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Golgi phosphoprotein 73 (GP73, also termed as GOLM1 or GOLPH2) is a glycosylated
protein residing on cis-Golgi cisternae and highly expressed in various types of cancer
tissues. Since GP73 is a secretory protein and detectable in serum derived from cancer
patients, it has been regarded as a novel serum biomarker for the diagnosis of different
cancers, especially hepatocellular carcinoma (HCC). However, the functional roles of
GP73 in cancer development are still poorly understood. In recent years, it has been
discovered that GP73 acts as a multifunctional protein-facilitating cancer progression, and
strikingly, it has been identified as a leading factor promoting epithelial-mesenchymal
transition (EMT) of cancer cells and causing cancer metastasis. In this review, we have
overviewed the latest findings of the functional roles of GP73 in elevating cancer
progression, especially in facilitating EMT and cancer metastasis through modulating
expression, transactivation, and trafficking of EMT-related proteins. In addition, unsolved
research fields of GP73 have been lightened, which might be helpful to elucidate the
regulatory mechanisms of GP73 on EMT and provide potential approaches in
therapeutics against cancer metastasis.

Keywords: GP73, cancer biomarker, epithelial mesenchymal transition, cancer metastasis, protein trafficking
Abbreviations: GP73, Golgi phosphoprotein 73; GOLM1, Golgi membrane protein 1; GOLPH2, Golgi phosphoprotein 2;
HCC, hepatocellular carcinoma; EMT, epithelial mesenchymal transition; CTCs, circulating tumor cells; TFs, transcription
factors; GCH, giant-cell hepatitis; aa, amino acids; TMD, transmembrane domain; LC-MS/MS, liquid chromatography and
high-throughput mass spectrometry; AFP, alpha-fetoprotein; HCV, hepatitis C virus; HBV, hepatitis B virus; IFNs, interferons;
NSCLC, nonsmall-cell lung cancer; miRNA, micro-RNA; 3’UTR, 3′-untranslated region; EGF, epithelial growth factor; TAMs,
tumor-associated macrophages; IL-1b, interleukin-1b; mTORC1, mammalian target of rapamycin complex 1; S6K, p70-S6
kinase; 4EBP1, eukaryotic translation initiation factor 4E-binding protein 1; MMP-7, matrix metalloproteinase-7; EHMH,
extrahepatic metastases; MFH, metastasis-free HCC; CREB, c-AMP element response binding protein; EGFR, epithelial
growth factor receptor; MMP-2, matrix metalloproteinase-2; MMPs, matrix metalloproteinases; TGN, trans-Golgi-network;
GSK-3b, glycogen synthase kinase-3b; MAVS, mitochondrial antivirus signaling protein; TRAF6, TNF receptor-associated
factor 6; PD-L1, programmed cell death ligand-1; CRC, colorectal carcinoma; ESCC, esophageal squamous cell carcinoma;
OSCC, oral squamous cell carcinoma; sGP73, secretory GP73.
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INTRODUCTION

In the past decades, cancer has been ranked as the primary cause
of death and the largest health problem worldwide (1). The
incidence and mortality of cancer are rapidly rising because of
aging, growth of the population, environmental pollution, as well
as other social problems (1–3). Metastasis and recurrence are the
main causes of cancer-related deaths (4). A hypoxic tumor
microenvironment is created since a large amount of oxygen is
consumed in the metabolism of cancer cells, which challenges the
survival of cancer cells. As a result, cancer cells have to shift to
places with high oxygen concentrations to promise cell
metabolism and resist cell death, the process of which is
named cancer metastasis (5). Cancer progression towards
metastasis is often depicted as a multistage process and cancer
cells achieve metastasis through epithelial-mesenchymal
transition (EMT) during the process (6–8). When cancer cells
demonstrate a shift towards the mesenchymal state, expression,
and modifications of EMT-related molecules are changed, which
shape cells into spindle, then, migratory and invasive behaviors
of cancer cells are facilitated (9). Some EMT-like cancer cells
named as circulating tumor cells (CTCs) invade into blood
vessels and migrate with the bloodstream. CTCs can be
clustered to evade immune defense and enhance survival of
cancer cells in the blood, moreover, high expression of CD44, the
cancer-specific surface antigen, facilitates heterotypic adhesion of
CTCs, which promises the distant metastasis of CTCs and strives
for more nutrients (10, 11).

