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The human microbiome harbours a large capacity for within-person adap-
tive mutations. Commensal bacterial strains can stably colonize a person
for decades, and billions of mutations are generated daily within each
person’s microbiome. Adaptive mutations emerging during health might
be driven by selective forces that vary across individuals, vary within an
individual, or are completely novel to the human population. Mutations
emerging within individual microbiomes might impact the immune system,
the metabolism of nutrients or drugs, and the stability of the community to
perturbations. Despite this potential, relatively little attention has been paid
to the possibility of adaptive evolution within complex human-associated
microbiomes. This review discusses the promise of studying within-
microbiome adaptation, the conceptual and technical limitations that may
have contributed to an underappreciation of adaptive de novo mutations
occurring within microbiomes to date, and methods for detecting recent
adaptive evolution.

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
While much attention has been paid to the ecology of microbiomes within indi-
vidual people—which bacterial species reside within us during health [1,2],
how these species interact with one another [3–5], and how they interact with
the host [6,7]—relatively less attention has been paid to the evolution of
single species and strains within these communities. Yet, there is a large poten-
tial for adaptive evolution within individual human microbiomes [8], enabled
by population sizes greater than 1012 cells per person [9]. Mutations that
confer antibiotic-resistance arise during infections and outcompete their ances-
tral genotype within days [10], and individual strains can persist and diversify
within a person’s microbiome for decades [11]. As such, individual strains have
ample opportunity to explore potential adaptive mutations and change
significantly during their residence within a host.

To date, studies of microbiome evolution have largely focused on relatively
long timescales—how our microbiomes have changed as mammals [12], pri-
mates [13], or human populations diversified [14]. These studies have
characterized how host evolution has selected for different bacterial commu-
nities, defined at the species or higher taxonomic level using 16S rRNA
sequencing [15,16], but less attention has been paid to how those species and
strains themselves might be changing. Even when studies focus on genomic
changes within a species, these have mostly focused on timescales considerably
longer than a single human lifetime, such as the absence of motility operons
within a subspecies of Eubacterium rectale that is largely restricted to Europe [17].

Yet, tracking bacterial adaptation at short timescales, particularly within
individual human microbiomes, can yield both practical and conceptual
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insights. From an applied perspective, identifying genes and
genomic loci undergoing adaptive evolution in real time pro-
vides insight into the selective pressure experienced by
microbes in vivo [18,19] and therefore aids in the design of
rational probiotic therapies. Identifying genetic variants criti-
cal to bacterial survival in human microbiomes can be
difficult using in vitro and laboratory animal models. Bacterial
gene expression and survival strategies are highly context-
dependent, and it is not uncommon for small shifts in the
environment, such as inclusion of a community member, to
alter the degree to which a genetic mutation is advantageous
or deleterious in a laboratory setting. As an extreme example,
studies of how bacteria adapt to survive high levels of an anti-
biotic must be carefully designed to avoid selecting for
mutations that enhance adhesion to the walls of a test tube
[20]. Organs-on-chips [21] and mice with humanized micro-
biota [22], while powerful, do not mimic in vivo conditions
well enough to avoid system-dependent selective pressures
[23]. By contrast, rigorous genomic signatures of in-host adap-
tation can conclusively indicate the presence of selection
[8,19]. The identification of such adaptive changes provides
a starting point for hypothesis-generation regarding selective
forces, follow-up investigations using experimental, compu-
tational and other approaches [24], and engineering of
probiotic therapies. For example, a study of the commensal
Bacteroides fragilis in healthy subjects revealed single nucleo-
tide changes in importers of complex polysaccharides that
provide strong selective advantages; these changes might
reflect a metabolic challenge or, alternatively, pressure from
phage that use these proteins as gateways into the cell [25].
Accordingly, the rational design of Ba. fragilis probiotics
should include selection of strains with the ability to thrive
in the presence of these selective pressures.

