.999 1826
A3 2.14 1.40 41.9 2.92 −31.1 0.999 1819
A4 2.07 1.31 43.8 2.90 −35.0 0.999 1805
A5 2.25 1.59 35.6 2.87 −20.6 0.999 1842
A6 2.16 1.73 39.0 2.99 −30.6 0.999 1824
A7 2.16 1.37 43.1 3.00 −35.1 0.999 1800
A8 2.12 1.60 38.4 2.81 −25.0 0.999 1821
A9 2.25 2.10 34.4 2.83 −17.9 0.999 1846

Average 2.17 1.56 2.93 0.999
SD 0.06 0.25 0.10 0.000

%CV 2.6% 16.0% 3.5%
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Table 6. Cont.

(b) PM1 Chamber with Mosquito Coils (0.1–200 µg/m3) with Segmented Regressions

T: 28.0–31.4 ◦C, RH: 60.9–66.0%

Region 1 Region 2

Slope 1 Intercept 1 BP 1 Slope 2 Intercept
2 R2 n

A1 1.64 −0.95 133.9 1.13 67.6 0.999 1831
A2 1.57 −0.30 120.2 1.01 66.4 0.999 1826
A3 1.56 −0.48 123.2 1.10 56.7 0.999 1819
A4 1.53 −0.92 130.2 1.14 49.5 0.999 1805
A5 1.52 0.48 110.7 0.86 73.1 0.999 1842
A6 1.59 −0.28 121.0 1.06 63.2 0.999 1824
A7 1.54 −0.69 131.1 1.10 57.6 0.999 1800
A8 1.53 −0.13 118.0 0.98 64.0 0.999 1821
A9 1.55 0.77 107.4 0.82 78.3 0.999 1846

Average 1.56 −0.28 1.02 0.999
SD 0.037 0.59 0.11 0.000

%CV 2.4% −214% 11.1%

(c) PM2.5 Chamber with Mosquito Coils (0.1–300 µg/m3) with Segmented Regressions

T: 28.0–31.6 ◦C, RH: 60.9–68.9%

Region 1 Region 2

Slope 1 Intercept 1 BP 1 Slope 2 Intercept
2 R2 n

A1 2.20 1.27 44.4 3.17 −41.9 0.999 2074
A2 2.17 1.58 34.9 2.84 −21.7 0.999 2069
A3 2.14 1.42 40.0 2.89 −28.8 0.999 2062
A4 2.06 1.36 42.2 2.88 −33.2 0.999 2048
A5 2.28 1.44 30.3 2.80 −14.5 0.999 2085
A6 2.15 1.76 37.0 2.96 −28.0 0.999 2067
A7 2.14 1.46 40.5 2.97 −32.1 0.999 2043
A8 2.13 1.54 33.5 2.74 −19.2 0.999 2064
A9 2.26 2.03 31.0 2.78 −14.2 0.999 2089

Average 2.17 1.54 2.89 0.999
SD 0.07 0.23 0.13 0.000

%CV 3.0% 15.0% 4.5%

(d) PM2.5 Chamber with Mosquito coils (0.1–400 µg/m3) with Segmented Regressions

T: 27.0–31.6 ◦C, RH: 60.9–74.4%

Region 1 Region 2 Region 3

Slope 1 Intercept 1 BP 1 Slope 2 Intercept 2 BP 2 Slope 3 Intercept 3 R2 n

A1 2.20 1.27 44.2 3.17 −41.6 305.4 1.55 452.0 0.999 2163
A2 2.17 1.59 35.6 2.84 −22.4 289.1 1.50 365.2 0.999 2158
A3 2.14 1.42 40.0 2.89 −28.76 301.0 1.37 429.0 0.999 2151
A4 2.07 1.33 42.8 2.89 −33.8 290.3 1.68 316.6 0.999 2137
A5 2.27 1.48 30.8 2.81 −15.1 289.9 1.23 441.8 0.999 2174
A6 2.15 1.76 37.0 2.96 −28.06 299.0 1.40 437.8 0.999 2156
A7 2.15 1.44 41.0 2.98 −32.6 294.5 1.47 412.2 0.999 2132
A8 2.12 1.57 34.9 2.76 −20.80 277.5 1.72 267.1 0.999 2153
A9 2.26 2.04 31.5 2.79 −14.7 288.8 1.57 335.8 0.999 2178

Average 2.17 1.55 2.90 1.50 0.999
SD 0.06 0.24 0.12 0.15 0.000

%CV 2.9% 15.3% 4.3% 10.3%
1 BP: break point.