EMT-associated transcription factors (TFs), such as ZEB1,
SNAIL1, and TWIST1 transactivate EMT factors associated with
cell adhesion, migration, and invasion (12–14). The repression of
such transactivation was proposed as a rational strategy to
reverse EMT. However, these well-known EMT-associated TFs
are differentially expressed in various cancer types. Therefore, it
is valuable to discover a protein regulating most of EMT-related
factors, thus allowing a specific small-molecule inhibitor to
potentially target EMT of cancer cells.
CHARACTERISTICS AND STRUCTURE
OF GP73

In 2000, a novel protein named Golgi phosphoprotein 73 (GP73,
also termed as GOLM1 or GOLPH2) was identified and isolated
from the liver of a patient who suffered from adult giant-cell
hepatitis (GCH), a rare form of hepatitis with presumed viral
etiology (15). GP73 is encoded by GOLM1, and the open reading
frame comprises two regions encoding products containing 392 and
401 amino acids (aa) (16). GP73 resides in cis-Golgi cisternae, and it
contains a transmembrane domain (TMD) at the N-terminal
region (13–35aa) and two a-helixes at the C-terminal region (56–
205 and 206–401aa) (16, 17). The cytoplasmic region of GP73 is
formed by 1–12aa and, remarkably, GP73 interacts with its
substrates via this domain and involves in the vesicular trafficking
of these proteins (17–19). Also, three N-linked glycosylated sites
(N109, N144, and N398) and two phosphorylated sites (S187 and
S309) have been detected using liquid chromatography and high-
Frontiers in Oncology | www.frontiersin.org 2
throughput mass spectrometry (LC-MS/MS), but the exact
functions of these modifications remain poorly understood
(Figure 1) (20–23). Intracellular vesicles engage in the trafficking
process of GP73 from the Golgi apparatus to cell surface, and the
secretion of GP73 from the cell surface to extracellular spaces is
exosome dependent (18). Furin has been identified as a proteinase
to exclusively cleave GP73 at R55 on the intracellular side of the cell
surface, which permits the remaining part of GP73 (56–401aa)
covered by exosomes and secreted into extracellular spaces via
exosome-dependent secretion (24). Therefore, 56–401aa residue of
GP73 is detectable in extracellular spaces and potentially used as a
serum biomarker for the diagnosis of cancers (25).

GP73 SERVES AS A BIOMARKER IN
CANCER DIAGNOSTICS

In 2005, a study based on glycoproteomics screened serum
glycoproteins and identified serum GP73 as a factor positively
correlated with human hepatocellular carcinoma (HCC), which
suggested that GP73 serves as a potential serum biomarker for
HCC diagnosis (26). Following studies indicate that intracellular
GP73 correlates positively with extracellular GP73, and both of
them could be potentially used as biomarkers for diagnosis of
HCC (23, 24, 27, 28). Notably, GP73 has been indicated to be
highly expressed in pathological tissues and serum derived from
early cancer patients, which manifests higher diagnostic
sensitivity and specificity than classic HCC biomarker alpha-
fetoprotein (AFP) (29–31). Thus, GP73 has been used as a novel
serum biomarker for clinical diagnostics of HCC. Two follow-up
studies have uncovered that GP73 is highly expressed in prostate
cancer tissues, which indicate that GP73 may not be an HCC-
specific biomarker but potentially applicable for diagnosis of
pan-cancers (32, 33). Further studies examined the level of GP73
in different types of cancers, and the results reveal that GP73 is
not only an HCC-specific biomarker but also serves as a suitable
biomarker for diagnosis of other malignant tumors (Table 1).
Similar to HCC, GP73 is also detectable in most other types of
early cancers, which suggests that GP73, as a comprehensive and
sensitive biomarker, is expected to be applied in clinical
diagnostics of different types of cancers.

