

https://doi.org/10.3346/jkms.2017.32.11.1784 • J Korean Med Sci 2017; 32: 1784-1791

GAB2 Amplification in Squamous Cell Lung Cancer of Non-**Smokers**

Yu Rang Park,^{1,2*} Soo Hyeon Bae,^{3*} Wonjun Ji,³ Eul-Ju Seo,⁴ Jae Cheol Lee,⁵ Hyeong Ryul Kim,⁶ Se Jin Jang,⁷ and Chang-Min Choi^{3,5,8}

¹Clinical Research Center, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ²Department of Biomedical Informatics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ³Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ⁴Departments of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ⁵Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ⁶Department of Thoracic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ⁷Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea: 80ffice of Clinical Research Information, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

*Yu Rang Park and Soo Hyeon Bae contributed equally to this work.

Received: 13 September 2016 Accepted: 4 August 2017

Address for Correspondence: Chang-Min Choi, MD, PhD Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympicro 43-gil, Songpa-gu, Seoul 05505, Korea E-mail: ccm@amc.seoul.kr

Funding: This study was supported by a grant of the Korea Health Technology R & D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant HI15C0516).

Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015, Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11g14.1) was significantly amplified in nonsmokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers.

Keywords: ArrayCGH; Lung SCC; Non-Smoker; GAB2; Proto-oncogene

INTRODUCTION

Lung cancer is one of the most prevalent cancers worldwide (1,2). Over 85% of lung cancer cases are attributed to smoking, which contributes to the accumulation of genetic alterations that cause lung cancer. Previous studies have indicated that only a small proportion of lung cancer patients are non-smokers. This has not been well studied in Western western countries; however, in Asian countries, the proportion of patients who are non-smokers is higher (3), and approximately 10%-15% of patients diagnosed with lung cancer have no history of smoking (4).

Non-smokers with lung cancer are more likely to be female, have adenocarcinoma histology, and East Asian ethnicity. In addition to epidemiological differences, recent findings have shown that several molecular alterations are more frequently detected in non-smoking cancer patients (5-10).

Genetic alterations associated with lung cancer have been identified mainly in adenocarcinoma patients and have led to the development of targeted treatment strategies. In lung squamous cell cancer (SCC), comparative genomic hybridization (CGH) analyses have revealed frequent amplification of chromosome 3q25-qter (11). Several candidate genes with a potential role in the pathogenesis of lung SCC have been investigated but no genetic mutations have been specifically associated with lung SCC, especially in non-smokers.

© 2017 The Korean Academy of Medical Sciences.

pISSN 1011-8934 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) eISSN 1598-6357 which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, we performed CGH arrays in 19 patients with lung SCC. We analyzed tissue samples from these patients to identify common genetic mutations associated with lung SCC in non-smokers. Furthermore, we performed retrospective analysis to validate our results using the public lung squamous cell carcinoma (LUSC) database from The Cancer Genome Atlas (TCGA) (12).

MATERIALS AND METHODS

Patient material

Patients with lung SCC who underwent surgical treatment for lung cancer between April 2005 and April 2015 were identified for review. Nineteen fresh frozen specimens from lung SCC patients were collected. Clinical characteristics, including age, sex, tumor stage, treatment history, Eastern Cooperative Oncology Group status, pulmonary function test, and smoking history, were recorded (Table 1). DNA was extracted from fresh frozen lung cancer specimens and stored at -196° C in liquid nitrogen and from methanol/acetic acid fixed cells stored at -80° C, using the Qiagen QIAamp[®] DNA Micro/Midi Kit (Qiagen, Hilden, Germany). The tissue specimens and data used in this study were provided by Asan Bio-Resource Center, Korea Biobank Network (2013-5[64]).

Array comparative genomic hybridization (ArrayCGH)

ArrayCGH was performed using Agilent customized SurePrint G3 Microarray 60K (Agilent Technologies, Waldbronn, Germany), a high-resolution 60-mer oligonucleotide-based microarray. DNA labeling, hybridization, and washing were performed according to the manufacturer's instructions (protocol version 6.1). Tumor DNA samples were hybridized to pooled male DNA (Human Genomic DNA male, Promega G152A). The slides were

Table 1. Clinical characteristics of LUSC patients

Characteristics	Total	Non-smoker	Smoker	P*
Patients No.	19	8	11	
Age, yr	64.16 ± 12.25	61.63 ± 13.52	66.00 ± 11.54	0.717
Sex				0.152
Male	13 (68.4)	4 (50)	9 (81.8)	
Female	6 (31.6)	4 (50)	2 (18.2)	
Stage				0.695
I	4 (21.1)	2 (25)	2 (18.2)	
Ш	5 (26.3)	4 (12.5)	4 (36.4)	
III	8 (42.1)	4 (50)	4 (36.4)	
IV	2 (10.5)	1 (12.5)	1 (9.1)	
FEV1%	92.90 ± 16.30	97.50 ± 13.99	89.20 ± 17.90	0.248
DLCO, %	89.00 ± 17.70	92.25 ± 12.83	86.11 ± 21.47	0.413

Data are shown as mean \pm standard deviation or number (%).

LUSC = lung squamous cell carcinoma, $FEV_1 = forced$ expiratory volume in one second, DLCO = diffusion lung capacity for carbon monoxide.

*Student's t-test for groups with continuous outcomes; Fisher's exact test for categorical outcomes. scanned on an Agilent microarray scanner, and captured images were analyzed with feature extraction software. Filtered, normalized signal log ratios between lung tumor DNA and normal male reference DNA were used for analysis. The BioConductor package Limma version 3.24.15 was used to perform within-array normalization using the Loess method and between-array normalization was performed using the Aquantile method (13). After normalization, the replicate spots were averaged. Probes with less than two valid replicate values and probes that showed a standard deviation above 0.1 between replicate values were excluded. Chromosomal regions with a ratio between 1.11 and 1.41 were scored as "gained" and a ratio of 1.41 or greater was scored as "amplified." Chromosomal regions with a ratio of between 0.84 and 0.73 were scored as "loss," whereas a second threshold for loss was set for regions showing a ratio less than 0.73.

TCGA single nucleotide polymorphism (SNP) array data and clinical characteristics

Publically available level 3 copy number variation (CNV) data (SNP array) and clinical data of LUSC patients were downloaded from TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) on June 19, 2015. Clinical data from 488 patients and 201 CNV data from primary solid tumors were downloaded. To validate ArrayCGH data, we used 196 CNV and clinical data which were above the intersection of the patient clinical and CNV data. Table 2 shows the clinical characteristics of lung SCC patients from TCGA.

Copy number segmentation

To identify genomic regions that were significantly amplified or deleted, Genomic Identification of Significant Targets in Cancer (GISTIC, version 2.0.1) was used (14). This method identifies chromosomally altered regions that are over-represented across

Table 2. Clinical characteristics of LUSC	patients with	CNVs from TCGA
---	---------------	----------------

Parameters	Total	Non-smoker	Smoker	P*
Patients No.	196	9	187	
Age, yr	68.05 ± 8.53	62.23 ± 6.42	68.20 ± 8.29	0.024
Sex				0.717
Male	140	6 (4.29)	134 (95.71)	
Female	56	3 (5.36)	53 (94.64)	
PKY		NA [†]	54.68 ± 35.17	
Stage				0.021
I	109 (55.61)	105 (56.15)	4 (44.44)	
II	45 (22.96)	42 (22.46)	3 (33.33)	
III	38 (19.39)	37 (19.79)	1 (11.11)	
IV	4 (2.04)	3 (1.6)	1 (11.11)	

Data are shown as mean \pm standard deviation or number (%).