These values are similar to those from the incense experiments. The ICCs between the mosquito
coil and incense experiments are above 0.995 under both linear regression (Table 2a) and segmented
regression for both PM2.5 and PM1 (not shown in the table), demonstrating that the two test materials
are interchangeable. Using mosquito coils obtained similar correction equations to those found with
the incense.
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3.5. Sensor Drift

Whether correction equations will drift over time and how often laboratory re-evaluations and
on-site maintenance should be conducted are essential questions for sensor networks. The individual
CONCPre-Test and CONCPost-Test linear regressions were obtained before and after the field campaigns
1.5 years apart with incense in the hood experiments. The R2 values for the three sets were all fairly
good (R2 = 0.83–0.99). In terms of drifting, for the two sets that were cleaned on-site, the slopes of
both tests were close to each other. The absolute percentage differences of these two sets between the
CONCPre-Test and CONCPost-Test were 24% and 19%, respectively. In other words, the sensor response
drifted roughly 20% over 1.5 years. It should be emphasized that these two sets in the field encountered
similar PM2.5 levels with mean PM2.5 values of 16.1 and 19.3 µg/m3 in July and 31.1 and 33.1 µg/m3 in
December. Moreover, the PM2.5 levels were 17.8 µg/m3 in July and 34.1 µg/m3 in December, which are
close to the PM2.5 levels of the two sets with cleaning (for the other set without on-site cleaning). The
correction equation drifted significantly, with 110% for the absolute percentage difference of the other
set without cleaning. This evaluation demonstrates that thorough cleaning should be conducted to
maintain good data quality. If 15% drift is acceptable, an annual evaluation is required to maintain
good data quality, based on 19–24% drift over 1.5 years.

4. Discussion

4.1. Performance of PMS3003 and AS-LUNG Sets

Air pollution sensor networks are good compliments to current regulatory monitoring networks
for providing pollutant levels close to citizens’ living environments in large areas at much lower
cost [8,37]. We propose a hybrid method of combining laboratory evaluations and data science to ensure
that LCS networks provide accurate PM data. First, LCS data are corrected by laboratory side-by-side
comparisons for “seed” LCS devices, which can be installed strategically in areas without EPA stations;
secondly, statistical or machine learning methods are applied to adjust nearby uncalibrated LCS
devices with data from the EPA or the seed LCS devices wherever available. Thus, readings from other
uncalibrated LCS devices in the sensor network can be corrected to nearly research-grade observations
accordingly. The current work focuses on the first part of this process to obtain reliable and robust
correction equations to convert the readings of LCS devices to research-grade (or FEM-comparable)
measurements via side-by-side comparisons with research-grade instruments in the laboratory. The
robustness and variability of the acquired correction equations under different experimental settings
were evaluated with low-cost considerations.

Our results show that in both the hood and chamber experiments, the AS-LUNG sets with
PMS3003 have good agreement with the FEM EDM-180, providing a high R2 of 0.930–0.998 in the hood
and chamber experiments with linear regressions and 0.999 with segmented regressions, showing that
the AS-LUNG sets meet the USEPA’s criteria for continuous PM2.5 monitors (r > 0.9 or R2 > 0.81) [30]
and for candidate equivalent methods (r > 0.97 or R2 > 0.94) [31]. However, the slopes of these
regression lines do not meet the USEPA’s criteria (1 ± 1) [30]. This accuracy issue could be solved
via the presented laboratory evaluation methodologies. With side-by-side comparisons, both the
AS-LUNG-P and AS-LUNG-O readings could be converted to EDM-180-comparable measurements
and serve as “seed” LCS devices in sensor networks. PMS3003 is not the newest Plantower sensor on
the market; however, for research purposes, a sensor with a high R2 with FEM instruments is much
better to provide reliable data than the fancy ones with unknown drawbacks.