On a conceptual level, understanding the extent to which
microbes evolve within individual microbiomes is critical to
understanding microbe–disease association and building pre-
dictive models of microbiome assembly. Adaptive mutations
emerging within microbiomes might impact how a bacterium
interacts with the immune system, the metabolism of nutri-
ents or drugs, or the stability of the community to
perturbations. If adaptive mutations are common within
microbiomes, understanding the impact of a particular
species or strain on host health or community composition
might require full-genome resolution. In support of this
idea, a recent study identified that loss-of-function mutations
in a particular gene of Staphylococcus aureus is associated with
the inflammatory skin disease atopic dermatitis [26], even
though no study has found strains or phylogroups of
this species associated with disease. Moreover, adaptive
mutations might change the way we think about microbiome
stability and resistance to perturbation [5,27]. Adaptation
within individual microbiomes might be driven by selective
forces that are new to industrialized societies, vary across
individuals, or vary within individual people. If person-
specific selective forces are common, it is possible that the
bacteria within each person’s microbiome may have already
adapted, at least in part, to unique selective forces in their
community [28]; this early adaptation may explain the
resistance of established microbiomes to invaders [2,11].

Lastly, tracking evolution at short timescales is critical for
understanding the mechanisms and selection modes (e.g. pur-
ifying versus positive) responsible for genetic variation within
the microbiome [29]. Rates of genetic change in bacteria, as
well as signals for adaptive evolution, are highly dependent
upon the timescale separating the compared genomes
[30–33]—estimates are faster [32] and more biased towards
amino acid changes [33] when comparing closely related
organisms than more distant ones. Timescale dependence
makes it difficult to predict the relative likelihoods of
mutations versus recombination, adaptive versus deleterious
alleles and ecological versus evolutionary responses to pertur-
bations within individual microbiomes [31,34]. Tracking
evolution within individual microbiomes provides an oppor-
tunity to avoid this timescale dependence and quantify such
real-time evolution in natural settings. Understanding the
forces that create genetic variation within microbiomes will
inform the degree to which such variation should be con-
sidered when modelling microbiome ecology or predicting
the impact of microbiome-based interventions.

It may seem surprising that, despite this potential, the
first studies of within-person bacterial evolution in the micro-
biome at a genomic scale have only emerged within the past
five years [8,35–38]. Within-person adaptation is probably
underappreciated because of both theoretical misconceptions
and technical limitations of the most popular approaches in
the microbiome field. This review aims to reveal and dispel
these misconceptions and describe one powerful roadmap
for detecting within-person adaptation. Examples from both
commensals and infectious disease will be used to build
intuition, with a particular emphasis on chronic opportunistic
infections of the cystic fibrosis (CF) lung, as the field of
within-host infectious disease evolution is more established.
No attempt will be made to comprehensively review all
studies of within-host bacterial evolution; recent reviews
focusing on bacterial pathogen evolution provide an excellent
summary of within-host evolutionary trends, many of which
also apply to commensal microbes [39–41]. Instead, this piece
focuses on demystifying the processes and theoretical con-
siderations for detecting within-microbiome adaptation,
with the aim to accelerate work in this area.
2. Rates of evolutionary and ecological changes
in microbiomes

Human microbiomes can be considered stable or dynamic,
depending on the timescale and genomic resolution con-
sidered [2,11,42]. Each person has a unique set of microbial
species across their total microbiome, though the functional
capacity of microbiomes varies less from one person to
another than the specific membership [1]. The species [2,42]
and strain [11,43] composition of a person’s gut microbiome
is remarkably stable on the timescale of a year, though
the relative abundances of these organisms can fluctuate
substantially on daily timescales [42,44].