LUSC = lung squamous cell carcinoma, TCGA = The Cancer Genome Atlas, PKY = pack years, NA = not applicable, CNV = copy number variation.

*Student's t-test for groups with continuous outcomes; Fisher's exact test for categorical outcomes. ¹Nine subjects were lifelong non-smokers. different tumor samples (region of interest) based on the amplitude and frequency of the alterations and quantifies the degree of overrepresentation using a G-score. Each G-score is assigned a *P* value by comparing the G-score at each locus to a background G-score distribution, which is corrected using the false discovery rate. This yields multiple testing corrected q-values. Individual significant regions of interest may cover more than one target region, and some false positive regions may appear significant because they are close to a target region. To address these issues, an additional correction of the q-values is required to confirm independently significant regions. A cutoff qvalue of 0.25 was applied to select regions containing Somatic Copy Number Abnormalities (SCNAs) that were significantly over-represented. In a final step, GISTIC was used to determine the peak region and wide peak region for each region of interest.

Immunohistochemistry and scoring

Immunohistochemical assay was performed on paraformaldehyde-fixed paraffin sections. The *GAB2* (OriGene Technologies, Rockville, MD, USA) primary antibodies were used at a 1:50 dilution in the immunohistochemistry analysis. The immunostaining intensity and average percentage of positive cells were evaluated as previous reported (15). The immunostaining intensity was scored as: 0 (no staining), 1 (weak staining), 2 (moderate staining), and 3 (strong staining). The percentage of stained cells on each section was scored as: 0 (less than 5%), 1 (5%–25%), 2 (26%–50%), and 3 (> 51%) accordingly. Then, the total immunostaining score was calculated by multiplying stained intensity score with staining cells score and thus ranged from 0 to 9. A final staining scoring at least 2 points in our study were considered to be positive.

Statistical analysis

We used the Student's t-test to analyze the ArrayCGH data processed by GISTIC. The mean log₂ (relative ratios) and normalized measure of total signal intensity was calculated along each segment between the non-smoker and smoker groups. Multiple logistic regression analysis of the copy numbers was applied after age and sex adjustment using the logit function in R (v3.0.2; R Foundation, Vienna, Austria). We used copy number values calculated by GISTIC and defined the dependent variable as smoking status (Equation 1). This revealed a significant copy number association between non-smoker and smoker groups.

$$ln\left(\frac{\text{Non-Smoker}}{1\text{-Non-smoker}}\right) = \beta_0 + \beta_1 \times CNV_1 + \beta_2 \times Age_2 + \beta_3 \times Sex_3 \text{ (Equation 1)}$$

Statistically significant (A) six amplified and (B) ten deleted regions were found. The X-axis represents the normalized amplification signals (top) and significance by q-value (bottom). The green line represents the significance cutoff at q-value = 0.25. SCC = sources control context significance cutoff at q-value = 0.25.

All patients signed and submitted informed consent forms. The

project protocol was reviewed and approved by the Institutional Review Board of Asan Medical Center (approval No. 2013-0695).

JKMS

Copy number	Cytoband	Start	End	Residual q-value	Cancer gene (COSMIC)
Gain	3q27.1	183855527	184300347	0.06707	
	5p15.33*	1	944015	0.01634	TERT
	8p12	32859697	33229373	0.18491	NRG1, WRN, WHSC1L1
	8q24.21*	128479462	129641935	0.10039	
	11q13.3*	68549309	69587836	0.10039	NUMA1, CCND1, MEN1
	12q14.1	58122100	58216570	0.14608	LRIG3
Loss	3p14.1	53345892	99361511	0.14027	FOXP1, MITF
	4q35.2*	189457939	191154276	0.01142	
	7q35	143656847	145824683	0.07011	EZH2
	8p23.1	2088727	9759624	0.01190	
	9p21.3*	21547337	22519884	1.50E-05	CDKN2A
	10q23.31*	89698254	91483602	0.14027	PTEN
	11q22.3	102736596	116623316	0.04929	ATM
	12q13.2	55025566	55789221	0.11125	
	15q11.2*	1	22866887	4.44E-07	
	17p12	9794524	16021198	0.10363	

 Table 3. Over-represented CNVs in SCC

CNV = copy number variation, SCC = squamous cell cancer, COSMIC = catalogue of somatic mutations in cancer, GISTIC = Genomic Identification of Significant Targets in Cancer, TCGA = The Cancer Genome Atlas, LUSC = lung squamous cell carcinoma.

*Tagged cytobands overlapped with GISTIC analysis of TCGA LUSC patients.

Fig. 2. Frequency of copy number changes for non-smokers and smokers. The frequency of copy number changes was calculated for all measurement points in the arrays and plotted relative to the position along the chromosome for (A) all squamous lung cancer sample, (B) smoker samples, (C) non-smoker samples, and (D) significant copy number differences bewteen smoker and non-smoker. The number of analyzed tumors is indicated. Green bars above the horizontal line indicate the percentage of tumors with copy number gains and red bars below the horizontal line indicate the percentage of tumors with copy number losses.

RESULTS

Identification of over-represented significant CNVs in SCC using GISTIC

Using GISTIC, we identified 16 significantly altered regions (six regions of gain on five different chromosomes and ten regions of loss on ten different chromosomes) as depicted in Fig. 1. Three gain (5p15.33, 8q24.21, and 11q13.3) and four loss regions (4q35.2, 9p21.3, 10q23.31, and 15q11.2) overlapped with the GISTIC analysis of TCGA LUSC patients (16). Based on the highest q-value (cutoff > 0.25), Table 3 shows the 16 significant regions of gain and loss. The GISTIC algorithm defines "peak regions" of major chromosomal instability by the magnitude and frequency of a copy number event. Within these significant regions, we detected 15 genes (*ATM, CCND1, CDKN2A, DUX4L1, EZH2*,

FOXP1, LRIG3, MEN1, MITF, NRG1, NUMA1, PTEN, TERT, WHSC1L1, and WRN) that have been reported in the Cancer Gene Census downloaded on March 21, 2016, from the catalogue of somatic mutations in cancer (COSMIC) (17).

Identification of smoking status with different genomic signatures

We examined the frequency of copy number changes according to the smoking status in the ArrayCGH dataset (non-smoker [n = 8] and smoker [n = 11]) (Fig. 2). Statistical analysis of copy number changes between smokers and non-smokers revealed 539 protein-coding genes that were differentially altered between the two groups (P < 0.05). The genetic differences between smoker and non-smoker SCC patients are illustrated in Fig. 3.

Fig. 3. Genetic differences in non-smoking SCC patients compared with smoking SCC patients. X-axis represents genes by chromosomal order, and Y-axis represents 19 samples that are clustered by Euclidian distance based on normalized intensity values. A line plot at the top panel is the *P* value from a t-test which was log₂ transformed. SCC = squamous cell cancer.

Fig. 4. Immunohistochemical staining for *GAB2* in Lung SCC of non-smoker and smoker. (A) Lung SCC of non-smoker was positive for *GAB2* staining. The total immunostaining score was 3% and 20% of cancer cells were stained. (B) Lung SCC of smoker was negative for *GAB2* staining. While some cancer cells were shown weak positive for *GAB2* staining, the percentage of stained cancer cell was less than 5%, and the total immunostaining score was 0. SCC = squamous cell cancer.