Our results also show that chamber experiments with better seals can acquire correction equations
with a much lower variability between different LCS devices and duplicate experiments for PM2.5 and
PM1 (higher ICC indexes) than the hood experiments. Since more observations at higher concentrations
typically ensure the robustness of the regression equations, correction equations from the chamber
are taken as more accurate estimations than the hood corrections. Without correction, the PMS3003
readings can overestimate PM2.5 by about 2–3 fold and PM1 by about 1.4–2.2 fold. It should be noted
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that PMS3003 seems to have an upper limit of around 200–250 µg/m3 for PM1 but can detect PM2.5 up
to 400 µg/m3.

Both the hood and chamber experiments were able to obtain correction equations with high R2

values and high ICC indexes (0.952–0.999), showing the excellent precision of AS-LUNG and the
excellent repeatability of the presented experimental settings and protocol. The choice of experimental
settings needs to consider the required expenses and acceptable degrees of variability. The advantage
of using a chemical fume hood is that a hood is a standard set-up in a wet laboratory and does not
require extra costs compared to a chamber. Using incense in hoods for side-by-side comparisons
would encounter large variability with 10.9–15.5% for slopes with a mean RMSE of 1.67–2.40 for
PM2.5 and 7.6–10.1% for slopes with mean RMSEs of 1.38–1.82 for PM1 (from both AS-LUNG-P and
AS-LUNG-O). On the other hand, if resources permit, a chamber is a better choice for conducting
evaluation experiments to acquire correction equations. With segmented regressions, the mean RMSEs
of PM2.5 are less than 1.18 µg/m3 with %CVs less than 6.0% for the slopes and RMSEs in the range of
0.1–200 µg/m3 with both incense and mosquito coils in the chamber experiments, with a slight increase
in the %CV and RMSEs as the concentration increases. For PM1 of 0.1–200 µg/m3, the mean RMSEs
are less than 1.56–1.63 µg/m3, with inter-sensor variability of less than 11.8% with either incense or
mosquito coils. These results demonstrate the steadiness of the PMS3003 sensor. Higher expenses
provide better sealed conditions in chamber experiments with a reduced %CV. Our %CV results in
the chamber experiments for PM2.5 were within the USEPA’s acceptable measurement uncertainty for
continuous PM2.5 monitors (%CV < 10%) [30].

Performance evaluations for PMS3003 have also been reported by other research groups. PMS3003
was assessed in wind tunnels, and high correlations were found with GRIMM 1.109 (R2 = 0.73–0.97),
with linearity of 200–850 µg/m3 [23]. Another chamber evaluation of data from 242 PMS3003 sensors
found high linear correlations (R2 > 0.978) with a DustTrak monitor with ammonium nitrate and
alumina oxide, providing small intercepts, good repeatability, and certain deviations from the reference
values [20], similar to most of the results presented in this work. Additionally, the authors found
significant differences between the responses of the sensors purchased from different batches, indicating
the necessity to calibrate each batch. Moreover, field evaluations were conducted for PMS3003 sensors
in two suburban regions with a mean 1 h PM2.5 of 9 ± 9 and 10 ± 3 µg/m3 and, in one location, a 1 h
PM2.5 of 36 ± 17 and 116 ± 57 µg/m3 during the monsoon and post-monsoon seasons, respectively [24].
These results showed excellent intra-PMS3003 precision (R2 = 0.98–1.00), but their correlations with
the reference instruments were not good. An RMSE of 3 µg/m3 was found, with a quadratic fit for a
24 h integration time against an E-BAM, presenting non-linearity at high-levels above 300 µg/m3 [24].
Our work showed a high R2 (0.930–0.999) with a breakpoint around 30–40 µg/m3 in the range of
0.1–400 µg/m3 for PM2.5 (the highest level generated in our experiments) and a non-linear response
above 200 µg/m3 for PM1.

