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Synthesis of transfer-free graphene 
on cemented carbide surface
Xiang Yu1, Zhen Zhang1, Fei Liu2 & Yi Ren2

Direct growth of spherical graphene with large surface area is important for various applications in 
sensor technology. However, the preparation of transfer-free graphene on different substrates is still 
a challenge. This study presents a novel approach for the transfer-free graphene growth directly on 
cemented carbide. The used simple thermal annealing induces an in-situ transformation of magnetron-
sputtered amorphous silicon carbide films into the graphene matrix. The study reveals the role of Co, 
a binding phase in cemented carbides, in Si sublimation process, and its interplay with the annealing 
temperature in development of the graphene matrix. A detailed physico-chemical characterisation was 
performed by structural (XRD analysis and Raman spectroscopy with mapping studies), morphological 
(SEM) and chemical (EDS) analyses. The optimal bilayer graphene matrix with hollow graphene spheres 
on top readily grows at 1000 °C. Higher annealing temperature critically decreases the amount of Si, 
which yields an increased number of the graphene layers and formation of multi-layer graphene (MLG). 
The proposed action mechanism involves silicidation of Co during thermal treatment, which influences 
the existing chemical form of Co, and thus, the graphene formation and variations in a number of the 
formed graphene layers.

Synthesis of graphene on different substrates is a challenging and attractive approach that can broaden applica-
tion spectra of currently existing engineering materials. Versatile experimental approaches were used, but major 
constraints are related to synthesis of adequate graphene sheets and subsequent application problems caused by 
the transfer of synthesised graphene1,2. The transfer of graphene generates impurities and defects that vitiate the 
mechanical and electrical properties3. Another problem is low bonding strength between graphene and different 
substrates.

Metal-catalysed graphene growth from SiC followed by a simple but controlled annealing step is a useful 
approach towards the synthesis of large area graphene layer. Among different metals, Ni, Cu and Co effectively 
catalysed graphene generation. Juang et al.4 reported graphene formation on Ni surface by the mechanism of 
carbon dissolving from SiC substrates by rapid heating. Machač et al.5 demonstrated a feasible route for graphene 
growth by annealing of Ni/SiC structures, highlighting the role of Ni layer thickness and a shortage of Ni amount 
in the structure. Surface Ni-silicidation reaction is also an effective mean for preparation of few-layer graphene 
(FLG) by controlled thermal annealing of SiC crystals, which was successfully demonstrated in Ni/6H-SiC (0001) 
system, with the best graphene structure obtained at 800 °C6. The similar approaches are also valuable for the 
transfer-free synthesis of graphene on SiO2

7, sapphire and Cu2O (111) substrates2,8. Besides Ni and Cu, another 
transition metal, Co, was investigated as an attractive catalyst for transfer-free graphene growth. By deposition 
of Co layer on SiC, the FLG was grown via selective reaction between Co film and SiC substrate at high tempera-
tures followed by the rapid cooling9. The question that arises here is related to control of carbon diffusion process 
since it affects number and quality of graphene layers; particularly, formation of the top CoO layer is actually 
critical for the synthesis of a high-quality graphene layer10. Having in mind these results, a successful synthesis 
of transfer-free graphene layer by the metal-silicidation approach requires several steps, including deposition 
of selected metal layer/metal oxide layer, control of processing parameters and carbon diffusion process as well.

Cemented carbides are extensively used materials in space drilling applications for providing a first-hand 
insight into the geological structure and mineral distribution of planets but also as cutting tool materials11,12. 
Development of a suitable material on the surface of cemented carbide tools could enable acquisition of drill-
ing information, detection and automated correction of certain failure modes, such as auger choking, auger 
jamming, and bit wear13–15. Among different materials, graphene-based composites due to their remarkable 
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mechanical, electrical, piezo-resistive and other physical properties become the best option regarding the inher-
ent conventional sensor defects, such as low sensitivity, short service life, and rapid attenuation16–19. Especially 
three-dimensional (3D) graphene with hollow spheres on the surface shows enhanced sensing performances due 
to large surface area that provides more binding sites, which has great application potential20. However, there 
are no acceptable methods to synthesise in-situ a graphene layer on the cemented carbide surface, especially in 
regards to following aspects: (1) using readily available a-SiC instead of costly SiC single-crystal as carbon source, 
(2) the impact of annealing temperature on the number of produced graphene layers and (3) the understanding 
of Si atoms role in graphene growth and change in the number of graphene layers. If the mechanism of Si acting 
is not identified, the graphene layercannot be directly grown from a-SiC.