The stability of human microbiomes at the level of mem-
bership is thought to emerge in part from priority effects
[45,46]—the ability of early colonizers to alter community for-
mation and exclude later migrants [47]. Accordingly,
perturbations that lower bacterial abundance, including anti-
biotic treatment, are associated with an influx of newly
colonizing strains in the gut [5,48]. Adult siblings share few
strains in common [11], suggesting that such disturbances
may be relatively common, although the likelihood that
these sibling microbiomes were seeded by different organisms
in early life has not yet been resolved.
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There are many levels of resolution at which one can
define a strain or other subspecies grouping. In this review,
the primary unit of organization is a ‘strain’, defined as a
monophyletic grouping of very closely related genotypes
inferred to have a single-cell common ancestor within
approximately the past 100 years (figure 1c; this has also
been termed a ‘cloud’ [49]). The mutational distance cut-off
to define a strain depends on the molecular clock of the
studied organism, but it is often on the order of 100
mutations across the whole genome, as molecular clock
rates in commensal and pathogenic bacteria do not vary
that much—from 0.5 to 8 mutations genome−1 yr−1, with
the slow-growing Mycobacterium tuberculosis on the low end
and S. aureus on the high end [41]. Exceptions must be
made for hypermutators that accumulate mutations at
higher rates owing to defects in DNA repair [50], and regions
of the genome undergoing recombination or horizontal gene
transfer must be removed before defining molecular clock
rates or strain boundaries.

Given this relatively slow molecular clock range, it may
seem surprising that beneficial mutations can be supplied
at high rates within individual microbiomes. However,
mutation supply and the molecular clock are distinct con-
cepts. Each bacterial cell residing within a microbiome can
supply random mutations created during DNA replication
each bacterial generation; only the surviving mutations
along a single line of descent are measured in calculation of
molecular clocks.

During the years and decades that a strain stably persists
within a microbiome, its member organisms thus acquire de
novo mutations that create new genotypes and ‘substrains’
(figure 1c). Strains with substantial substrain structure have
been found in a variety of infections [49,51–54], gut commen-
sals [8,37,38], and skin commensals [36,55,56]. The amount of
diversity within a strain can be used to infer lower bounds on
its duration of residence in a microbiome [8,52]. This
approach can overestimate the duration of colonization if
within-person populations are founded by closely related
cells, rather than from a single-cell bottleneck. On the other
hand, residence time can be overestimated following an
adaptive sweep (figure 1d ) or neutral population bottleneck.
Notably, not all adaptive mutants that rise in frequency lead
to population-wide sweeps; it is frequent for competition
between adaptive alleles on different genomic backgrounds
(figure 2), termed clonal interference [57] or soft sweeps
[58,59], to lead to coexistence of substrains [8,52,60].

The relative infrequency of immigrating strains and com-
petitive between-strain dynamics (figure 1f ) observed to date
in human microbiomes [11] suggests that opportunity
remains for de novo mutations to contribute to competitive
dynamics (e.g. response of community to a new phage).
Adaptive substrain dynamics, including adaptive sweeps,
diversification, and clonal interference, have been shown to
be common for Ba. fragilis [8] and other species [11,37] in
the human gut, as well as S. aureus on the skin of children
with atopic dermatitis [61]. While detection of some of
these dynamics is possible with metagenomics [11],
approaches that yield high-quality single-cell genomes are
required to build phylogenetic trees and get a full under-
standing of substrain structure. Current single-cell genomic
techniques are too error prone and sparse in their coverage
of the genome. Instead, culture-based approaches that use
the fact that colonies are typically founded by single cells,
and that minimize growth in the laboratories, have proved
successful for reconstructing within-person evolution
[8,36,38,56,61,62]. Using such culture-based approaches,
adaptive substrain dynamics have been uncovered even in
the presence of multiple-strain colonization in humans and
mice [37,60].
3. Asexual within-host populations evolve
differently to classical eukaryotic populations

