

OPEN d ACCESS

Crystal structure of N-(2-hydroxy-5methylphenyl)benzamide

Rodolfo Moreno-Fuguen,^a* Nory J. Mariño^a and Alan R. Kennedv^b

^aDepartamento de Química – Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and ^bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland. *Correspondence e-mail: rodimo26@yahoo.es

Received 28 October 2015; accepted 29 October 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, C₁₄H₁₃NO₂, the mean plane of the non-H atoms of the central amide fragment C-N-C(=O)-C(r.m.s. deviation = 0.029 Å) forms dihedral angles of 5.63 (6) and $10.20(5)^{\circ}$ with the phenyl and hydroxyphenyl rings, respectively. A short intramolecular N-H···O contact is present. In the crystal, the molecules are linked by $O-H \cdots O$ hydrogen bonds to generate C(7) chains along [100]. The chains are reinforced by weak C-H···O contacts, which together with the O-H···O bonds lead to $R_2^2(7)$ loops. Very weak N-H···O interactions link the molecules into inversion dimers.

Keywords: crystal structure; benzamide; benzanilide derivatives; biological activity.

CCDC reference: 1434264

1. Related literature

For the biological activity of benzanilide derivatives, see Calderone et al. (2006). For related structures, see: Gowda et al. (2008); Rodrigues et al. (2011).

 $C_{14}H_{13}NO_2 \\$

 $M_r = 227.25$

Monoclinic, $P2_1/n$ a = 7.2263 (3) Å b = 21.7442 (7) Å c = 7.4747 (3) Å $\beta = 110.280 \ (5)^{\circ}$ V = 1101.69 (8) Å³

2.2. Data collection

Oxford Diffraction Gemini S CCD	2795 independent reflections
diffractometer	2332 reflections with $I > 2\sigma(I)$
10254 measured reflections	$R_{\rm int} = 0.032$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.109$	independent and constrained
S = 1.03	refinement
2795 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
163 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.40 \times 0.35 \times 0.25 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 123 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO2$ $N1-H1\cdotsO2^{i}$ $O2-H20\cdotsO1^{ii}$ $C6-H6\cdotsO2^{iii}$	0.889 (18) 0.889 (18) 0.89 (2) 0.95	2.173 (16) 2.518 (17) 1.75 (2) 2.59	2.6153 (15) 3.1928 (14) 2.6390 (12) 3.4197 (15)	110.0 (13) 133.1 (14) 171.3 (19) 146

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7532).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761-767.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, 0541. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Rodrigues, V. Z., Herich, P., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, 03147
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, o943 [doi:10.1107/S2056989015020575]

Crystal structure of N-(2-hydroxy-5-methylphenyl)benzamide

Rodolfo Moreno-Fuquen, Nory J. Mariño and Alan R. Kennedy

S1. Comment

The crystal structure determination of N-(2-hydroxy-5-methylphenyl)benzamide (I), is part of a study on phenylbenzamides carried out in our research group, and it was synthesized from the reaction between of 2-amino-4-methylphenol and benzoyl chloride in acetonitrile. Benzanilide systems have a wide range of biological properties such as potassium channel activators (Calderone et al., 2006). Similar compounds to (I) have been reported in the literature: 2-Methyl-N-(m-tolyl)benzamide (II) (Gowda et al., 2008) and N-(3,5-Dimethylphenyl)-4-methylbenzamide (III) (Rodrigues et al., 2011). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8-N1-C7(=O1) -C1, is close to planar (r.m.s. deviation for all non-H atoms = 0.0291 Å) and it forms dihedral angles of 5.63 (6)° with the C1-C6 and 10.20 (5)° with the C8-C13 rings respectively. Bond lengths and bond angles in the molecule are in a good agreement with those found in the related compounds (II) and (III). The conformation of the N—H group is syn to the – OH substituent in the benzoyl ring, which results in a short intramolecular N—H…O contact. In the crystal (Fig. 2), molecules are linked by strong O-H···O hydrogen bonds and weak C-H···O intermolecular contacts. Indeed, the O2-H20 at (x,y,z) acts as a hydrogen-bond donor to O1 atom of the carbonyl group at (x+1,+y,+z) and the C6-H6 acts as a hydrogen-bond donor to O2 atom of the hydroxyl group at (x-1,+y,+z). These interactions generate C(7) chains of molecules and $R_2^2(7)$ rings (See Fig. 2), running along [100]. Additionally, the molecules are linked by N-H···O interactions. N1-H1 acts as a hydrogen-bond donor to O2 atom of the hydroxyl group at (-x+1, -y, -z+1), forming inversion dimers (Fig. 3).