TRANSACTIVATION AND EXPRESSION OF
GP73 IN CANCER CELLS

Years after GP73 was identified, the discoverer of GP73 measured
the protein level of GP73 in pathological tissues derived from
patients with different liver diseases and found that GP73 was
highly expressed in patients suffering from acute hepatitis of
various etiologies, autoimmune hepatitis, chronic hepatitis C
virus (HCV) infection, and alcoholic liver diseases (58).
Additional studies have indicated that GP73 is highly expressed
in hepatitis B virus (HBV)-infected liver tissues compared with
non-HBV-infected liver tissues, implying that viral infection might
upregulate expression of GP73 (59–61). Pathogen-associated
molecular patterns can be recognized by pattern recognition
receptors during the process of viral infection, which leads to
December 2021 | Volume 11 | Article 783860
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the activation and secretion of interferons (IFNs) (62). Therefore,
it is supposed that virus might activate GP73 expression via
stimulating the expression and secretion of IFNs. Indeed, a
recent study reveals that IFN-b activates GP73 expression and
represses innate immune response in viral-infected HCC cells
through facilitating the degradation of mitochondrial antivirus
signaling protein (MAVS)/TNF receptor-associated factor 6
Frontiers in Oncology | www.frontiersin.org 3
(TRAF6) and attenuating IFN-b promoter (63). However, some
other studies indicate that serum GP73 might not be a suitable
diagnostic marker for HCC because HBV infection rather than
tumorigenesis facilitates GP73 expression (64, 65). Nevertheless,
following studies discovered that GP73 is also highly expressed in
carcinomas without viral infection, such as nonsmall-cell lung
cancer (NSCLC), cutaneous melanoma, cerebroma, prostate
TABLE 1 | GP73 is highly expressed in pathological tissues and serum derived from cancer patients.

Functional system Tumor type Sample type Clinical outcome Ref.

Digestive system HCC Tissues and serum Poor (17, 25, 34–37)
Gastric cancer Tissues and serum Poor (38, 39)
Pancreatic cancer Tissues Poor (40, 41)
ESCC Tissues Poor (42)
OSCC Tissues Poor (43)

Respiratory system NSCLC Tissues and serum Poor (44–47)
Integumentary system Cutaneous melanoma Tissues Poor (48)
Nervous system Cerebroma Tissues Not mentioned (49, 50)
Urinary system Prostate cancer Tissues and urines Poor (32, 33, 51–53)

Renal cell cancer Tissues Poor (54)
Bladder cancer Tissues Poor (55)

Reproductive system Seminoma Tissues Not mentioned (56)
Cervical cancer Tissues and serum Poor (57)
December 2021 | Volume 11
ESCC, esophageal squamous cell carcinoma; OSCC, oral squamous cell carcinoma.
FIGURE 1 | The schematic diagram of GP73. The functional domains, phosphorylated sites, and glycosylated sites of full-length GP73 has been showed. The
predicted molecular structure of GP73 was obtained from AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk).
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cancer, renal cell cancer, and bladder cancer, which suggest that
biogenesis of GP73 is regulated by multiple factors and the
mechanism is complex (Table 2).

With the rise of researches about micro-RNA (miRNA) in recent
years, some studies manifest that the levels of multiple miRNAs
targeting the 3′-untranslated region (3′-UTR) of GOLM1 are
attenuated in cancer cells, but the regulatory mechanism is still
unclear (Table 2). As is well known, miRNAs are not the dominant
factors regulating protein expression, it is significant to explain how
GP73 is transactivated in viral-infected cells and cancer cells (86–88).

As extracellular stimulations such as epithelial growth factor
(EGF), tumor-associated macrophages (TAMs), and immune
suppression-related cytokines in tumor microenvironment facilitate
cancer progression, it is believed that extracellular factors in tumor
microenvironment might play important roles in facilitating GP73
expression (89). It has been discovered that TAM-originated
interleukin-1b (IL-1b) can activate the expression of ETS-1, the
well-known oncogenic TF, which interacts with the promoter of
GOLM1 and promotes its transcription (79). Similarly, a recent study
in our group has uncovered that hypoxia upregulates oncogenic
protein c-Myc and transactivates GP73 in a mildly hypoxic tumor
microenvironment, which suggests that GP73 might be activated to
play critical roles against adverse circumstances and promote the
survival of cancer cells (Figure 2) (19).