Fundamental differences between evolution of haploid
organisms, with primarily asexual reproduction, and that of
classic, sexually recombing diploid organisms, has led some
to underestimate the potential of adaptive evolution during
colonization of a single host. Well-established models of
adaptation in classical eukaryotes [63] create a strong intui-
tion: the potential of a population to adapt increases with
the amount of nucleotide diversity present within that popu-
lation (π). Adaptive potential can be predicted from
nucleotide diversity in classic diploid populations, which
undergo one recombination event per chromosome per gen-
eration, for two reasons. First, a higher nucleotide diversity
enables rearrangement of existing alleles into more novel gen-
otypes with the potential for enhanced fitness. Second, high
nucleotide diversity in a recombining population is con-
sidered to reflect a large population size and therefore
predict a high rate of emergence of new, potentially adaptive,
de novo mutations in the population. It is no wonder, then,
that extremely low levels of within-person nucleotide diver-
sity [64] are sometimes treated as severe limitations on
adaptive potential.

Yet, the shuffling of alleles via recombination is likely to
be rare for most within-person bacterial populations. As bac-
teria can only undergo homologous recombination with
closely related individuals, usually of the same species [65],
the low number of coexisting strains of any given species
within a given microbiome [11,37] limits the supply of
alternative alleles for any given gene (horizontal gene transfer
is a distinct process from recombination, which brings in new
alleles of existing genes). Thus, even if a bacterial strain is
naturally competent [66] or has the capacity for phage-
mediated gene transfer [67,68], the potential for bringing in
new alleles via recombination is low; most recombination
events will occur within members of the same strain. This
low level of recombination means that measures of nucleotide
diversity and adaptive potential are decoupled; while a two-
strain population has access to a larger genotypic space than
a single-strain population, this increase is not proportional to
the corresponding change in π.

This genome-wide linkage limits the number of unique
genotypes that can be found within each host [69]. When a
strongly adaptive mutation arises in the population, it is unli-
kely to recombine and be found on a genomic background
other than on the one on which it arose; instead, it is likely
to drag all mutations on its genomic background—including
neutral ones—to high frequency in a process known as gen-
etic draft [70,71] (figure 2). Genetic draft, also termed
hitchhiking, is not unique to microbial systems [72], but its
impact here is large owing to genome-wide linkage. In this
way, an adaptive sweep can purge all existing diversity and
produce a population founded from a recent single cell.
Therefore, positive selection and genetic draft keep π low,
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despite years of colonization in a host, during which diversity
could theoretically accumulate.

Instead, the greatest predictor of adaptive potential in
within-host populations is likely to be the census population
size—how many bacteria cells of a species are reproducing at
a given time. This is because the supply of de novo mutations
scales linearly with the number of cells in a population. For
many bacterial species, the number of cells within an individ-
ual human host, and therefore the supply of mutations, is
enormous. A minor species (0.1% abundance) in a person’s
gut can easily be comprised 1010 cells [9]. Given a conserva-
tive bacterial mutation rate of 10−10 mutations per cell
division [73], such a population can explore every single
point mutation across the genome each generation (probably
days) [8].
4. Challenges in detecting recent within-host
bacterial adaptation

Adaptation in asexual populations is also probably under-
estimated owing to technical challenges in distinguishing
adaptive from neutral variants. A wide variety of statistical
tests have been developed to identify genomic regions under
recent pressure to change in classically sexual populations
[24,74]. For the most part, these tests compare diversity
metrics within (such as π) or across populations (such as
FST) to what would be expected under a neutral model with
no adaptation. A widely acknowledged limitation of such
tests for adaptation is that confounders, including spatial
structure and changes in population size, can dramatically
skew these metrics [24]. Therefore, it is standard practice to
compare values of diversity metrics at a candidate locus to
those obtained in the rest of the genome. This approach
works because recombination in sexual organisms enables
genomic regions to have independent diversity metrics. In pri-
marily asexual organisms, however, loss of diversity at one site
often can cause loss of diversity throughout the genome
(figure 2). Without an internal control for these diversity
metrics, it can be difficult to confirm a particular locus has
recently undergone adaptive evolution.