S2. Experimental

The title molecule was synthesized taking 0.100 g (0.812 mmol) of 2-amino-4-methylphenol dissolved in acetonitrile (10 mL), and then was added benzoyl chloride (0.100 mL, 0.860 mmol). The solution was placed under reflux and constant stirring for 3 hours at 150°C. The solid was filtered and recrystallized from methanol. The solvent was evaporated at room temperature and pink crystals were obtained (m.p. 448 (1)K).

S3. Refinement

All H-atoms were positioned in geometrically idealized positions, C—H = 0.95 Å, and were refined using a riding-model approximation with $U_{iso}(H)$ constrained to 1.2 times U_{eq} of the respective parent atom. H1 atom was found from the Fourier maps and its coordinates were refined freely.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Part of the crystal structure of (I), showing the formation of C(7) chains of molecules along [100] [Symmetry codes: (i) x + 1, +y, +z; (ii) x - 1, +y, +z].

Figure 3

Part of the crystal structure of (I), showing the formation of dimers along [001]. [Symmetry codes: (iii) -x + 1, -y, -z + 1].

N-(2-Hydroxy-5-methylphenyl)benzamide

Crystal data $C_{14}H_{13}NO_2$ $M_r = 227.25$

Monoclinic, $P2_1/n$ *a* = 7.2263 (3) Å Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 3.4 - 29.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

 $0.40 \times 0.35 \times 0.25$ mm

T = 123 K

Block, pink

Cell parameters from 10254 reflections

b = 21.7442 (7) Å c = 7.4747 (3) Å $\beta = 110.280 (5)^{\circ}$ $V = 1101.69 (8) \text{ Å}^{3}$ Z = 4 F(000) = 480 $D_{x} = 1.370 \text{ Mg m}^{-3}$ Melting point: 448(1) K

Data collection

Ordend Differentian Commini & CCD	2222 and $a + i = a - i + i = L > 2 - (D)$
Oxford Diffraction Gemini S CCD	2552 reflections with $I \ge 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.032$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 29.4^{\circ}, \theta_{\rm min} = 3.4^{\circ}$
Graphite monochromator	$h = -9 \rightarrow 9$
ωscans	$k = -30 \rightarrow 30$
10254 measured reflections	$l = -9 \rightarrow 10$
2795 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: mixed
$wR(F^2) = 0.109$	H atoms treated by a mixture of independent
<i>S</i> = 1.03	and constrained refinement
2795 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 0.5141P]$
163 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The IR spectrum was recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. IR (KBr), cm⁻¹, 3395 (amide N-H); 3073 (Hydroxyl O-H), 1643 (amide, C=O); 1593 (C=C).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
02	0.55117 (13)	0.05937 (4)	0.41236 (14)	0.0204 (2)	
01	-0.14306 (13)	0.07692 (4)	0.30232 (14)	0.0214 (2)	
N1	0.17579 (15)	0.05132 (5)	0.36397 (15)	0.0166 (2)	
C1	-0.07846 (17)	-0.02289 (5)	0.20522 (16)	0.0153 (2)	
C2	0.05257 (19)	-0.06486 (6)	0.17363 (18)	0.0192 (3)	
H2	0.1892	-0.0554	0.2136	0.023*	
C3	-0.0159 (2)	-0.12053 (6)	0.08386 (19)	0.0222 (3)	
H3	0.0743	-0.1490	0.0632	0.027*	

(3)(3)(3)
(3) (3)
(3) (3)
(3)
(3)
(2)
(2)
(3)
(3)
(3)
(3)
(2)
(3)
•)*
() () () () () () () ()