The most significant (P = 0.0093) protein-coding gene was *CENPE* (4q24) (the full gene list is presented in Supplementary Table 1). CENPE was amplified in the smoker and deleted in the non-smoker group. A SNP (rs1400363) in this gene was also reported in the Genome-wide Association Study and was highly associated with nicotine dependence in smokers (P = 9.9E-06) (18). A multiple logistic regression model with adjustment for age and sex was used to test copy number associations between nine lifelong non-smokers and 187 smokers to determine whether SCC depends on the smoking status in the TCGA LUSC dataset. To validate our ArrayCGH, we compared the differentially altered 539 genes with significant copy number changes from the TCGA LUSC dataset. The proto-oncogene GAB2 (11q14.1) was significantly associated in both datasets (ArrayCGH: P = 0.039; TCGA: P = 0.038). GAB2 was deleted in smokers and amplified in non-smokers in both datasets.

Immunohistochemistry result of GAB2

To further investigate the expression of *GAB2* protein in lung SCC of smoker and non-smoker tissues, immunohistochemistry staining was performed. According to the established evaluation principle for immunostaining, *GAB2* protein positive expression rate was 37.5% (3/8) in non-smoker tissues; whereas was weak expression or only one positive expression (9%, 1/11) in smoker tissue, exhibiting a significant difference of comparison within this result (P = 0.007, Fig. 4). Data were analyzed by χ^2 -test.

DISCUSSION

Tumors are caused by mutations in genes that affect cell proliferation and regulation (19). Activation of oncogenes, inactivation of tumor suppressor genes, and increased instability of various genes comprise the genetic changes that affect the growth, differentiation, and survival of cells and ultimately lead to lung cancer. Lung cancer in non-smokers is a distinct disease driven by isolated genetic events rather than widespread genetic and epigenetic changes, which are frequent in smokers. Genomic alterations in lung cancer are related to the progression and determine the optimal treatment of the disease. In this study, we performed an ArrayCGH experiment to determine the genetic characteristics of SCC lung cancer in nonsmokers. We verified the results of the ArrayCGH experiment through TCGA SNP array data, a public genomic database, and found a new protooncogene, *GAB2*. In addition, we measured the protein expression of *GAB2* in immunohistochemistry and analyzed it in smokers and non-smokers tissues.

GAB2 is a member of the *GAB* protein family, which also includes *GAB1*, *GAB3*, and *GAB4*. In *Drosophila*, this gene is called daughter of sevenless (Dos) and in *Caenorhabditis elegans* suppressor of Clr (Soc)-1 (20). *GAB* proteins promote human tumorigenesis by facilitating oncoproteins or by amplifying signaling via *GAB2* overexpression (21-25).

GAB2 is developing a strong track record as an oncoprotein in various solid tumors (26). *GAB2* can stimulate Erk and *AKT* signaling through interactions with SHP2 and the p85 subunit of *PI3K* respectively (27,28). Amplification of *GAB2* has been reported in several cancers, including melanoma (25), ovarian cancer (22), breast cancer (21), gliomas (23), and gastic cancer (24). The *SHP2/Ras* and *PI3K/Akt* pathways are the two major signaling trasduction pathways of *GAB2* (29). Increased *PI3K* signaling and abberation of the *PI3K* pathway genes *PIK3CA*, *PKB*, and *PTEN* have been implicated in several types of cancer including lung cancer (30). A recent study showed that the association of c-Met with *PI3K* and *GAB2* was diminished by cMet inhibition in small cell lung cancer (31). In addition, ablation of *GAB2* severely suppressed lung metastasis (32), implicating *GAB2* as an important therapeutic target. *GAB2* was overexpressed and coupled with *ErbB2* (also known as *Neu* or *HER2*) receptor signaling in breast cancer (33). *GAB2* is also important for the progression of tumorigenesis and is overexpressed in lung cancer tissue. However, further investigation into *GAB2* expression is required.

However, the role of *GAB2* in lung SCC of non-smoker has not been reported. In this study, we characterized the genetic variations of SCC in non-smokers using ArrayCGH. Our results suggested that copy numbers in non-smokers are different from smokers, and we identified a proto-oncogene *GAB2* that was significantly associated with SCC development in non-smokers. Although we used SNP chip data, which is a different approach to TCGA, we adjusted for age and sex to obtain accurate data that could be compared with public databases. We also measured the expression of *GAB2* protein through IHC, and we found a statistically significantly higher number of highly expressed in non-smokers.

There are some limitations in our study. First, we did not perform other functional analyses. However, there is a wealth of evidence that GAB2 has an important role in carcinogenesis (29). Moreover, it is well known that genetic variations in Korean and Asian patients differ from those in American patients. Second, the number of tissues was small in this study. Most of lung cancer patients had an advanced stage at the diagnosis, and the proportioin of squamous cell carcinoma in Korea has decreased continously in recent (34). Because LUSC is well known smoking related carcinoma of the lung, the numbers of LUSC in non-smokers are too small. In this reason, we got a few samples from LUSC patients who were never smokers. Although the number of tissues was small, the difference of GAB2 in squamous cell carcinoma between smokers and non-smokers was significant. So, further large population based study to clarify the clinical significance of GAB2 in squamous cell carcinoma is required.

In summary, we identified a *GAB2* genetic variation that was associated with lung cancer in non-smokers by ArrayCGH and this result was validated by TCGA data. We also found that the protein expression of *GAB2* was relatively upregulated in nonsmoker than smoker tissues. Smoking is a major risk factor for lung cancer, but specific genetic alterations affect the development of lung cancer in non-smokers. Identification of these specific genetic alterations may uncover new biomarkers to identify individuals at high risk of developing lung cancer. This may have implications for early detection and targeted therapy.

ACKNOWLEDGMENT

The array comparative genomic hybridization (ArrayCGH) vali-

dation results shown here are in part based upon data generated by the The Cancer Genome Atlas (TCGA) Research Network (http://cancergenome.nih.gov/). The biospecimen and data used in this study was provided by Asan Bio-Resource Center, Korea Biobank Network (2013-5[64]).

DISCLOSURE

The authors have no potential conflicts of interest to disclose.

AUTHOR CONTRIBUTION

Conceptualization: Park YR, Bae SH, Ji W, Seo EJ, Lee JC, Kim HR, Jang SJ, Choi CM. Data curation: Park YR, Choi CM, Seo EJ, Lee JC, Kim HR, Jang SJ. Investigation: Park YR, Bae SH, Ji W, Seo EJ, Lee JC, Kim HR, Jang SJ, Choi CM. Writing - original draft: Park YR, Bae SH, Ji W, Seo EJ, Lee JC, Kim HR, Jang SJ, Choi CM. Writing - review & editing: Park YR, Bae SH, Ji W, Seo EJ, Lee JC, Kim HR, Jang SJ, Choi CM.