The other major category of tools for identification of
adaptive evolution relies on the fraction of mutations that
are nonsynonymous (N), or amino acid changing, rather
than synonymous (S), or amino acid preserving. Because of
redundancy of the genetic code, only approximately 75%
of mutations in coding regions are expected to change the
amino acid code (the exact percentage depends on the
codon usage and spectrum of mutations of a given organ-
ism). Therefore, adaptive evolution can be detected as a
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statistically significant increase in the percentage of
mutations that are non-synonymous relative to a calculated
expectation (e.g. dN/dS) [75], to an expected value from
between-species substitutions (e.g. McDonald-Kreitman)
[76–78], or to observed values from other areas of the
genome [79]. Critically, N versus S analyses must be done
on a small segment of genomes, such as genes, protein
domains, or even single nucleotides [78]. As most sites in
a genome are under pressure to retain their amino acid
sequence (purifying selection), signals of adaptive evolution
can disappear when N versus S analyses are performed
genome-wide [19].

However, a major challenge of N versus S approaches is
the number of mutations needed to observe a statistically
significant enrichment in the percent of mutations that are
N (pN). This difficulty arises because pN is so high under neu-
tral expectation. For example, to reject a null model of 75% N,
at least 11 N mutations must be observed—under such a null
model, 10 of 10 mutations being non-synonymous is not
statistically significant to a p = 0.05 significance threshold
(one-sided binomial test). This calculation only reflects a
lower bound on the number of mutations, as it assumes no
neutrally drafted or adaptive synonymous mutations in
the gene of interest. Moreover, this simple calculation omits
the necessary step of multiple-hypothesis correction for
genome-wide scans. Therefore, using N/S ratios to detect
genes undergoing adaptive evolution often requires dozens
of observed mutations per gene, or more. When assessing
within-person adaptation, it is rare to observe such a high
number of mutations in a single gene. Typical datasets,
even across cohorts of over a dozen individuals, include
only hundreds or low thousands of de novo mutations
across the genome [8,62,80]. Therefore, methods relying on
pN or dN/dS are better suited to the larger number of
mutations generated on longer timescales or aggregating
over sets of genes.
5. Parallel evolution as a powerful tool for
detecting recent within-host adaptation

One approach with demonstrated success in detecting bac-
terial genes under adaptive evolution within individual
hosts is scanning for parallel evolution (PE)—the emergence
of similar mutations on distinct genomic backgrounds.
Scans for PE start by counting the number of independent
mutation events that occurred in a gene. This step requires
phylogenetic analysis and is more complex than just identify-
ing variable sites. Processes like recombination or repair of
double-stranded DNA breaks can create multiple variant
sites emerging from a single event [81,82]. On the other
hand, a single variable site could emerge from two identical,
parallel, mutations occurring in different genomic back-
grounds [19,83]. Next, the number of mutations is
compared to a neutral model in which mutations are
randomly scattered throughout the genome [8,56]. While
multiple-hypothesis correction remains an issue, approaches
that use false-discovery rates (FDR), including simulations,
have shown success in detecting meaningful signals of PE
[8,52,84].

PE can only weakly support adaptive evolution—if con-
sidered in isolation. Signatures of PE could emerge if
regions of the genome have intrinsically higher mutation
rates. To confirm adaptive evolution, dN/dS or another sec-
ondary test can be applied to the set of genes with a signal
of PE [8,19]. As tests such as dN/dS are difficult to interpret
with small numbers of observed mutations, grouping all
mutations within a set of genes under PE can provide suffi-
cient signal. This two-step process is statistically valid
because the number of mutations in a given gene and the pro-
portion of those mutations which are N are independent.
Thus, a set of genes with significant signals for adaptation
using both approaches can confidently indicate the presence
of adaptive evolution.
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While the use of an FDR rather than strict hypothesis cor-
rection means that not all identified genes are truly under
pressure to change in vivo, inspection of the function of
genes can support the conclusion of adaptive evolution. For
example, in a study of B. fragilis evolution in the gut of
healthy people, 6 of 16 genes inferred to be under PE were
all in the SusC/D family of complex polysaccharide impor-
ters (a significant enrichment relative to the per cent of
genes with this annotation) [8], providing confidence that
genes in this family are under pressure to change within indi-
vidual healthy gut microbiomes. However, relying on gene
function annotations currently remains challenging owing
to the large number of unannotated or loosely annotated
microbial genes; literature searches can often reveal func-
tional roles not captured by ontologies [85]. An alternative
signal that can provide confidence in the adaptive nature of
observed mutations is the location of mutations within a
given gene. For example, in a study of Burkholderia dolosa
evolution during long-term infection of patients with CF, 12
of 17 mutations within the gene fixL fall within two small
domains of this oxygen-dependent response regulator [19].
The clustering of these mutations, and the fact that none of
the mutations created premature stop codons, provided con-
fidence that B. dolosa is under pressure to tweak, but not
break, this response regulator in vivo [86].