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0158 (4)	0.0173 (4)	0.0316 (5)	0.0009 (3)	0.0126 (4)	-0.0013 (4)
01	0.0150 (4)	0.0177 (4)	0.0333 (5)	0.0005 (3)	0.0108 (4)	-0.0022 (4)
N1	0.0129 (5)	0.0147 (5)	0.0224 (5)	0.0010 (4)	0.0063 (4)	-0.0027 (4)
C1	0.0170 (6)	0.0148 (5)	0.0142 (5)	-0.0004 (4)	0.0056 (4)	0.0008 (4)
C2	0.0161 (6)	0.0200 (6)	0.0210 (6)	0.0009 (5)	0.0056 (5)	-0.0008(5)
C3	0.0235 (7)	0.0188 (6)	0.0240 (6)	0.0027 (5)	0.0078 (5)	-0.0030 (5)
C4	0.0267 (7)	0.0172 (6)	0.0190 (6)	-0.0028 (5)	0.0051 (5)	-0.0012 (5)
C5	0.0186 (6)	0.0230 (6)	0.0238 (6)	-0.0047 (5)	0.0051 (5)	-0.0013 (5)
C6	0.0162 (6)	0.0197 (6)	0.0220 (6)	0.0008 (5)	0.0065 (5)	-0.0002(5)
C7	0.0143 (5)	0.0156 (6)	0.0164 (5)	0.0010 (4)	0.0069 (4)	0.0014 (4)
C8	0.0145 (6)	0.0150 (5)	0.0146 (5)	-0.0003 (4)	0.0043 (4)	0.0009 (4)
C13	0.0161 (6)	0.0180 (6)	0.0180 (6)	0.0012 (4)	0.0065 (5)	-0.0001 (4)
C12	0.0227 (6)	0.0155 (6)	0.0178 (6)	0.0015 (5)	0.0073 (5)	0.0006 (4)
C11	0.0230 (7)	0.0149 (6)	0.0222 (6)	-0.0034 (5)	0.0071 (5)	0.0006 (5)
C10	0.0152 (6)	0.0195 (6)	0.0238 (6)	-0.0019 (5)	0.0069 (5)	0.0027 (5)
C9	0.0153 (6)	0.0156 (5)	0.0172 (6)	0.0022 (4)	0.0070 (5)	0.0022 (4)
C14	0.0297 (7)	0.0184 (6)	0.0308 (7)	0.0023 (5)	0.0125 (6)	-0.0044 (5)

Geometric parameters (Å, °)