It is known that the mammalian target of rapamycin complex
1 (mTORC1) is involved in physiological processes including
protein synthesis, cell metabolism, tumor proliferation, and
autophagy; however, its functional roles in cancer cells are still
poorly understood since the regulatory mechanisms are complex
(90–92). An early study has reported that mTORC1 upregulates
GP73 in HCC cells and promotes cell proliferation (34). It is
wel l-known that act ivat ion of mTORC1 faci l i tates
phosphorylation of p70-S6 kinase (S6K) and eukaryotic
translation initiation factor 4E-binding protein 1 (4EBP1), two
factors that engage in protein synthesis, and accelerate HCC
Frontiers in Oncology | www.frontiersin.org 4
proliferation (93). This study, however, has indicated that GP73
directly upregulates S6K, then promotes protein synthesis and
cell proliferation. Therefore, GP73, as the downstream protein of
mTORC1, plays synergistic roles with mTORC1 in facilitating
carcinogenesis. Additionally, RNA sequencing in this study has
revealed that knockdown of GP73 reduces the levels of matrix
metalloproteinase-7 (MMP-7) and CD44, two factors involved in
cell invasion, heterotypic adhesion, and HCC metastasis;
however, the regulatory mechanisms are unclear (94–96).

The results above have elucidated how GP73 is activated in
cancer cells; furthermore, it is proved that GP73 takes important
effects on cancer metastasis as well as cancer proliferation and
promotes cancer progression.
GP73 PROMOTES EMT OF
CANCER CELLS

It has been mentioned above that GP73 facilitates cancer
metastasis as well as proliferation, and GP73 upregulates MMP-7
and CD44, the factors highly expressed in metastatic cancer cells.
Therefore, it is deemed that GP73 might promote EMT of cancer
cells through upregulating the levels of EMT-related proteins.

Clinical studies have also demonstrated that GP73 is highly
expressed in cancer tissues with infiltration (Table 3). However,
since it is difficult to obtain metastatic tissues after cancer
recurrence, no study has reported the expression of GP73 in
distant metastatic tissues.

Whatever, in recent years, an increasing number of studies have
illustrated the functional roles of GP73 in cancer metastasis. In a
pioneering study, with the help of laser-capture tissue
microdissection and genome-wide cDNA arrays technologies,
GOLM1 was identified as a leading gene significantly upregulated
in tumor tissues from HCC patients with extrahepatic metastases
(EHMH) but not in tissues from metastasis-free HCC (MFH)
TABLE 2 | Transactivation and expression of GP73 in cancer cells.

Type of regulation Effect Type of tissue Regulation Ref.

Micro-RNA Reduction of miR-27b HCC; prostate cancer Up (66, 67)
Reduction of miR-128-3p Pancreatic cancer Up (68)
Reduction of miR-143 Cervical cancer; prostate cancer Up (69, 70)
Reduction of miR-145 Pan-cancer Up (70, 71)
Reduction of miR-200a Lung adenocarcinoma Up (72)
Reduction of miR-212-3p Breast cancer Up (73)
Reduction of miR-382 HCC Up (74)
Reduction of miR-384 Glioma Up (75)
Reduction of miR-493-5p HCC Up (76)
Reduction of miR-653 HCC Up (77)
Reduction of miR-3935 Prostate cancer Up (78)

Cell signaling IFN-b activation Chronic HCV-infected HCC Up (63)
mTORC1 activation HCC Up (34)

Transactivation ETS-1 HCC Up (79)
c-Myc HCC Up (19)