In this study, we propose a novel approach towards the in-situ synthesis of graphene layer on cemented car-
bides by utilisation of Co as a binding phase in cemented carbides to catalyse the in-situ growth of the graphene 
film. Herein, Co binding phase catalyses graphitization of amorphous SiC (a-SiC), which is deposited on the 
cemented carbide at low temperature by the magnetron sputtering technique. In addition, this does not change 
the carbide performance due to a trace amount of Co involved21,22. The clear advantage of this study is an elegant 
approach towards utilisation of currently existing engineering material and scientific data to develop a sustainable 
new aspect of cemented carbides without any need of depositing metal oxide layer to control carbon diffusion. 
The graphene layer with graphene balls on top is formed in-situ by simple and controlled annealing. An extensive 
physicochemical characterization, including structural, morphological and chemical aspects, was performed to 
reveal the influence of temperature on the number of formed graphene layers and mechanism of Si atom acting 
during the graphene matrix generation. This paper opens new horizons towards further enhanced industrial 
applications of the cemented carbides.

Results and Discussion
Graphene sheets with graphene balls on top were grown directly on the cemented carbide surface by a new 
approach that uses Co as a binding phase in the cemented carbides to catalyse the formation of graphene from 
a-SiC. Moreover, the exact mechanism of graphene formation by annealing a-SiC was revealed. The influence 
of annealing temperature on morphology, film composition, structural changes and number of graphene layers 
was systematically studied. Furthermore, the role of Si atoms in graphene formation was discussed regarding the 
phase transformations and the number of graphene layers.

Transfer-free graphene growth on cemented carbide by annealing of the a-SiC.  In the pres-
ent study, Co from cemented carbides is used to in-situ catalyse graphene formation from magnetron-sputtered 
a-SiC films by an annealing process. The Raman spectra of the deposited a-SiC films annealed at five different 
temperatures are shown in Fig. 1. Without annealing and at annealing temperatures of 700 and 850 °C appeared 
diffuse peaks, typical for amorphous structures, which shows that within this temperature range crystallisation 
of the a-SiC film is not prominent, and the film retains its amorphous structure. When the annealing temper-
ature was increased to 1000 and 1150 °C, D, G and symmetric 2D peaks appeared in the Raman spectra. The 
G peak indicates the presence of graphite phase, the D peak shows the chaos level of phase structure and the 
double-resonance 2D peaks suggest that graphene phase was generated23.

Data of the D, G and 2D peaks of the graphene obtained at 1000 and 1150 °C are listed in Table 1. Raman spec-
troscopy can clearly distinguish the number of graphene layers from a single layer to five layers and indicates the 
defects in graphene structure. The main indicators are intensity ratio of 2D and G peaks (I2D/IG), full width at half 
maximum (FWHM) of the peak and the number of fitted Lorentzian peaks24. The general equation for determi-
nation of the crystallite size, La using any laser line in the visible range can be written as25:

λ= . × − −L I I(nm) 2 4 10 ( / ) (1)a D G
10 1

where λ is 532 nm. The Raman spectrum at annealing temperature of 1000 °C showed that I2D/IG value was higher 
than 1, FWHM was 45 cm−1 and the 2D peak was at 2700 cm−1. For a single layer, the intensity of the 2D peak was 
four times higher than that of the G peak, whilst the intensity of the 2D peak was 1 to 2 times higher than that of 
the G peak for two layers26; FWHM of the 2D peak for a single layer of graphene is in the range of 30–45 cm−1, 
for two layers is in the range of 45–60 cm−1 and for three layers is in the range of 65–70 cm−1, whilst the FWHM 
of the 2D peak of graphite was lower than 30 cm−1 26,27. Inset 2-a indicates that 2D peak may be deconvoluted into 
four peaks with maxima at 2659, 2687, 2704 and 2725 cm−1, respectively. In general, a 2D peak of a single layer 
of graphene can be fitted by a single Lorentzian profile, a 2D peak of two layers of graphene can be fitted by four 
Lorentzian profiles, and a 2D peak of three layers of graphene can be fitted into six Lorentzian profiles, whilst a 
2D peak of four or more graphene layers can be fitted only with two Lorentzian profiles23. Therefore, it can be 
concluded that by annealing at 1000 °C, the quality graphene with 2 layers was successfully generated on the 
cemented carbide.

The intensity ratio of the 2D and G peaks at annealing temperature of 1150 °C is lower than that at 1000 °C, 
whilst the FWHM of the former is greater than of the latter; thus, it is clear that graphene is generated, but the 
number of layers produced at 1150 °C is obviously higher. The 2D peak may be fitted by two Lorentzian profiles 
with maxima at 2689 and 2710 cm−1 (Inset 2-b), respectively. It is suggested that the number of graphene layers 
was increased. In addition, the crystallite size of graphene (La) decreased and the ID/IG ratio increased, indicating 
that the number of film defects increased with the annealing temperature7,28. The reason for the increase of a 
number of defects with temperature is the temperature increase leads to the increase in the number of graphene 
layers. This induces the formation of boundaries among the graphene layers and the increase of the ratio of ID/IG.
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Figure 2 shows I2D/IG ratio and FWHM of Raman mapping of the graphene film synthesised at two annealing 
temperatures, 1000 and 1150 °C, with the size of 100 × 100 μm2. As shown in Fig. 2a, at 1000 °C I2D/IG ratio is 
in the range of 1.1–1.5, and FWHM, Fig. 2c, in the range of 45–57 cm−1. At 1150 °C, Fig. 2b, I2D/IG ratio value 
drops and ranges from 0.7 to 1.2, whilst FWHM value, Fig. 2d, ranges partly from 65 to 80 cm−1 but also less 
than 30 cm−1. From these findings can be seen that the graphene film has high quality and consists of 2 layers at 
1000 °C, whilst at 1150 °C, the film consists of several layers of graphene and graphite phases.

Thus, in the suitable annealing temperature range (1000–1150 °C), the graphene film was formed on the 
cemented carbide by Co-catalysed a-SiC transformation. When the annealing temperature was increased 
from 1000 to 1150 °C, the number of graphene layers, as well as the number defects of the graphene films, were 
increased, and the quality of the graphene layer was degraded.

Influence of the annealing temperature on the number of graphene layers.  The number of 
graphene layers is an important parameter to distinguish between graphene and graphite phases and to gauge 
the quality of graphene. Therefore, it was attempted to investigate how the annealing temperature influences the 
number of graphene layers. The following approaches were applied: (1) probing the impact of the annealing tem-
perature on the graphene layer structure by XRD; (2) SEM monitoring of morphological changes of the graphene 
layer upon the annealing process; and (3) analysis of the annealing temperature impact on the graphene film 
composition by EDS.

Figure 3 shows the XRD patterns of a-SiC films precipitated on cemented carbide after annealing at five differ-
ent temperatures. The results of XRD analyses show that only the basal peak (WC) appeared without annealing 
and even after annealing at 700 or 850 °C. These peaks are not very sharp below 850 °C because of the effect of 
a-SiC on the surface. This indicates the selected temperatures are inadequate for a-SiC film crystallisation. The 
results are consistent with the results of Raman spectroscopy. When the annealing temperature was increased to 
1000 and 1150 °C, the phases of the Co2Si and Co, respectively, appeared in the XRD spectra, denoting that within 

Figure 1.  Raman spectra of Co-catalysed a-SiC films at five temperatures. Inset 2-a (top-left corner) is enlarged 
2D peak obtained at 1000 °C, and inset 2-b (top-right corner) is the enlarged 2D peak obtained at 1150 °C.