ORCID

Yu Rang Park https://orcid.org/0000-0002-4210-2094 Soo Hyeon Bae https://orcid.org/0000-0002-3124-3326 Wonjun Ji https://orcid.org/0000-0001-7164-2770 Eul-Ju Seo https://orcid.org/0000-0002-8247-3746 Jae Cheol Lee https://orcid.org/0000-0001-5963-0259 Hyeong Ryul Kim https://orcid.org/0000-0002-6691-7693 Se Jin Jang https://orcid.org/0000-0001-8239-4362 Chang-Min Choi https://orcid.org/0000-0002-2881-4669

REFERENCES

- 1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. *CA Cancer J Clin* 2013; 63: 11-30.
- Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. *Int J Cancer* 2010; 127: 2893-917.
- Subramanian J, Govindan R. Lung cancer in never smokers: a review. J Clin Oncol 2007; 25: 561-70.
- 4. Thun MJ, Hannan LM, Adams-Campbell LL, Boffetta P, Buring JE, Feskanich D, Flanders WD, Jee SH, Katanoda K, Kolonel LN, et al. Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. *PLoS Med* 2008; 5: e185.
- Koo LC, Ho JH. Worldwide epidemiological patterns of lung cancer in nonsmokers. *Int J Epidemiol* 1990; 19 Suppl 1: S14-23.
- Gao YT, Blot WJ, Zheng W, Ershow AG, Hsu CW, Levin LI, Zhang R, Fraumeni JF Jr. Lung cancer among Chinese women. *Int J Cancer* 1987; 40: 604-9.
- 7. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity

of tumors to gefitinib and erlotinib. *Proc Natl Acad Sci U S A* 2004; 101: 13306-11.

- Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. *N Engl J Med* 2004; 350: 2129-39.
- 9. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. *Science* 2004; 304: 1497-500.
- Nordquist LT, Simon GR, Cantor A, Alberts WM, Bepler G. Improved survival in never-smokers vs current smokers with primary adenocarcinoma of the lung. *Chest* 2004; 126: 347-51.
- 11. Brunelli M, Bria E, Nottegar A, Cingarlini S, Simionato F, Caliò A, Eccher A, Parolini C, Iannucci A, Gilioli E, et al. True 3q chromosomal amplification in squamous cell lung carcinoma by FISH and aCGH molecular analysis: impact on targeted drugs. *PLoS One* 2012; 7: e49689.
- 12. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. *Nature* 2012; 489: 519-25.
- Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* 2015; 43: e47.
- 14. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. *Genome Biol* 2011; 12: R41.
- 15. Ding C, Luo J, Fan X, Li L, Li S, Wen K, Feng J, Wu G. Elevated *GAB2* induces tumor growth and angiogenesis in colorectal cancer through upregulating VEGF levels. *J Exp Clin Cancer Res* 2017; 36: 56-67.
- Broad Institute TCGA Genome Data Analysis Center (US). SNP6 copy number analysis (GISTIC2) [Internet]. Available at http://gdac.broadinstitute.org/runs/analyses_2015_04_02/reports/cancer/LUSC/CopyNumber_Gistic2/nozzle.html [accessed on 9 September 2016].
- 17. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. *Nucleic Acids Res* 2015; 43: D805-11.
- 18. Caporaso N, Gu F, Chatterjee N, Sheng-Chih J, Yu K, Yeager M, Chen C, Jacobs K, Wheeler W, Landi MT, et al. Genome-wide and candidate gene association study of cigarette smoking behaviors. *PLoS One* 2009; 4: e4653.
- Minna JD. Molecular biology overview. In: Pass HI, Mitchell JB, Johnson DH, Turrisi AT, editors. Lung Cancer: Principles and Practice. Philadelphia, PA, Lippincott-Raven, 1996, p143-8.

- 20. Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. *Cell Commun Signal* 2009; 7: 22.
- 21. Bentires-Alj M, Gil SG, Chan R, Wang ZC, Wang Y, Imanaka N, Harris LN, Richardson A, Neel BG, Gu H. A role for the scaffolding adapter *GAB2* in breast cancer. *Nat Med* 2006; 12: 114-21.
- 22. Wang Y, Sheng Q, Spillman MA, Behbakht K, Gu H. *GAB2* regulates the migratory behaviors and E-cadherin expression via activation of the *PI3K* pathway in ovarian cancer cells. *Oncogene* 2012; 31: 2512-20.
- 23. Shi L, Sun X, Zhang J, Zhao C, Li H, Liu Z, Fang C, Wang X, Zhao C, Zhang X, et al. *GAB2* expression in glioma and its implications for tumor invasion. *Acta Oncol* 2013; 52: 1739-50.
- 24. Lee SH, Jeong EG, Nam SW, Lee JY, Yoo NJ, Lee SH. Increased expression of *GAB2*, a scaffolding adaptor of the tyrosine kinase signalling, in gastric carcinomas. *Pathology* 2007; 39: 326-9.
- 25. Chernoff KA, Bordone L, Horst B, Simon K, Twadell W, Lee K, Cohen JA, Wang S, Silvers DN, Brunner G, et al. *GAB2* amplifications refine molecular classification of melanoma. *Clin Cancer Res* 2009; 15: 4288-91.
- 26. Xu XL, Wang X, Chen ZL, Jin M, Yang W, Zhao GF, Li JW. Overexpression of Grb2-associated binder 2 in human lung cancer. *Int J Biol Sci* 2011; 7: 496-504.
- 27. Dunn GP, Cheung HW, Agarwalla PK, Thomas S, Zektser Y, Karst AM, Boehm JS, Weir BA, Berlin AM, Zou L, et al. In vivo multiplexed interrogation of amplified genes identifies *GAB2* as an ovarian cancer oncogene. *Proc Natl Acad Sci U S A* 2014; 111: 1102-7.
- 28. Zhang X, Zhang Y, Tao B, Wang D, Cheng H, Wang K, Zhou R, Xie Q, Ke Y. Docking protein *GAB2* regulates mucin expression and goblet cell hyperplasia through TYK2/STAT6 pathway. *FASEB J* 2012; 26: 4603-13.
- 29. Ding CB, Yu WN, Feng JH, Luo JM. Structure and function of *GAB2* and its role in cancer (Review). *Mol Med Rep* 2015; 12: 4007-14.
- 30. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. *Nat Rev Drug Discov* 2009; 8: 627-44.
- 31. Maulik G, Madhiwala P, Brooks S, Ma PC, Kijima T, Tibaldi EV, Schaefer E, Parmar K, Salgia R. Activated c-Met signals through *PI3K* with dramatic effects on cytoskeletal functions in small cell lung cancer. *J Cell Mol Med* 2002; 6: 539-53.
- 32. Xu LJ, Wang YC, Lan HW, Li J, Xia T. Grb2-associated binder-2 gene promotes migration of non-small cell lung cancer cells via *Akt* signaling pathway. *Am J Transl Res* 2016; 8: 1208-17.
- 33. Daly RJ, Gu H, Parmar J, Malaney S, Lyons RJ, Kairouz R, Head DR, Henshall SM, Neel BG, Sutherland RL. The docking protein *GAB2* is overexpressed and estrogen regulated in human breast cancer. *Oncogene* 2002; 21: 5175-81.
- 34. Shin A, Oh CM, Kim BW, Woo H, Won YJ, Lee JS. Lung cancer epidemiology in Korea. *Cancer Res Treat* 2017; 49: 616-26.