Moreover, two other PMS sensor models, a PMS1003 and a PMS5003, were evaluated in Utah
(USA), for 320 days against TEOM, and their RMSE values were found to be above 10 µg/m3—much
higher than our results in the laboratory [25]. In addition, 19 AirBeams were compared against a
BAM in California (USA), with a mean RMSE of 1.08 µg/m3 [38]. Our evaluation in the laboratory
showed that the RMSE performance of PMS3003 is better than, or at least comparable to, that of other
evaluated sensors.

The signal drift of the sensors after the 1.5 years field campaign was shown to be only 19–24%.
Side-by-side comparisons may thus be needed once a year to maintain the validity of the correction
equations. In addition, employing a cleaning procedure is also required to maintain good data quality
of the sensors. Whether the sensor drift changed linearly over time or occurred suddenly needs to
be further evaluated. It was found that the signals of PMS1003 did not change after one year of
field operations in the USA [25]. Another sensor, the AirBeam, drifted less than 5% before and after
a two-month campaign in the USA [38]. LCS devices have received significant attention for their
potential applications. However, the potential drift of sensor responses and the required maintenance
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of such sensors have not been documented prior to this manuscript. These results demonstrate that
wherever data accuracy is important for long-term monitoring, proper maintenance is mandatory.
More works need to be done to better assess sensor drift.

4.2. Choices of Evaluation Settings

Traditionally, aerosol scientists have tended to use expensive standard dust, such as Arizona road
dust or urban dust, to evaluate sensor performance. To maintain our low-cost principle, we used
commercially available and inexpensive aerosols for our evaluations. To avoid a fire hazard, incense
sticks and mosquito coils were chosen as our test materials rather than straw, and cigarettes were not
considered due to their tar contents, which could contaminate the chamber surfaces. Although the
ingredients of the incense sticks and mosquito coils differ greatly, the acquired correction equations are
quite similar, implying the robustness of the correction equations. Incense sticks can be purchased
worldwide for traditional, religious, or relaxation purposes. Thus, incense sticks are recommended to
be used as economic burnt material examples for side-by-side comparisons. Additionally, for sensor
evaluations, previous work has shown that incense offers similar performance to PM2.5 in residential
air in Baltimore, suggesting that incense may be a suitable substitute for urban PM2.5 [22]. The results
of the current work and our previous work [10] also support the use of incense sticks, representing
urban PM2.5, for the evaluation of LCS.

In this work, segmented regression was applied to obtain the correction equations for 0.1–200,
0.1–300, 0.1–400 µg/m3 of PM2.5 from the chamber experiments. These correction equations have much
smaller intercepts than those of the linear regressions from either the hood or chamber experiments,
with much smaller RMSEs. The R2 values are 0.999 for all three concentration ranges. Therefore,
segmented regressions are recommended for the correction equations, rather than linear regressions.

Moreover, our side-by-side comparisons were conducted with two GRIMM 1.109 instruments.
Based on their good agreement with the EDM-180, a FEM instrument, the final correction equations
were constructed to convert AS-LUNG readings into FEM-comparable values. The GRIMM device
is smaller and easier to carry around. If only research-grade measurements are needed, correction
experiments with the GRIMM 1.109 are sufficient. However, if FEM comparable measurements
are preferred and resources permit, EDM-180 is recommended as an optimal instrument to use for
side-by-side comparisons.

For scientists who have the resources to conduct laboratory evaluations, this work provides
valuable information on the choice of experimental setting (i.e., a chemical fume hood versus chamber),
the materials used (incense versus mosquito coils), and linear or segmented regression equations.
Different correction equations were compared in this study to illustrate possible biases and variability
under different experimental conditions. Traditional methods of conducting side-by-side comparisons
with research instruments typically use standard dust and required repeated experiments under
pre-specified temperatures and RH conditions inside a temperature and RH controlled chamber,
thus requiring more resources. The greatest advantage of our method is that one can acquire robust
correction equations for a stable PM sensor to obtain FEM-comparable data with considerably lower
costs and result that are closer to real-world scenarios than those obtained using traditional methods.