Infection HBV infection Chronic HBV-infected HCC Up (80–82)
HCV infection Chronic HCV-infected HCC Up (63, 83)
Adenovirus infection HCC cell lines Up (84)
Bacteria and fungi infection Lymphocytes Up (85)
Decembe
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patients, which suggests that GP73 is a critical factor modulating
cancer metastasis (17). Sincemetastasis is the main cause of cancer-
related death and EMT is the essential condition of metastasis, it is
clinically significant to investigate the regulatory mechanisms of
GP73 on cancer metastasis (100). Following studies have focused
on the mechanisms of how GP73 facilitates cancer metastasis, and
they have discovered that highly expressed GP73 upregulates the
Frontiers in Oncology | www.frontiersin.org 5
levels of N-cadherin, vimentin, and MMP-13 in HCC cells, which
prove that GP73 surely serves as a multifunctional factor
modulating the expression of EMT-related proteins (Table 4).
Also, GP73 negatively regulates the expression of E-cadherin, the
well-known adhesion factor, and promotes EMT through
attenuating cell adhesion (103, 108). One of these studies has
demonstrated that GP73 upregulates c-AMP element response
TABLE 3 | GP73 expression and its correlation with cancer infiltration.

Tumor types Sample types Patients pTNM (Ⅰ, Ⅱ/Ⅲ, Ⅳ) GP73 high (50%) (%, Ⅰ, Ⅱ/Ⅲ, Ⅳ) Correlation Clinical outcome Ref.

Bladder cancer Tissues n = 102 65/37 43.08/94.59 Positive Poor (55)
HCC Tissues n = 80 41/39 63.41/84.62 Positive Poor (35)
Pancreatic cancer Tissues n = 120 80/40 57.50/95.00 Positive Poor (40)
Colorectal cancer Tissues n = 341 203/138 29.56/42.03 Positive Poor (97)
HCC Tissues n = 239 236/3 46.19/66.67 Positive Poor (98)
NSCLC Tissues n = 37 26/11 65.38/63.64 Positive Poor (46)
Gastric cancer Tissues n = 385 141/244 48.23/64.75 Positive Poor (38)
HCC Tissues n = 91 83/8 48.19/75.00 Positive Poor (17)
HCC Tissues n = 75 15/60 20.00/85.00 Positive Poor (99)
December 2021 |
 Volume 11 | Article 78
FIGURE 2 | Activation modes of GP73 in viral infected cells or cancer cells. (A) INF-b secreted by viral-infected hepatocytes activates GP73 in target cells and
inhibits innate immune response. (B) TAM-secreted IL-1b upregulates ETS-1 in cancer cells and ETS-1 transactivates GP73 to facilitate cancer progression.
(C) Upregulation of c-Myc in a mildly hypoxic tumor microenvironment transactivates GP73 and facilitates EMT of cancer cells. (D) GP73 is upregulated by mTORC1,
and EMT of cancer cells is facilitated.
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binding protein (CREB), a common TF highly expressed in cancer
cells, and transactivated MMP-13; however, the mechanism is not
totally elucidated and no other EMT-associated TFs have been
discovered to be regulated by GP73 (104, 109, 110).

On the other hand, since GP73 is a highly glycosylated and
phosphorylated protein, it is supposed that specific modified sites
of GP73 might impact the process of EMT. LC-MS/MS analysis
has discovered that GP73 is N-glycosylated at Asn109, Asn144,
and Asn398 (101). Following analyses have demonstrated that
removal of N-linked glycosylation of GP73 at Asn144 enhances
metastasis of HCC cells, which proves that modified sites of
GP73 impact its functions in facilitating EMT. It is believed that
other phosphorylated and glycosylated sites might also take effect
on EMT, which is worth further exploring.
GP73 ACTS AS A TRANSPORTER OF
EMT-RELATED PROTEINS

As described, GP73 facilitates EMT of cancer cells through
regulating the expressions of EMT-related proteins, but the
mechanisms are still poorly understood. For solving these
puzzles, GP73-interacted proteins were identified using
coimmunoprecipitation combined with LC-MS/MS, and
epithelial growth factor receptor (EGFR) was identified as a
critical GP73-interacted factor in HCC cells, which interacts with
GP73 via the cytoplasmic domain of GP73 (17, 111, 112). Since
GP73 is a transmembrane protein and the cytoplasmic domain
resides on the outside of the membrane of cis-Golgi cisternae and
intracellular vesicles, it is suggested that EGFR is translocated
onto the cell surface and exerts its biological functions through
GP73-dependent vesicular trafficking. Following fluorescent
protein-based live-cell imaging and functional experiments
have proved the hypothesis. The study above has indicated
that GP73 acts as a transporter facilitating the trafficking and
translocation of EMT-related proteins, promising EMT of cancer
cells promoted.