Supplementary Table 1. A list of statistically differentially altered 539 protein coding genes between smoker and non-smoker

Supplementary Table 1. Continued

Gene Symbol	Locus ID	Cytoband	FDR Value	P*
CENPE	1062	4q24	0.966	0.009
TACR3	6870	4q24	0.966	0.010
CXXC4	80319	4q24	0.966	0.010
TET2	54790	4q24	0.966	0.010
PPA2	27068	4q24	0.966	0.010
ARHGEF38	54848	4q24	0.966	0.010
INTS12	57117	4q24	0.966	0.010
GSTCD	79807	4q24	0.966	0.010
NPNT	255743	4q24	0.966	0.010
TBCK	93627	4q24	0.966	0.010
AIMP1	9255	4q24	0.966	0.010
DKK2	27123	4q25	0.966	0.010
PAPSS1	9061	4q25	0.966	0.010
SGMS2	166929	4q25	0.966	0.010
CYP2U1	113612	4q25	0.966	0.010
HADH	3033	4q25	0.966	0.010
LEF1	51176	4q25	0.966	0.010
RPL34	6164	4q25	0.966	0.010
OSTC	58505	4q25	0.966	0.010
AGXT2L1	64850	4q25	0.966	0.010
COL25A1	84570	4q25	0.966	0.010
SEC24B	10427	4q25	0.966	0.010
CCDC109B	55013	4q25	0.966	0.010
CASP6	839	4q25	0.966	0.010
PLA2G12A	81579	4q25	0.966	0.010
CFI	3426	4q25	0.966	0.010
GAR1	54433	4q25	0.966	0.010
RRH	10692	4q25	0.966	0.010
EGF	1950	4q25	0.966	0.010
LRIT3	345193	4q25	0.966	0.010
ELOVL6	79071	4q25	0.966	0.010
ENPEP	2028	4q25	0.966	0.010
PITX2	5308	4q25	0.966	0.010
NDUFAF1	51103	15q15.1	0.966	0.011
GRID2	2895	4q22.1	0.966	0.012
ATOH1	474	4q22.2	0.966	0.013
SMARCAD1	56916	4q22.3	0.966	0.013
HPGDS	27306	4q22.3	0.966	0.013
PDLIM5	10611	4q22.3	0.966	0.013
BMPR1B	658	4q22.3	0.966	0.013
UNC5C	8633	4q22.3	0.966	0.013
PDHA2	5161	4q22.3	0.966	0.013
C4orf37	285555	4q22.3	0.966	0.013
RAP1GDS1	5910	4q23	0.966	0.013
TSPAN5	10098	4q23	0.966	0.013
EIF4E	1977	4q23	0.966	0.013
METAP1	23173	4q23	0.966	0.013
ADH4	127	4q23	0.966	0.013
ADH5	128	4q23	0.966	0.013
PCNAP1	359806	4q23	0.966	0.013
ADH6	130	4q23	0.966	0.013
ADH1A	124	4q23	0.966	0.013
ADH1B	125	4q23	0.966	0.013
ADH1C	126	4q23	0.966	0.013
ADH7	131	4q23	0.966	0.013
C4orf17	84103	4q23	0.966	0.013

	-			
Gene Symbol	Locus ID	Cytoband	FDR Value	P*
RG9MTD2	93587	4q23	0.966	0.013
MTTP	4547	4q23	0.966	0.013
DAPP1	27071	4a23	0.966	0.013
DNAJB14	79982	4a23	0.966	0.013
LAMTOR3	8649	4023	0.966	0.013
H2AFZ	3015	4a23	0.966	0.013
DDIT4L	115265	4024	0.966	0.013
EMCN	51705	4024	0.966	0.013
PPP3CA	5530	4024	0.966	0.013
FLJ20021	90024	4024	0.966	0.013
BANK1	55024	4g24	0.966	0.013
SI C39A8	64116	4024	0.966	0.013
NFKB1	4790	4a24	0.966	0.013
MANBA	4126	4024	0.966	0.013
UBE2D3	7323	4024	0.966	0.013
CISD2	493856	4024	0.966	0.013
SI C9B1	150159	4024	0.966	0.013
SI C9B2	133308	4024	0.966	0.013
BDH2	56898	4024	0.966	0.013
RTF1	23168	15015.1	0.966	0.010
ΙΤΡΚΔ	3706	15q15_1	0.000	0.014
I TK	4058	15q15.1	0.900	0.014
	26015	15q15_1	0.900	0.014
	7301	15q15.1	0.900	0.014
MGA	23260	15q15_1	0.900	0.014
	100127047	15q15.1	0.900	0.014
	22005	15q15_1	0.900	0.014
	100127040	15q15.1	0.900	0.014
	51222	15q15.1	0.900	0.014
	20944	15015.1	0.900	0.014
	22062	10022.2	0.900	0.014
	23003	10423.2	0.900	0.014
	94233	10423.2	0.900	0.014
	657	10423.2	0.900	0.014
	70910	10423.2	0.900	0.014
	19012	10423.2	0.900	0.014
C10orf116	10074	10423.2	0.900	0.014
	110205	10423.2	0.900	0.014
	642161	10423.2	0.900	0.014
CLUD1	043101	10423.2	0.900	0.014
	2740	10q23.2	0.966	0.014
FAIVIJJA	24537	10c22.2	0.900	0.014
FAIVIZZA	720100	10q23.2	0.966	0.014
FAIVIZZU MINIDD1	128130	10q23.2	0.966	0.014
	9562	10023.2	0.900	0.014
TAPOOL	9060	10q23.2	0.966	0.014
	84896	10q23.31	0.966	0.014
	142913	10c02.31	0.966	0.014
	100144748	10q23.31	0.966	0.014
PIEN	5728	10q23.31	0.966	0.014
ACSS1	84532	20p11.21	0.966	0.018
VSX1	30813	20p11.21	0.966	0.018
ENTPD6	955	20p11.21	0.966	0.018
PYGB	5834	20p11.21	0.966	0.018
ABHD12	26090	20p11.21	0.966	0.018
GINS1	9837	20p11.21	0.966	0.018
NINL	22981	20p11.21	0.966	0.018

(continued to the next)

(continued to the next page)

Supplementary Table 1. Continued

Gene Symbol	Locus ID	Cytoband	FDR Value	P*
SPP1	6696	4q22.1	0.966	0.020
PKD2	5311	4q22.1	0.966	0.020
ABCG2	9429	4g22.1	0.966	0.020
PPM1K	152926	4a22.1	0.966	0.020
HERC6	55008	4g22.1	0.966	0.020
HEBC5	51191	4a22.1	0.966	0.020
PIGY	84992	4a22.1	0.966	0.020
HERC3	8916	4a22.1	0.966	0.020
NAP1L5	266812	4a22.1	0.966	0.020
FAM13A	10144	/n22.1	0.966	0.020
	166815	4q22.1	0.966	0.020
	295512	4422.1	0.900	0.020
	200010	4yzz.1	0.900	0.020
	0022	4q22.1	0.966	0.020
	22915	4q22.1	0.966	0.020
FAM190A	401145	4q22.1	0.966	0.020
NIVIU	10874	4q12	0.966	0.020
EXUC1	55763	4q12	0.966	0.020
CEP135	9662	4q12	0.966	0.020
KIAA1211	57482	4q12	0.966	0.020
AASDH	132949	4q12	0.966	0.020
PPAT	5471	4q12	0.966	0.020
PAICS	10606	4q12	0.966	0.020
SRP72	6731	4q12	0.966	0.020
ARL9	132946	4q12	0.966	0.020
HOPX	84525	4q12	0.966	0.020
SPINK2	6691	4q12	0.966	0.020
REST	5978	4q12	0.966	0.020
NOA1	84273	4q12	0.966	0.020
POLR2B	5431	4a12	0.966	0.020
IGFBP7	3490	4a12	0.966	0.020
I PHN3	23284	4a13.1	0.966	0.021
TECRI	253017	4a13.1	0.966	0.021
FPHA5	2044	4a13.1	0.966	0.021
	1060	4q13.1	0.966	0.021
STAP1	26228	/m12.2	0.000	0.021
	20220	4a12.2	0.900	0.021
	0700	4y13.2	0.900	0.021
	2/98	4y13.2	0.900	0.021
TMDDCC11A	9407	4q13.2	0.900	0.021
	339967	4013.2	0.966	0.021
TMPRSS11GP	644759	4q13.2	0.966	0.021
SYI14L	401135	4q13.2	0.966	0.021
IMPRSS11F	389208	4q13.2	0.966	0.021
FTLP10	100130017	4q13.2	0.966	0.021
TMPRSS11BNL	401136	4q13.2	0.966	0.021
TMPRSS11B	132724	4q13.2	0.966	0.021
YTHDC1	91746	4q13.2	0.966	0.021
TMPRSS11E	28983	4q13.2	0.966	0.021
UGT2B10	7365	4q13.2	0.966	0.021
UGT2B15	7366	4q13.2	0.966	0.021
UGT2B17	7367	4q13.2	0.966	0.021
UGT2A3	79799	4q13.2	0.966	0.021
UGT2B7	7364	4q13.2	0.966	0.021
UGT2B11	10720	4013.2	0.966	0.021
LIGT2B28	54490	4a13 2	0.966	0.021
LIGT2RA	7262	Δn12 2	0.000	0.021
LIGT2A1	100/1	4a12.2	0.000	0.021
UUIZAI	10941	4413.2	0.900	0.021