T(°C)

D band G band 2D band

I2D/IG ID/IG La(nm)
Position 
(cm−1)

FWHM 
(cm−1)

Position 
(cm−1)

FWHM 
(cm−1)

Position 
(cm−1)

FWHM 
(cm−1)

1000 1353 45 1585 31 2700 44 1.304 0.339 56.710

1150 1357 46 1583 34 2704 72 0.964 0.407 47.235

Table 1.  Peak positions, peak intensity ratios and graphene grain sizes.
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this temperature range Co diffused from cemented carbide into the SiC film and reacted with SiC, thus preventing 
the crystallisation of a-SiC. However, the diffraction peak of β-SiC appeared on the surface of the Si slice at 1000 
and 1150 °C, (Fig. 4), indicating that the a-SiC film was definitely engaged in the crystallisation process, and, thus, 
confirming the beneficial role of Co.

Different products were generated at different annealing temperatures by the catalytic reaction of Co and 
a-SiC. The structure of precipitated graphene layer was also changed with temperature. Systematic research on 
the impact of the annealing temperature on the structure of precipitated graphene layer could assist in revealing 

Figure 2.  Raman mapping of the graphene film grown on the cemented carbide surface by annealing of a-SiC 
(size of 100 × 100 μm2: (a) I2D/IG peak ratio at 1000 °C; (b) I2D/IG peak ratio at 1150 °C; (c) FWHM of 2D peak at 
1000 °C; (d) FWHM of 2D peak at 1150 °C.

Figure 3.  XRD patterns of a-SiC films at five annealing temperatures.
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the mechanism by which the temperature causes the change in the number of graphene layers. Upon heating, Co 
and SiC interact, generating the Co-Si compound saturated with C atoms3,6. The Gibbs free energy of the Co-Si 
compound is lower than that of SiC, so the reaction (Co + SiC → CoxSiy + C) is a thermodynamically spontane-
ous reaction. If the reaction temperature is higher than 600 °C, Co2Si is generated (2Co + SiC → Co2Si + C), and 
if the temperature is higher than 800 °C, the materials further react to form CoSi (Co2Si + SiC → 2CoSi + C)29. 
The formation of graphene is based on the reaction mechanism where C is isolated on the surface of the Co/
CoxSiy film, owing to the decrease in solubility of C with temperature decrease30. As for the annealing temperature 
of 1000 °C, the Raman analysis shows that graphene was synthesised from the a-SiC film, which is the process 
catalysed by Co. Because the number of graphene layers was low, the graphite phase was not detected by XRD at 
approximately 26.5 ° (2θ). The Co reacts with the a-SiC film to form Co2Si, and the Co/Si atomic ratio after reac-
tion may contribute to this reaction product31. When the Co/Si atom ratio increases, a compound phase in the 
Co-Si bi-component system approaches Co, and the CoSi compound transforms to Co2Si28. Thus, at the annealing 
temperature of 1000 °C, Co sufficiently reacts with the a-SiC film to catalyse graphene generation, generating 
carbon-saturated Co2Si.

Unlike that at 1000 °C, Co reacts with a-SiC at 1150 °C, and there is only the Co phase without Co2Si com-
pound. The same as afore-mentioned, Co reacts with the a-SiC film at 800 °C to preferentially generate CoSi. At 
the annealing temperature of 1150 °C, the CoSi compound in the film disappeared, and the Co phase appeared. 
Meanwhile, the number of the generated graphene layers increased and the graphite phase could be also detected.

Therefore, in the suitable annealing temperature range (1000–1150 °C), Co diffuses in a-SiC film, catalysing 
graphene formation. At 1000 °C, Co reacts with a-SiC to form the Co2Si compound saturated with C atoms, and 
the quality graphene layer with low ID/IG (0.339) and high I2D/IG (1.304) ratio is obtained. When the annealing 
temperature is further increased, the Co2Si compound transforms into Co, and the amount of precipitated C is 
increased, as well as the number of graphene layers.