O2—C9	1.3667 (14)	С5—Н5	0.9500
O2—H20	0.89 (2)	С6—Н6	0.9500

supporting information

O1—C7	1.2369 (14)	C8—C13	1.3871 (16)
N1—C7	1.3440 (15)	C8—C9	1.4038 (16)
N1—C8	1.4103 (15)	C13—C12	1.3949 (17)
N1—H1	0.889 (18)	С13—Н13	0.9500
C1-C2	1 3929 (17)	C12—C11	1 3870 (18)
C1 - C6	1.3929(17) 1.3949(17)	C_{12} C_{14}	1.5074(17)
C1 - C7	1 4984 (16)	C_{11} C_{10}	1.3074(17) 1.3033(18)
C^2 C^3	1.3803(17)		0.9500
$C_2 = C_3$	0.0500	C_{10} C_{0}	1.3838(17)
$C_2 = C_4$	1 2010 (10)	C_{10} U_{10}	1.3838 (17)
$C_3 = U_2$	1.3818 (19)		0.9300
C3—H3	0.9500	C14—H141	0.9800
C4—C5	1.3849 (19)	C14—H142	0.9800
C4—H4	0.9500	C14—H143	0.9800
C5—C6	1.3829 (18)		
С9—О2—Н20	111.6 (12)	C13—C8—C9	119.61 (11)
C7—N1—C8	128.14 (10)	C13—C8—N1	125.23 (11)
C7—N1—H1	117.3 (11)	C9—C8—N1	115.16 (10)
C8—N1—H1	114 4 (11)	C8-C13-C12	120.90(11)
$C_2 - C_1 - C_6$	118 75 (11)	C8-C13-H13	119.5
$C_2 - C_1 - C_7$	123 75 (11)	C_{12} C_{13} H_{13}	119.5
C_{6}	117 46 (10)	C_{11} C_{12} C_{13} C_{13}	118.90 (11)
C_{3} C_{2} C_{1}	120.22(12)	C11 - C12 - C13	110.90(11) 121.51(12)
$C_3 = C_2 = C_1$	110.0	$C_{11} = C_{12} = C_{14}$	121.51(12) 110.50(11)
$C_3 = C_2 = H_2$	119.9	C12 - C12 - C14	119.39(11)
C1 = C2 = H2	119.9	C12 $C11$ $U11$	120.82 (11)
C4 - C3 - C2	120.39 (12)		119.6
C4—C3—H3	119.8	CIO-CII-HII	119.6
C2—C3—H3	119.8		120.07 (11)
C3—C4—C5	119.83 (12)	C9—C10—H10	120.0
C3—C4—H4	120.1	С11—С10—Н10	120.0
C5—C4—H4	120.1	O2—C9—C10	123.73 (11)
C6—C5—C4	119.99 (12)	O2—C9—C8	116.55 (10)
С6—С5—Н5	120.0	C10—C9—C8	119.71 (11)
C4—C5—H5	120.0	C12—C14—H141	109.5
C5—C6—C1	120.81 (12)	C12—C14—H142	109.5
С5—С6—Н6	119.6	H141—C14—H142	109.5
С1—С6—Н6	119.6	C12—C14—H143	109.5
O1—C7—N1	121.94 (11)	H141—C14—H143	109.5
O1—C7—C1	121.11 (11)	H142—C14—H143	109.5
N1	116.95 (10)		
C_{6} C_{1} C_{2} C_{3}	-0.16(18)	C7 N1 C8 C0	-166 27 (11)
$C_{1} = C_{1} = C_{2} = C_{3}$	-177.86(11)	$C_{1} = C_{1} = C_{1} = C_{1}$	100.27(11)
$C_1 = C_2 = C_3$	-1//.80(11)	$C_{2} = C_{2} = C_{12} = C_{12}$	0.22(18)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.27 (19)	$N1 - C\delta - C13 - C12$	-1/9.91 (11)
$C_2 - C_3 - C_4 - C_5$	-0.10 (19)	C8-C13-C12-C11	0.28 (18)
C3-C4-C5-C6	-0.2(2)	C8—C13—C12—C14	-179.59 (12)
C4—C5—C6—C1	0.3 (2)	C13—C12—C11—C10	-0.44 (19)
C2-C1-C6-C5	-0.12 (18)	C14—C12—C11—C10	179.44 (12)

supporting information

C7-C1-C6-C5	17772(11)	C_{12} C_{11} C_{10} C_{9}	0.08 (19)
$C_{1}^{8} = C_{1}^{1} = C_{2}^{6} = C_{3}^{6}$	-5.48(10)	$C_{12} = C_{11} = C_{10} = C_{2}$	-178 11 (11)
	-3.48 (19)	01-010-09-02	-178.11(11)
C8—N1—C7—C1	173.71 (10)	C11—C10—C9—C8	0.44 (18)
C2-C1-C7-O1	172.66 (12)	C13—C8—C9—O2	178.06 (11)
C6—C1—C7—O1	-5.06 (17)	N1—C8—C9—O2	-1.82 (15)
C2—C1—C7—N1	-6.54 (17)	C13—C8—C9—C10	-0.59 (17)
C6—C1—C7—N1	175.74 (11)	N1—C8—C9—C10	179.54 (11)
C7—N1—C8—C13	13.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O2	0.889 (18)	2.173 (16)	2.6153 (15)	110.0 (13)
N1—H1···O2 ⁱ	0.889 (18)	2.518 (17)	3.1928 (14)	133.1 (14)
O2—H20…O1 ⁱⁱ	0.89 (2)	1.75 (2)	2.6390 (12)	171.3 (19)
C6—H6····O2 ⁱⁱⁱ	0.95	2.59	3.4197 (15)	146

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.