dono oyniboi	Locus ID	Cytoband	FDR Value	P*
UGT2A2	574537	4q13.2	0.966	0.021
SULT1B1	27284	4q13.3	0.966	0.021
SULT1E1	6783	4q13.3	0.966	0.021
CSN1S1	1446	4q13.3	0.966	0.021
CSN2	1447	4q13.3	0.966	0.021
STATH	6779	4013.3	0.966	0.021
HTN3	3347	4q13.3	0.966	0.021
HTN1	3346	4013.3	0.966	0.021
C4orf40	401137	4q13.3	0.966	0.021
CSN1S2AP	286828	4013.3	0.966	0.021
CSN1S2BP	100337616	4q13.3	0.966	0.021
	54959	4q13.3	0.966	0.021
EDCSP	260//36	/q13.3	0.966	0.021
CSN3	1//8	4q13.3	0.966	0.021
CARS1	85/38	4q13.3	0.966	0.021
SMR3A	26052	4q13.3	0.966	0.021
SMD2R	10970	4q13.3	0.900	0.021
	58502	4413.3	0.900	0.021
MUCZ	10000	4413.3	0.900	0.021
	4009	4413.3	0.900	0.021
	401130	4413.3	0.900	0.021
	200	4013.3	0.966	0.021
ENAM	10117	4013.3	0.966	0.021
IGJ	3512	4013.3	0.966	0.021
UIP3	57050	4q13.3	0.966	0.021
RUFY3	22902	4q13.3	0.966	0.021
GRSF1	2926	4q13.3	0.966	0.021
MOB1B	92597	4q13.3	0.966	0.021
DCK	1633	4q13.3	0.966	0.021
SLC4A4	8671	4q13.3	0.966	0.021
GC	2638	4q13.3	0.966	0.021
NPFFR2	10886	4q13.3	0.966	0.021
ADAMTS3	9508	4q13.3	0.966	0.021
COX18	285521	4q13.3	0.966	0.021
ANKRD17	26057	4q13.3	0.966	0.021
ALB	213	4q13.3	0.966	0.021
AFP	174	4q13.3	0.966	0.021
AFM	173	4q13.3	0.966	0.021
RASSF6	166824	4q13.3	0.966	0.021
IL8	3576	4q13.3	0.966	0.021
CXCL6	6372	4q13.3	0.966	0.021
CXCL1	2919	4q13.3	0.966	0.021
PF4V1	5197	4q13.3	0.966	0.021
PF4	5196	4q13.3	0.966	0.021
PPBP	5473	4q13.3	0.966	0.021
CXCL5	6374	4q13.3	0.966	0.021
CXCL3	2921	4q13.3	0.966	0.021
PPBPL2	10895	4q13.3	0.966	0.021
CXCL2	2920	4q13.3	0.966	0.021
MTHFD2L	441024	4q13.3	0.966	0.021
EPGN	255324	4q13.3	0.966	0.021
EREG	2069	4q13.3	0.966	0.021
AREG	374	4q13.3	0.966	0.022
BTC	685	4013.3	0.966	0.022
PARM1	25849	4o13.3	0.966	0.022
RCHY1	25898	4021.1	0.966	0.022
THAP6	152815	4q21.1	0.966	0.022

(continued to the next page)

(continued to the next)

Supplementary Table 1. Continued

Gene Symbol	Locus ID	Cytoband	FDR Value	P*
C4orf26	152816	4q21.1	0.966	0.022
CDKL2	8999	4q21.1	0.966	0.022
G3BP2	9908	4q21.1	0.966	0.022
US01	8615	4q21.1	0.966	0.022
PPEF2	5470	4q21.1	0.966	0.022
NAAA	27163	4g21.1	0.966	0.022
SDAD1	55153	4g21.1	0.966	0.022
CXCL9	4283	4g21.1	0.966	0.022
ART3	419	4g21.1	0.966	0.022
CXCL10	3627	4021.1	0.966	0.022
CXCL11	6373	4021.1	0.966	0.022
NUP54	53371	4021.1	0.966	0.022
SCARB2	950	4g21.1	0.966	0.022
FAM47F	100129583	4021.1	0.966	0.022
STRD1	8987	/n21.1	0.966	0.022
CCDC158	330065	4α21.1	0.000	0.022
SHROOM3	57610	/n21 1	0.000	0.022
SUMAHB	3/5070	4y∠1.1	0.900	0.022
COMAID	10022	4y21.1	0.900	0.022
CCNG2	10903	4421.1	0.900	0.022
	10560	4y21.1	0.900	0.022
CNOTE	10003	4y∠1.1	0.900	0.022
	246175	4q21.1	0.966	0.022
	65008	4q21.1	0.966	0.022
FRAST	80144	4q21.21	0.966	0.022
ANXA3	306	4q21.21	0.966	0.022
BMP2K	55589	4q21.21	0.966	0.022
PAQR3	152559	4q21.21	0.966	0.022
NAA11	84779	4q21.21	0.966	0.022
GK2	2712	4q21.21	0.966	0.022
GDEP	118425	4q21.21	0.966	0.022
ANTXR2	118429	4q21.21	0.966	0.022
PRDM8	56978	4q21.21	0.966	0.022
FGF5	2250	4q21.21	0.966	0.022
C4orf22	255119	4q21.21	0.966	0.022
BMP3	651	4q21.21	0.966	0.022
PRKG2	5593	4q21.21	0.966	0.022
RASGEF1B	153020	4q21.21	0.966	0.022
HNRNPD	3184	4q21.22	0.966	0.022
HNRPDL	9987	4q21.22	0.966	0.022
NANP	140838	20p11.21	0.966	0.022
ZNF337	26152	20p11.1	0.966	0.022
FAM182A	284800	20p11.1	0.966	0.022
FAM182B	728882	20p11.1	0.966	0.022
NCOR1P1	149934	20p11.1	0.966	0.022
EXD1	161829	15q15.1	0.966	0.023
CHP	11261	15q15.1	0.966	0.023
0IP5	11339	15q15.1	0.966	0.023
NUSAP1	51203	15q15.1	0.966	0.023
POU1F1	5449	3p11.2	0.966	0.023
HTR1F	3355	3p11.1	0,966	0.023
CGGBP1	8545	3n11 1	0.966	0.023
C3orf38	285237	3n11 1	0.966	0.023
7NF654	55270	3n11 1	0.000	0.020
EPHA3	2027 3 2042	3n11 1	0.000	0.020
SRD1/	2042 6707	15g15 1	0.900	0.023
	100745	15015.1	0.900	0.020
FLAZU4E	123743	1.CTPCT	0.900	0.026