The impact of the annealing temperature on graphene morphology is shown in Fig. 5. The dendritic defects 
and large block regions generated during deposition remain in the a-SiC film even at temperatures of 700 or 
850 °C indicating the insufficient atomic activity. At 1000 °C, white particles covered by a transparent graphene 
film appear on the a-SiC film surface, and the morphology of graphene films is wrapped around the particles with 
3D spheres (Fig. 5d). The magnified area in the yellow circle reveals the morphology and particle size of the trans-
parent graphene film, and typical graphene film wrinkles can be observed (as shown in Inset 5–1). If white par-
ticles disappear, the transparent graphene film forms hollow graphene balls (as shown by the yellow dotted line 
in inset 5–1). Compared with the SEM micrograph at 1000 °C, the white particles almost completely disappear at 
1150 °C, the hollow graphene balls are formed (as shown by the red circle in Fig. 5e), whilst the transparency of 
the film is relatively poor, implying the increased thickness of the graphene film (Fig. 5e). Moreover, the wrinkles 
on the surface of the graphene balls are deeper and the transparent reduction so the film of the hollow graphene 
balls becomes thicker (as shown in Inset 5–2).

The presented results show that at annealing temperatures of 1000 and 1150 °C, Co diffused into a-SiC film 
and catalysed the formation of graphene thereon. The metal reacted with a-SiC film and metal silicide spontane-
ously agglomerated to reduce the surface energy, which is in agreement with previously reported results that the 
graphene film is generated preferentially at areas where the metal disappeared after contraction32.

Thus, it can be concluded that at the annealing temperature of 1000 °C, the graphene balls were precipitated 
from Co2Si particles agglomerated on cemented carbide; hollow graphene balls were generated and graphene 
sheets with graphene balls were obtained. When the annealing temperature was increased to 1150 °C, Co2Si parti-
cles disappeared, the film of hollow graphene balls became thicker and the number of graphene layers increased. 
Such graphene sheets, with hollow graphene balls that meet the requirement of the high specific surface area for 

Figure 4.  XRD patterns of a-SiC films on the surface of Si slices at annealing temperatures of 1000 and 1150 °C.
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an ideal graphene film, can be beneficial for improvement of the efficiency of strain sensors by the reduction of 
size and power consumption23.

Influence of annealing temperature on the chemical composition of graphene film was monitored by EDS. 
In the temperature range of 1000–1150 °C, when the annealing temperature was increased, the Co2Si compound 
disappeared, so the Co phase appeared in the film, and the number of generated graphene layers increased. In the 
Co-Si system, different Co/Si ratios resulted in different Co-Si phases29. The mechanism by which the precipita-
tion layer structure of segregated C was altered with temperature may be revealed only by a systematic research 
of the impact of the annealing temperature on the atomic content during the synthesis of graphene. Figure 6 
shows the EDS results of the a-SiC film at five annealing temperatures. The contents of Si and C remain essentially 
unchanged, and Co particles did not exist up to 850 °C (Fig. 6). This indicates that in the temperature range of 
700–850 °C, Co binding phase in cemented carbide is unable to diffuse into the a-SiC film. The Co can only react 
with Si to generate Co2Si and the reaction with SiC is not possible, so it does not appear in the a-SiC film. When 
the annealing temperature was increased, Co atoms appear in the film, the content of Si atoms decreases and the 
content of C atoms becomes higher, which implies that Co diffused into the a-SiC film.