Similarly, in our early studies, it was observed that knockdown
of GP73 induced the accumulation of intracellular matrix
metalloproteinase-2 (MMP-2) and MMP-7 but attenuated the
Frontiers in Oncology | www.frontiersin.org 6
levels of extracellular MMP-2 and MMP-7, which suggests that
knockdown of GP73 might block the trafficking and secretion of
matrix metalloproteinases (MMPs) (18, 19). Further pieces of
evidence prove that, as well as GP73/EGFR interaction, MMP-2
and MMP-7 interact with the cytoplasmic domain of GP73, and
GP73 is involved in their translocation from cytosol to extracellular
spaces through GP73-mediated vesicular trafficking. These findings
have manifested that the trafficking of MMPs is GP73 dependent.
Therefore, GP73 has been deemed as a transporter for trafficking of
EMT-associated factors and facilitating EMT of cancer cells.

Also, it has been revealed that GP73 interacts with Rab11, a
lysosome-dependent degradation-related protein residing on the
membrane of intracellular vesicles, and mediates lysosome-
dependent degradation of EGFR (17, 113). When weak signal
is activated, the GP73-Rab11 complex mediates the trafficking of
EGFR from cis-Golgi cisternae to lysosome and promotes the
degradation of EGFR. Oppositely, GP73 facilitates the polarized
delivery of EGFR from cis-Golgi to the plasma membrane when
EGFR signaling pathway is activated, which enhances the
activation of EGFR signaling pathway. The findings show that
GP73 is a switch-modulating metastasis, metabolism, and
dormancy of HCC cells through regulating the translocation of
growth factor receptors. It has also indicated that GP73 not only
modulates the trafficking of EMT-related proteins from cytosol
to cell surface or extracellular spaces but also involves in protein
recycling and energy saving.

Moreover, an updated study indicated that GP73 directly
interacted with AFP and facilitated its secretion, which led to
EMT of recipient cells of AFP and promoted immune escape of
cancer cells (105).

Taken together, GP73, as a cis-Golgi cisternae-resided protein,
exerts its functional roles in the trafficking and recycling of EMT-
related factors and promotes EMT of cancer cells.
EXTRACELLULAR GP73 FACILITATES
EMT OF CANCER CELLS

As described, intracellular GP73 can be cleaved at the trans-Golgi
network (TGN) due to saturation or mini-stack formation, or
TABLE 4 | GP73 regulates expression and trafficking of EMT-related factors and facilitates cancer metastasis.

Type of regulation EMT factor Type of tissue Regulation Ref.

Glycosylation at Asn 144 Not Applicable HCC Inhibits EMT (101)
Regulates the levels of EMT-related factors N-cadherin HCC; pancreatic cancer; bladder cancer Up (40, 55, 102)

E-cadherin HCC; pancreatic cancer; bladder cancer Down (35, 40, 55, 99, 103)
Vimentin HCC; bladder cancer Up (35, 40, 55, 99, 103)
CD44 HCC; cerebroma Up (34, 49)
MMP-13 HCC; cervical cancer; NSCLC Up (46, 57, 104)
MMP-7 HCC Up (34)

Involves in the trafficking of EMT-related factors EGFR HCC Translocation (17)
MMP-2 HCC Translocation (18)
MMP-7 HCC Translocation (19)
AFP HCC Translocation (105)