While searches for parallel adaptive evolution have
traditionally considered single-nucleotide variants, larger geno-
mic changes can also drive adaptive evolution, e.g. the gain of a
mobile element or deletion of a gene [87,88]. However, the
adaptive nature of a given mobile element change can be
more difficult to identify from a genome-wide analysis because
neutral expectations of the number of changes are difficult to
model (as such changes are not clocklike) and there is no
accepted independent test for selection that is analogous to
dN/dS. Instead, focused investigation of candidate regions
has proven successful in confirming the adaptive nature of
horizontal gene transfer events [87,89].

6. The power of within-person parallel evolution
PE can be considered at genomic scales (e.g. gene versus
pathway) and geographical scales (e.g. between people
versus intra-person). This section discusses the data needed
to detect within-host mutations and then explains the
surprising success of within-individual PE relative to
across-individual PE.

To identify variants that emerged during colonization, it is
important to compare many genomes from each person and
strain studied. These isolates can be collected over time, col-
lected from the extant coexisting diversity within a host at a
single time point, or both. Typical studies profiling cross-
sectional diversity collect 10–100 colonies from each person
at a given timepoint [8,26,36,62], with the ideal number to
capture variation depending on the species and sampling site.

It is not sufficient to compare just one isolate each from
many individuals. Thousands of mutations typically separate
isolates from different individuals, most of which occurred in
the distant past. Studies comparing bacterial genomes separ-
ated by various timescales have shown that adaptive signals
strongly depend on the timescale studied [8,11,31,33,90]. One
possible contributor to this timescale dependence is that pro-
portionally more neutral mutations reach detection on longer
timescales, via both random between-host transmission
bottlenecks and hitchhiking [71] on adaptive sweeps—
which can overwhelm the few loci undergoing adaptive evol-
ution. In addition, selective forces can vary over time,
creating variation that obfuscates signatures of parallelism
and adaptive evolution (figure 3) [91,92].

Once a list of variants occurring within each individual
has been obtained, genomic scans for PE can be performed
on the list of all mutations (across-individual PE) or within
individual subjects (within-individual PE). The only differ-
ence is the null model used: either a single model in which
all mutations found are scattered randomly across the
genome or a separate null model for each subject. Surpris-
ingly, higher enrichments for non-synonymous mutations
have been found when performing analyses at the within-
individual level as compared with the across-individual
level. In the previously mentioned study of B. fragilis evol-
ution in 12 healthy human gut microbiomes, 16 genes were
identified to be mutated at least twice within one or more
subjects, compared to just five expected under a neutral
model (a density threshold was used to exclude excessively
long genes) [8]. When the same set of mutations was con-
sidered for across-individual PE, eight genes fell below the
threshold for PE while only two additional genes were impli-
cated in PE. Interestingly, these two new genes found in the
across-person analysis had a lower pN than expected from a
neutral model (though not significantly). Studies of other bac-
terial species have also found similar strength of within-
individual PE scans [53,93], with less sensitivity at the
across-host level [8,26,94].