Unlike conventional graphene epitaxial growth by SiC that requires high temperatures (>1200 °C) and high 
vacuum (10–4 Pa) conditions for Si sublimation from SiC film to enable restructuring of C atoms and graphene 
formation, graphene can be synthesised at low temperature using a SiC film with Co catalyst33. This study shows 
that at 1000 °C, Co diffused into the a-SiC film and at Co concentration of 11.43%, the content of Si dropped from 
30.5% to 4.22%, whilst the amount C atoms increased to 84.35%. It suggests that Co catalysed the sublimation of 

Figure 5.  SEM micrographs of the a-SiC films annealed at five temperatures; (a) not annealed; (b) annealed at 
700 °C; (c) annealed at 850 °C; (d) annealed at 1000 °C; and (e) annealed at 1150 °C. Inset 5–1 (on the left) is the 
enlarged area obtained at 1000 °C, and inset 5–2 is the same for the micrograph obtained at 1150 °C.

Figure 6.  EDS results of a-SiC films annealed at five different temperatures.
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Si and the restructuring of C atoms, decreasing the content of Si and rearranging C atoms to generate graphene. 
Compared to that, at 1150 °C the content of Co atoms remained essentially unchanged, 10.83%, the amount of 
Si was even lower, 0.93% and the amount of C atoms increased to 88.24%. Having in mind the afore-mentioned 
results of Raman and XRD measurements, it can be stated that at the annealing temperature of 1150 °C, the 
Co-catalysed sublimation of Si was accelerated, inducing Co2Si cracking and the increase in a number of segre-
gated carbon atoms in Co layer, as well as the number of graphene layers.

Action mechanism of Si atoms in Co-catalysed graphene generation.  At 1000 °C, the sublimation 
of Si atoms was accelerated by Co catalysis, so the content of Si in the film decreased, and C was segregated to 
generate graphene. When the annealing temperature was increased to 1150 °C, the Co-catalysed sublimation 
of Si atoms was enhanced, decreasing the content of Si, which induced Co2Si compound disappearance and the 
increase in a number of formed graphene layers. Therefore, the change of Si content in the film has a direct impact 
on graphene generation and the number of layers. Thus, the role of Si atoms is very important for proper under-
standing of Co-catalysed graphene formation from a-SiC and the change in the number of graphene layers as well.

Figure 7 shows the proposed mechanism describing the role of Si atoms in both Co-catalysed graphene gener-
ation from a-SiC film and change in the number of layers. The microstructure and changes in the film are demon-
strated by the ball-and-stick structure. A variation in the content of Si atoms in the film may alter the structure 
of Co metal and causes the change in graphene formation and the number of graphene layers. Three different 
parts of Si atoms behaviour can be distinguished: (a) Si reacts with Co and C particles are freed (blue represents 
Si particles in the film, purple represents Co particles in the film and grey represents C particles, Fig. 7b); (b) the 
content of Si particles decreases and C particles precipitate to generate graphene (C particles are combined to 
generate the FLG, as shown in Fig. 7e) and (c) Si particles disappear and the number of graphene layers increases 
(C particles (gray) clusters are gathered to generate the MLG, as shown in Fig. 7g).

The proposed three-step mechanism corroborates well with the experimental findings.

	(1).	 Si reacted with Co to generate the compound saturated with C phase. During annealing, Co diffused 
into and reacted with a-SiC film (Fig. 7a), particularly with Si particles to generate CoSi, and free C was 
distributed in the product (Fig. 7b). XRD results in Fig. 4 illustrate that if the annealing temperature is 
higher than 850 °C, Co reacts with the a-SiC film to generate the C-saturated CoSi compound.

	(2).	 If the content of Si atoms decreases, C atoms segregate in Co layer to generate graphene. As shown in 
Fig. 7c–g, the Si content in the film decreased as Si atoms sublimated, and the CoSi compound cracked to 
generate free Co metal (Fig. 7c,d). As the temperature decreased (during cooling), the solubility of C in the 
Co metal phase would decline and C atoms in the Co layer would precipitate to form graphene (Fig. 7e,g). 
The analysis of Raman (Fig. 1) and EDS spectra (Fig. 6) showed that when the annealing temperature 
was 1000 °C, Co-catalysed Si sublimation and transport of C atoms through free Co metal to generate the 
graphene layer.