Extracellular GP73 sGP73 Esophageal cancer Facilitates EMT (106)
GP73-exo HCC Facilitates EMT (107)
De
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cleaved by furin proteinase on the intracellular side of cell
surface, then released into extracellular spaces via exosomes
(18, 24, 106). The studies have elucidated how GP73 is cleaved
and secreted into extracellular spaces; however, the functional
roles of extracellular GP73 remain poorly understood. A
previous study has indicated that overexpression of GP73 1-
55aa-deleted truncated mutant facilitates cell invasion (104).
Since exosomal GP73 shares an identical sequence and
structure with GP73 1-55aa-deleted truncated mutant, it is
supposed that exosomal GP73 might facilitate metastasis of
neighboring cancer cells while it is captured by recipient cells.
A recent study has discovered that mTOR upregulates GP73
through reducing the level of miR-145, the miRNA targeting 3′
UTR of GOLM1, and exosomal GP73 facilitated proliferation
and invasion of neighboring cancer cells by upregulating
glycogen synthase kinase-3b (GSK-3b) and MMPs (107).
Frontiers in Oncology | www.frontiersin.org 7
Though exosomal GP73 upregulates proliferation and cell
invasion-related proteins of recipient cells, it has not elucidated
how it activates the expressions of these target factors. Therefore,
the molecular mechanisms need further investigations.

The studies above have indicated that cancer cell-originated
exosomal GP73 acts as a messenger that functionally activates
growth and EMT of recipient cells, which suggests that
exosomal GP73 plays vital roles in cell-to-cell interactions in
cancer microenvironment.
CONCLUSION AND PROSPECTIVE

GP73 plays functional roles in facilitating EMT of cancer cells
through multiple pathways, which proves that GP73 goes beyond
a tumor biomarker for cancer diagnosis (Figure 3). As previously
FIGURE 3 | GP73 promotes EMT of cancer cells through different pathways. GP73, as a multifunctional protein, facilitates EMT of cancer cells through regulating
the levels, promoting the transactivation, and accelerating the trafficking of EMT-related proteins. Exosomal GP73 also plays functional roles in promoting EMT of
recipient cancer cells.
December 2021 | Volume 11 | Article 783860
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reported, GOLM1 has been identified as a leading gene associated
with cancer metastasis; it is supposed that GP73 serves as a
potential drug target in therapeutics of metastatic cancers (17).
Fortunately, as a tumor biomarker, GP73 expresses little in normal
tissues, and previous studies have proved that GP73 deletion
impacts little on the physiological activities of mice (25, 34).
Therefore, it is significant to explore small-molecule inhibitors
targeting GP73 for potential therapeutics against cancer
metastasis. As reported that tunicamycin, the drug inhibiting N-
linked glycosylation of proteins, prevents the glycosylation of
GP73 and attenuates its functions in facilitating HCC metastasis,
it is potentially utilized in cancer therapy (34, 114). However, since
it is a comprehensive inhibitor targeting almost all glycosylated
proteins and inducing high cytotoxicity to normal cells, it is not
suitable for GP73-targeted clinical therapeutics. Therefore, it is
interesting and important to explore novel GP73-specific
inhibitors for therapeutics against cancer metastasis.

Since GP73 facilitates EMT of cancer cells through regulating
expression, trafficking, and secretion of EMT-related proteins, it
is supposed that GP73 acts as a vital factor exerting a wide range
of physiological functions in cancer cells and the functional roles
of GP73 in cancer microenvironment are far more beyond our
recognition. Herein, five concerning issues about GP73 are
Frontiers in Oncology | www.frontiersin.org 8
highlighted and further studies might be helpful to explain the
regulatory mechanisms and confirm the diagnostic ranges
of GP73.

Above all, as described, GP73 is involved in the trafficking of
EGFR, MMP-2, and MMP-7. It is considered a transporter
assisting the trafficking of EMT-related factors. Therefore,
GP73 might facilitate proliferation and metastasis of cancer
cells by promoting the trafficking of carcinogenesis-associated
cell-surface receptors or secretory proteins. It is believed that
more substrates might facilitate EMT of cancer cells through
GP73-mediated trafficking.