Why should an enrichment of mutations be observed
from within-person analyses but not when the same data is
aggregated across subjects? One possibility may be that selec-
tive forces are person specific. In the study of B. fragilis, the
SusC-family gene ccfC was mutated three times in subject 1
and no times in other subjects. This raises the possibility
that ccfC was under pressure to change owing to the
unique set of selective forces in subject 1—imposed by their
genetics, their behaviour, their immune system, or their
microbiome.

Alternatively, this apparent ‘person-specificity’ could
arise from differences in genomic background of each per-
son’s bacterial strain. Genomic background can diversify
the response to selective pressure in both obvious and
subtle ways. Most simply, divergent strains of a species
with different gene content might overcome the same chal-
lenge using different mechanisms [95]. More subtly, genetic
interactions (epistasis) between small mutations can alter
the course of evolution. An interesting example comes from
a study of Pseudomonas aeruginosa evolution during long-
term infection of 34 patients with CF [80]. Mutations in the
transcriptional regulator gene algU were observed under PE
across subjects in that study. Yet, these algU mutations only
occurred on genomic backgrounds that had already obtained
a mutation in the transcriptional regulator gene mucA. Even
subtler yet, de novo mutations that have already swept a
within-individual population prior to sampling might have
already alleviated a selective pressure [26].

Because of the importance of ever-changing genomic
backgrounds, it can be easiest to detect within-individual
PE when multiple solutions to the same challenge are coexist-
ing on the same genomic background—before any of these
parallel adaptive alleles has ‘won out’. Thus, coexisting adap-
tive alleles are easiest to observe via the sequencing of many
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Figure 3. Across-person analyses lose statistical power in the presence of person-specific adaptation. Each line represents a bacterial genome from a single colony
isolate. Shaded areas represent genes under positive selection shaded. In the top example, de novo mutations are identified separately in three subjects. As the
genes under selection are not known ahead of time, a search for parallel evolution identifies only four genes mutated twice, and no genes mutated more times than
that. One of these genes is a false positive (a gene not under directional selection). By contrast, when a single person is sampled more exhaustively such that more
mutations which occurred within this subject are detected, two genes are confidently identified as under selection (three mutations each) owing to the uniformity of
selective pressures across the sampled substrains. These examples illustrate how the presence of non-adaptive mutations creates statistical noise and a high bar for
the confident detection of selection. Therefore, approaches which minimize the variation in selective forces between considered replicates have the most statistical
power. Similar signal-to-noise issues can arise when comparing mutations at different stages of colonization or considering genes at the pathway level.
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cross-sectional isolates from a single timepoint [52,96]. In this
light, cross-sectional sampling can be more sensitive for
detecting loci under adaptation than longitudinal sampling
[8,52]. On the other hand, longitudinal studies can be used
to estimate the selective advantage provided by a mutation
[8,11], understand dynamics [8,10,59], and even observe
reversions [19,80,92].

Identifying coexisting genotypes with alternative adap-
tive mutations is not possible for all species and
environments. Not all bacterial populations enable compet-
ing adaptive mutations to persist for long enough to be
detected, and bacterial diversity can be lost rapidly if popu-
lation sizes are small [38] or a rare adaptive mutation is
substantially more advantageous than other available
mutations [97]. In these cases, detection of within-person
PE may be challenging, and screens for across-individual
PE (of within-person mutations) will be relatively more
powerful. Across-individual PE is particularly useful when
selective pressures are strong and uniform; this approach
has been one of the primary signals for identifying mutations
which confer antibiotic resistance in vivo [10,98,99].
7. What is the right genomic unit for detecting
adaptation?