Gene Symbol	Locus ID	Cytoband	FDR Value	P*
DCUN1D4	23142	4q12	0.966	0.027
LRRC66	339977	4q12	0.966	0.027
SGCB	6443	4q12	0.966	0.027
SPATA18	132671	4q12	0.966	0.027
IP09	55705	1q32.1	0.966	0.028
LMOD1	25802	1q32.1	0.966	0.028
SHISA4	149345	1q32.1	0.966	0.028
RNPEP	6051	1q32.1	0.966	0.028
TIMM17A	10440	1q32.1	0.966	0.028
ELF3	1999	1q32.1	0.966	0.028
GPR37L1	9283	1q32.1	0.966	0.028
ARL8A	127829	1q32.1	0.966	0.028
PTPN7	5778	1q32.1	0.966	0.028
LGR6	59352	1q32.1	0.966	0.028
PTPRVP	148713	1q32.1	0.966	0.028
C4orf32	132720	4q25	0.966	0.030
AP1AR	55435	4q25	0.966	0.030
TIFA	92610	4q25	0.966	0.030
ALPK1	80216	4q25	0.966	0.030
NEUROG2	63973	4q25	0.966	0.030
C4orf21	55345	4q25	0.966	0.030
LARP7	51574	4q25	0.966	0.030
ANK2	287	4q25	0.966	0.030
FAM91A2	57234	1q21.2	0.966	0.030
FCGR1A	2209	1q21.2	0.966	0.030
FCGR1C	100132417	1q21.2	0.966	0.030
HIST2H2BF	440689	1q21.2	0.966	0.030
HIST2H3D	653604	1q21.2	0.966	0.030
ASNS	440	7021.3	0.966	0.033
MGC72080	389538	7q21.3	0.966	0.033
	4951	/q21.3	0.966	0.033
	4001	1021.3	0.966	0.034
IN133	11000	1021.3	0.900	0.034
SLUZIAS GATAD2R	57450	1021.3	0.900	0.034
	0000	1021.3	0.900	0.034
	200186	1021.3	0.900	0.034
SI C30A1	200100	1021.3	0.900	0.034
CREB3LA	1/8327	1021.3	0.900	0.034
ITR	10899	1021.3	0.966	0.034
RAR13	5872	1g21.0	0.966	0.034
RPS27	6232	1021.3	0.966	0.034
NUP210I	91181	1021.3	0.966	0.034
TPM3	7170	1021.3	0.966	0.034
C1orf189	388701	1021.3	0.966	0.034
C1orf43	25912	1021.3	0.966	0.034
UBAP2L	9898	1g21.3	0.966	0.034
HAX1	10456	1g21.3	0.966	0.034
AQP10	89872	1q21.3	0.966	0.034
ATP8B2	57198	1g21.3	0.966	0.034
IL6R	3570	1g21.3	0.966	0.034
SHE	126669	1q21.3	0.966	0.034
TDRD10	126668	1q21.3	0.966	0.034
UBE2Q1	55585	1q21.3	0.966	0.034
CHRNB2	1141	1q21.3	0.966	0.034
ADAR	103	1q21.3	0.966	0.034

(continued to the next)

(continued to the next page)

Gene Symbol	Locus ID	Cytoband	FDR Value	P*
KCNN3	3782	1q21.3	0.966	0.034
PMVK	10654	1q21.3	0.966	0.034
PBXIP1	57326	1q21.3	0.966	0.034
PYG02	90780	1q21.3	0.966	0.034
SHC1	6464	1g21.3	0.966	0.034
CKS1B	1163	1g21.3	0.966	0.034
FLAD1	80308	1g21.3	0.966	0.034
LENEP	55891	1g21.3	0.966	0.034
ZBTB7B	51043	1a21.3	0.966	0.034
DCST2	127579	1a21.3	0.966	0.034
DCST1	149095	1022	0.966	0.034
ADAM15	8751	1022	0.966	0.034
FENA4	1945	1g22	0.966	0.034
FENA3	1944	1022	0.966	0.034
FFNA1	1942	1022	0.966	0.034
SI C50A1	55974	1022	0.966	0.034
DPM3	54344	1022	0.966	0.034
KRTCAP2	200185	1022	0.966	0.034
TRIM46	80128	1022	0.966	0.034
THRS3	7050	1022	0.000	0.004
MTX1	1580	1022	0.000	0.034
FAM180R	10712	1022	0.900	0.034
GRAP1	2620	1022	0.900	0.034
	2030	1422	0.900	0.034
	2029	1422	0.900	0.034
SUAIVIP3	1100	1/22	0.966	0.034
ULKZ	1196	1922	0.966	0.034
FUPS	2224	1922	0.966	0.034
PKLR	5313	1922	0.966	0.034
RUSCI	23623	1922	0.966	0.034
ASHIL	015000	1922	0.966	0.034
PUU5FTP4	645682	1022	0.966	0.034
MSTUT	55154	1022	0.966	0.034
DAP3	7818	1022	0.966	0.034
YY1AP1	55249	1q22	0.966	0.034
GON4L	54856	1q22	0.966	0.034
MST02P	100129405	1q22	0.966	0.034
SYI11	23208	1q22	0.966	0.034
KII 1	6016	1q22	0.966	0.034
SNUKA42	677823	1q22	0.966	0.034
SCARNA4	677771	1q22	0.966	0.034
KXFP4	339403	1q22	0.966	0.034
AKHGEF2	9181	1q22	0.966	0.034
SSR2	6746	1q22	0.966	0.034
UBQLN4	56893	1q22	0.966	0.034
LAMTOR2	28956	1q22	0.966	0.034
MEX3A	92312	1q22	0.966	0.034
LMNA	4000	1q22	0.966	0.034
SEMA4A	64218	1q22	0.966	0.034
PMF1	11243	1q22	0.966	0.034
SLC25A44	9673	1q22	0.966	0.034
BGLAP	632	1q22	0.966	0.034
PAQR6	79957	1q22	0.966	0.034
SMG5	23381	1q22	0.966	0.034
C1orf85	112770	1q22	0.966	0.034
CCT3	7203	1q22	0.966	0.034
VHLL	391104	1q22	0.966	0.034