Secondly, GP73 also plays functional roles in promoting
proteasome-dependent degradation of target proteins, such as
MAVS and TRAF6 (63). Therefore, GP73 is not only a
transporter facilitating the trafficking of cell surface and
secretory proteins but also a recycler promoting degradation of
intracellular proteins. As shown that overexpression of GP73
reduced the level of E-cadherin, it is worth investigating whether
GP73 is involved in proteasome-dependent degradation of E-
cadherin (35). In addition, since it has been revealed that GP73 is
also involved in the lysosome-dependent degradation of target
proteins, it is also interesting and meaningful to discover its
substrates in lysosome-dependent degradation (17).
FIGURE 4 | GP73-interacted proteins and their functions in physiological and biomedical processes. GP73 interacts with indicated proteins and facilitates cancer
progression or pathogen invasion through various pathways.
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Thirdly, as mentioned above, exosomal GP73 facilitates cell
proliferation and metastasis through activating GSK-3b and
MMP-related signaling pathways (107). However, it is unclear
how GP73 activates these signaling pathways. Therefore, LC-MS/
MS and RNA sequencing are essential here to identify the
exosomal GP73-interacted proteins and mechanically explain
how it facilitates cell growth and EMT.

Fourthly, the pieces of evidence above have indicated that cancer
cell-originated exosomal GP73 facilitates growth and EMT of
neighboring cells, which implies that it might exert important
functions in tumor microenvironment. An early study has
described that exosomal GP73 induces endoplasmic reticulum
stress of macrophages, which stimulates the secretion of cytokines
and chemokines involved in the formation of TAMs (115). Also, two
recent studies have reported that GP73 upregulates programmed cell
death ligand-1 (PD-L1) and facilitates immune escape of HCC cells
through activating EGFR signaling pathway, which prove that,
similar to the former study, GP73 also plays key roles in
immunomicroenvironment (98, 116). On the contrary, another
latest study has indicated that GP73 maintains the intestinal
epithelial barrier and suppresses carcinogenesis of colorectal
carcinoma (CRC) through restraining protumorigenic
inflammation (117). Thus, GP73 not only regulates cell growth and
EMT but also involves in immunoregulation and indirectly
modulates cancer progression, which deserves further investigation.

Fifthly, since HBV infection upregulates the expression of
GP73, its diagnostic values in HCC and other liver diseases are
challenged (65). More pathological samples derived from HBV
or non-HBV-infected HCC patients are expected to be analyzed
to clarify its range of application in diagnostics.

Lastly, since it has been reported that knockdown of GP73
could inhibit cancer proliferation and metastasis in vitro and in
vivo, it is deemed that GP73 might serve as a potential drug target
(17, 19, 34, 115). Therefore, it is meaningful to explore small
Frontiers in Oncology | www.frontiersin.org 9
molecule inhibitors targeting intracellular and extracellular GP73
and assess their application values in cancer therapeutics.

Herein, the GP73-interacted proteins and functions have
been summarized, which might help readers to comprehend its
actions in physiological and biochemical processes (Figure 4).
Though it has been known that GP73 is a critical factor
facilitating EMT of cancer cells, the functions of which are still
beyond our recognition. The highlighted points above might
illuminate us to gradually uncover the physiological functions of
GP73 in cancer cells, which might be helpful in the diagnosis and
treatment of cancer metastasis.
AUTHOR CONTRIBUTIONS

YL assigned the outlines of the manuscript and wrote the
manuscript. XH collected relevant references and produced
tables. SL analyzed clinical data in Table 3. SZ drew the
figures. ZC and HJ revised the manuscripts. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was supported by the Natural Science Foundation of
Zhejiang province (grant numbers LR19H160003), the Natural
Science Foundation of Zhejiang province (grant numbers
LQ21H160029), and the Medical Science and Health Technology
Project of Zhejiang province (grant numbers 2020RC067).
ACKNOWLEDGMENTS

All figures were created with BioRender.com.
REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global

Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA: A Cancer J Clin (2018)
68:394–424. doi: 10.3322/caac.21492

2. Balducci L, Ershler WB. Cancer and Ageing: A Nexus at Several Levels. Nat
Rev Cancer (2005) 5:655–62. doi: 10.1038/nrc1675

3. Yang J, Siri JG,Remais JV,ChengQ,ZhangH,ChanK, et al.TheTsinghua-Lancet
Commission on Healthy Cities in China: Unlocking the Power of Cities for a
Healthy China. Lancet (2018) 391:2140–84. doi: 10.1016/S0140-6736(18)30486-0
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