At the genomic level, scans for PE can use nucleotides,
codons, genes, operons, or pathways as the operative unit.
In theory, larger genomic units enable more potential for PE
signals to reach genome-wide significance. On the other
hand, as genomic unit size increases, the chance also
increases that the unit under consideration contains a mix
of regions under directional selection (adaptive) and regions
under purifying selection, thus erasing any signal [75]. An
extreme example of this balancing effect comes from the pre-
viously mentioned study of B. dolosa evolution in infections of
CF patients. In that study, genome-wide estimates of dN/dS
were consistent with a neutral model even though a third of
the intragenic mutations were concentrated in only 17 genes
with highly elevated dN/dS. Signatures of purifying selec-
tion elsewhere in the genome neutralized the adaptive
signal when averaged together [19]. Similarly, screens at the
operon level only rarely detect cases of PE not detected at
the gene level [52]. Yet, some new genes can be discovered
at genomic units larger than the gene level, and it is relatively
straightforward to test multiple genomic levels.

While, in theory, pathway-level screens for PE would
remove some concerns regarding genome-specific solutions
by categorizing mutations in broad functional groups, path-
way-level annotations are not well-developed in microbial
genomes. A large fraction of microbial genes remain hypothe-
tical or unannotated, even in the most well-studied
organisms. Even with pathway designations available, they
are often rather coarse (e.g. transcriptional regulator instead
of oxygen-dependent gene regulation). As a consequence,
pathway sets in microbial genomes often contain very large
sets of diverse genes, making it difficult to identify statisti-
cally significant signals.

For all these reasons, PE is easiest to detect using small
genomic units and when positive selection is likely to be
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uniform across studied genotypes. In practice, this is often the
within-gene, within-person level—particularly when many
genomes or colonies from the same time point can be
sampled.
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8. Conclusion
The future of the field of within-microbiome evolution is
bright, with many questions left to address and many poten-
tial implications for understanding and manipulating
microbiomes. In the coming years, studies across a wide
variety of species inhabiting human microbiomes will
reveal the degree to which adaptation drives within-person
commensal evolution and dynamics, as well as the relevance
of bacterial adaptation to health, interspecies interactions,
and community stability.

On a theoretical level, studies of within-host selection will
be critical to understanding evolution of microbiomes across
longer timescales. It has long been appreciated that the ability
of a bacterial mutant to survive and compete within a local
environment (e.g. a single human microbiome) may not pre-
dict its fitness across larger ranges of environmental variation
[100,101]. The degree to which within-person adaptation is
person-specific [8] or short-sighted [92] remains to be deter-
mined. Regardless, much of commensal competition, and
thus adaptation, operates at the level of within-host commu-
nities owing to limited between-host migrations [11]. As such,
understanding within-host adaptive events will be critical to
modelling and predicting the long-term success of bacterial
strains [34].

Should in vivo adaptations be predictable within or
across individuals, we may one day be able to predict
mutations conferring immune escape, antibiotic resistance,
or disease before they happen. Should adaptive mutations
be predictable within an individual, but distinct across indi-
viduals, this will suggest a large need for personalization
when engineering microbiomes.

Those species which have the most capacity to change
in vivo may be drivers of microbiome dynamics, colonization
resistance, or disease pathologies. Interestingly, not all studies
of within-person microbiome evolution to date have
observed strong signals of adaptive evolution. Studies of S.
aureus evolution during asymptomatic nasal carriage in 13
subjects [62], Escherichia coli in the gut of one healthy subject
[38], and Cutibacterium acnes on normal facial skin of 16 sub-
jects [56] have revealed only signals of purifying selection.
While these organisms have relatively lower population
sizes than Bacteroides [8] and pathogens of the CF lung
[19,80], they are still thought to have population sizes greater
than the bacterial per-base-pair mutation rate. For C. acnes, it
has been speculated that adaptive potential is limited by the
highly structured environment in which it resides, including
genotype-agnostic single-cell bottlenecks within individual
pores [56]. However, the roles of predation by phage,
environmental variability and molecular mechanisms of
non-genetic adaptation may also play a role in the balance
of adaptive and neutral evolution. Understanding the factors
that determine adaptive potential will focus efforts seeking to
link in-person mutations to health and disease.
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