Gene Symbol	Locus ID	Cytoband	FDR Value	P*
C1orf182	128229	1q22	0.966	0.034
RHBG	57127	1q22	0.966	0.034
NES	10763	1q23.1	0.966	0.034
CRABP2	1382	1g23.1	0.966	0.034
ISG20L2	81875	1g23.1	0.966	0.034
RRNAD1	51093	1a23.1	0.966	0.034
MRPL24	79590	1a23.1	0.966	0.034
HDGF	3068	1g23.1	0.966	0.034
PRCC	5546	1g23.1	0.966	0.034
SH2D2A	9047	1g23.1	0.966	0.034
NTRK1	4914	1a23.1	0.966	0.034
LRRC71	149499	1g23.1	0.966	0.034
PEAR1	375033	1g23.1	0.966	0.034
ARHGEF11	9826	1g23.1	0.966	0.034
ZNF678	339500	1042.13	0.966	0.034
ZNF847P	401983	1042.13	0.966	0.034
JMJD4	65094	1042.13	0.966	0.034
SNAP47	116841	1q42.13	0.966	0.034
PRSS38	339501	1042.13	0.966	0.034
WNT3A	89780	1042.13	0.966	0.034
ARF1	375	1042.13	0.966	0.034
C1orf35	79169	1042.13	0.966	0.034
MRPL 55	128308	1042.13	0.966	0.034
GUK1	2987	1042.13	0.966	0.034
GIC2	57165	1042.13	0.966	0.034
IBA57	200205	1042.13	0.966	0.034
OBSCN	84033	1q42.10	0.966	0.034
TRIM17	51127	1042.13	0.966	0.034
HIST3H3	8290	1q12.10	0.966	0.034
HIST3H2A	92815	1042.13	0.966	0.034
HIST3H2BB	128312	1q42.10	0.966	0.034
DUSP5P	574029	1042.13	0.966	0.034
BHOU	58480	1042.13	0.966	0.034
RNF187	149603	1042.13	0.966	0.034
USP46	64854	4q12	0.966	0.035
SNOBA26	677810	4n12	0.966	0.035
BASI 11B	65997	4n12	0.966	0.035
SCED2	152579	4012	0.966	0.035
FIP1L1	81608	4n12	0.966	0.035
I NX1	84708	4n12	0.966	0.035
BPI 21P44	402176	4q12	0.966	0.035
CHIC2	26511	4q12	0.966	0.035
GSX2	170825	4q12	0.966	0.035
PDGFBA	5156	4q12	0.966	0.035
KIT	3815	4n12	0.966	0.035
KDR	3791	4012	0.966	0.035
SBD543	79644	4q12	0.966	0.035
TMEM165	55858	4012	0.966	0.035
PDCL2	132954	4q12	0.966	0.035
KI HI 8	57563	4g22.1	0.966	0.035
HSD17B13	345275	4g22.1	0.966	0.035
HSD17B11	51170	4n22.1	0.966	0.035
NUDT9	53343	4022.1	0.966	0.035
SPARCI 1	8404	4g22 1	0.966	0.035
DSPP	1834	4022.1	0.966	0.035
DMP1	1758	4g22.1	0.966	0.035
0.00	1100	1952.1	0.000	0.000

Supplementary Table 1. Continued

(continued to the next)

(continued to the next page)

Supplementary Table 1. Continued

Gene Symbol	Locus ID	Cytoband	FDR Value	<i>P</i> *
IBSP	3381	4q22.1	0.966	0.035
MEPE	56955	4q22.1	0.966	0.035
HSP90AB3P	3327	4q22.1	0.966	0.035
OR8U8	504189	11g12.1	0.966	0.035
OR9G1	390174	11012.1	0.966	0.035
OR9G4	283189	11012.1	0.966	0.035
0B9G9	504191	11012.1	0.966	0.035
UBF2T	29089	1032.1	0.966	0.036
PPP1R12R	4660	1032.1	0.966	0.036
SYT2	127833	1032.1	0.966	0.036
KDM5B	10765	1032.1	0.966	0.000
RARIE	5877	1032.1	0.966	0.036
	50240	102.1	0.900	0.030
	59549	1422.1	0.900	0.030
	51094	1432.1	0.966	0.036
CIRORI	51706	1432.1	0.966	0.036
MYUG DDFIA 4	4656	1q32.1	0.966	0.036
PPEIA4	8497	1q32.1	0.966	0.036
ADUKA1	134	1q32.1	0.966	0.036
MIYBPH	4608	1q32.1	0.966	0.036
CHI3L1	1116	1q32.1	0.966	0.036
CHIT1	1118	1q32.1	0.966	0.036
BTG2	7832	1q32.1	0.966	0.036
FMOD	2331	1q32.1	0.966	0.036
PRELP	5549	1q32.1	0.966	0.036
OPTC	26254	1q32.1	0.966	0.036
ATP2B4	493	1q32.1	0.966	0.036
LINC00260	84719	1q32.1	0.966	0.036
SNORA77	677843	1q32.1	0.966	0.036
LAX1	54900	1q32.1	0.966	0.036
ZBED6	100381270	1q32.1	0.966	0.036
ZC3H11A	9877	1g32.1	0.966	0.036
SNRPE	6635	1032.1	0.966	0.036
LINC00303	284573	1032.1	0.966	0.036
SOX13	9580	1032.1	0.966	0.036
GAB2	9846	11014 1	0.966	0.039
CA14	23632	1021.2	0.966	0.040
ΔΡΗ1Δ	51107	1021.2	0.966	0.040
MRPS21	54460	1021.2	0.966	0.040
PRPE3	9129	1021.2	0.966	0.040
RPRD2	23248	1021.2	0.966	0.040
	23240	1921.5	0.900	0.040
	70642	4420	0.900	0.041
	79042	4420	0.900	0.041
	7308	4y20	0.900	0.041
	64579	4026	0.966	0.041
	8295	/q22.1	0.966	0.042
SMUKF1	5/154	/q22.1	0.966	0.042
KPNA7	402569	7q22.1	0.966	0.042
MYH16	84176	7q22.1	0.966	0.042
ENOPH1	58478	4q21.22	0.966	0.043
C4orf11	439934	4q21.22	0.966	0.043
SCD5	79966	4q21.22	0.966	0.043
SEC31A	22872	4q21.22	0.966	0.043
THAP9	79725	4q21.22	0.966	0.043
LIN54	132660	4q21.22	0.966	0.043
COPS4	51138	4q21.22	0.966	0.043
PLAC8	51316	4q21.22	0.966	0.043

(continued	to t	he r	next)
------------	------	------	-------

Gene Symbol	Locus ID	Cytoband	FDR Value	P*
COQ2	27235	4q21.23	0.966	0.043
HPSE	10855	4q21.23	0.966	0.043
HELQ	113510	4q21.23	0.966	0.043
MRPS18C	51023	4q21.23	0.966	0.043
FAM175A	84142	4q21.23	0.966	0.043
AGPAT9	84803	4q21.23	0.966	0.043
CDS1	1040	4q21.23	0.966	0.043
WDFY3	23001	4q21.23	0.966	0.043
ARHGAP24	83478	4q21.23	0.966	0.043
MAPK10	5602	4q21.3	0.966	0.043
PTPN13	5783	4q21.3	0.966	0.043
SLC10A6	345274	4q21.3	0.966	0.043
C4orf36	132989	4q21.3	0.966	0.043
AFF1	4299	4q21.3	0.966	0.043
COL4A1	1282	13q34	0.966	0.043
COL4A2	1284	13q34	0.966	0.043
RAB20	55647	13q34	0.966	0.043
CARKD	55739	13q34	0.966	0.043
CARS2	79587	13q34	0.966	0.043
ING1	3621	13q34	0.966	0.043
LINC00346	283487	13q34	0.966	0.043
ANKRD10	55608	13q34	0.966	0.043
ARHGEF7	8874	13q34	0.966	0.043
TEX29	121793	13q34	0.966	0.043
SOX1	6656	13q34	0.966	0.043
SPACA7	122258	13q34	0.966	0.043
TUBGCP3	10426	13q34	0.966	0.043
C13orf35	400165	13q34	0.966	0.043
GNAI1	2770	7q21.11	0.966	0.045
GNAT3	346562	7q21.11	0.966	0.045
CD36	948	7q21.11	0.966	0.045
SEMA3C	10512	7q21.11	0.966	0.045
HCN1	348980	5p12	0.966	0.045
PAX1	5075	20p11.22	0.966	0.049
FOXA2	3170	20p11.21	0.966	0.049

FDR = False Discovery Rate.

*Student's t-test for groups with continuous outcomes; Fisher's exact test for categorical outcomes.