For scientists who have only limited resources and intend to use AS-LUNG sets in areas of interest
with PM2.5 concentrations higher than 10 µg/m3, hood experiments with incense and GRIMM 1.109
with linear regressions are sufficient. Lower costs come with higher variability in the slopes and
RMSEs. The large intercepts of correction equations would not be an issue in polluted areas. Even with
15–20% variability, AS-LUNG sets, after conversion, can be used as seed LCS devices for the reading
adjustment of other uncalibrated LCS devices. The raw measurements with 2–3 times overestimations
can be corrected to a more acceptable concentration range.

Due to economic considerations, only one experiment under certain temperature and RH conditions
is preferred to acquire one correction equation for one LCS device. The conditions for one experiment
cannot cover the wide range of all environmental conditions in the field. Extra side-by-side comparisons
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should be carried out during different seasons in the field to obtain correction equations covering wider
temperature and humidity ranges. This process should be less expensive than setting up comparisons
in a temperature- and humidity-controlled chamber. The correction equations established in this work
are intended to be applied in the field in subtropical Taiwan, under a temperature of 15–30 ◦C and
humidity of 70–84% based on the monthly means in non-mountainous areas from 1981–2010 [39].
Certain subtropical areas, such as southeastern Asia, have similar climatic conditions to Taiwan with
high PM levels. This inexpensive method of conducting side-by-side evaluations could also be carried
out in these countries to facilitate the development of LCS networks.

A limitation of this work is that the provided correction equations may not be applicable in
other countries with different temperatures and humidity ranges, although this methodology still
has practical value. The impacts of temperature and humidity on PM LCS have also been evaluated
by different research groups [20,24,31,40]. Two groups, for example, developed correction equations
that consider temperature and humidity [24,40]. While our group did not adjust for temperature
and humidity based on the aforementioned reasons and due to the subtropical climatic conditions in
Taiwan, we acknowledge the need to acquire correction equations under different temperature and
humidity ranges for other research groups. For countries located in different climate zones, one or two
more correction equations at lower/higher temperatures and dried humidity may be required for the
equations to be applicable in the field.

5. Conclusions

In conjunction with machine learning methods, traditional laboratory evaluations could be applied
for limited sets of seed LCS devices installed in areas of interest without official monitoring stations for
the adjustment of other uncalibrated LCS devices in the sensor networks and enhance the data quality
and potential applications of the sensor networks. This work provides methodologies to acquire
robust correction equations to obtain FEM-comparable data from LCS devices at much lower costs.
Our results demonstrate that two LCS devices with PMS3003 sensors, AS-LUNG-P and AS-LUNG-O,
are good choices for seed LCS devices. The correction equations obtained inside the chamber with
segmented regressions had a high R2 of 0.999, less than 6.0% variability in their slopes, and mean
RMSEs of 1.08–1.18 µg/m3 for 0.1–200 µg/m3 of PM2.5 with either incense or mosquito coils. For PM1

in the range of 0.1–200 µg/m3, the correction equations had an R2 of 0.999, less than 11.8% variability in
their slopes, and mean RMSEs of 1.49–1.63 µg/m3 using either incense or mosquito coils. For scientists
with only limited resources, this evaluation can be conducted inside a typical chemical fume hood,
under which correction equations can be obtained with an R2 of 0.930 to 0.996, 7.6–15.5% variability
in their slopes, and mean RMSEs of 1.67–2.40 and 1.38–1.82 µg/m3 for PM2.5 and PM1, respectively.
Substantial resources are needed to maintain one air-conditioned monitoring station with expensive
instruments. In comparison, maintaining the seed LCS sensor network for the reading adjustment of
other LCS devices requires fewer resources, which can provide FEM-comparable observations over
large areas. Interested research groups or regulatory agencies could follow our suggestions to choose a
proper way to establish a bias correction equation that can be incorporated into their sensor networks.
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