	(3).	 If Si particles disappear, the Co-Si compound is not generated, and the number of graphene layers 
increases. As shown in Fig. 7e, during cooling, C particles passed through Co layer and precipitated to 
generate graphene; remnant Si particles reacted with Co to generate Co2Si and free Co phase disappeared, 
so C particles stopped precipitating and forming graphene, producing only a few graphene layers (Fig. 7f). 
When the annealing temperature was increased, Si atoms in the film disappeared (Fig. 7d); during cooling, 
Co metal was not engaged in the reaction, the Co2Si compound was not generated, so the precipitation of 

Figure 7.  The schematic illustration of graphene formation mechanism by annealing of a-SiC film on the 
surface of cemented carbide: the changing trend of temperature is demonstrated by the arrow; colours: from 
shallow to deep means that temperature changes from low to high for annealing and from high to low for 
cooling.
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C atoms was actually enhanced and the number of graphene layers was increased (Fig. 7g). EDS results in 
Fig. 6 show that with further increase in the annealing temperature, the Si content in the film significantly 
decreased and almost disappeared below the detection limit; at the annealing temperature of 1000 °C, the 
Co2Si compound disappeared, and only the free Co layer existed in the film, whilst the number of graphene 
layers increased.

Summarising the afore-mentioned findings, the influence of Si particles is a synergistic effect of three different 
actions: Si particles sublimation, CoSi compound cracking and C atoms precipitation through a free metal layer 
to generate graphene. When the content of Si in the film decreased, the Co2Si compound formed, the free metal 
layer disappeared and the FLG was generated. When Si particles disappeared, the Co-Si compound was not 
generated, so the amount of free Co phase increased, as well as the number of graphene layers. The content of Si 
determined the changes in the Co phase and influenced the generation of graphene and the change in the number 
of graphene layers.

Conclusions
This study shows an elegant approach for a novel synthesis of high-quality graphene on the surface of cemented 
carbides. It sublimes current understanding of metal-catalysed transfer-free graphene growth and highly appli-
cable engineering material as cemented carbide. Without any need for prior deposition of metal/metal oxide 
layer, this approach offers a feasible route to produce transferable graphene film, providing the explanation of the 
underlying chemical mechanism.

Co, as a binding phase of cemented carbides, was successfully used to catalyse a direct formation of graphene 
film with graphene balls on top from the a-SiC film on the cemented carbide. The influence of the annealing 
temperature on structure and morphology of the generated graphene film, change in atomic composition and the 
number of generated graphene layers were systematically investigated. The mechanism that describes the role of 
Si atoms was revealed based on the relationship between the change of Si atomic content and the generation and 
change in the number of graphene layers.

The three most important findings of this study can be summarised as follows: (1) graphene is directly gen-
erated from the a-SiC film on the surface of cemented carbide catalysed by Co binding phase via the annealing 
process in the temperature range of 1000–1150 °C. When the annealing temperature is increased (1150 °C), the 
number of graphene layers increases and the graphene quality becomes poorer. (2) Influence of the annealing 
temperature on the number of graphene layers is related to changes in the film composition and structure. In the 
suitable temperature range (1000–1150 °C), Co catalyses Si sublimation, and C particles segregate to generate 
graphene. The related changes in atomic and phase compositions at the higher annealing temperature induced 
the increase in the number of graphene layers. (3) The content of Si influences the Co pattern and causes the 
generation of graphene and change in the number of graphene layers. The mechanism of Si atoms acting actually 
includes three subsequent parts: (a) when the content of Si particles decreases, C particles segregate in the Co 
layer to generate graphene; (b) Si particles react with Co to generate Si-Co compound, so the free Co layer dis-
appears, and the number of precipitated graphene layers is low; and, (c) when Si particles disappear, no reaction 
with free Co metal occurs, and the number of graphene layers increases.

This research study provides a new deep insight into the transfer-free direct growth of graphene on the surface 
of cemented carbides, explaining the mechanism of chemical processes behind, especially underlying the struc-
tural, chemical and morphological aspects of the graphene layer formation.

Methods
Preparation of the graphene layer.  The a-SiC films were deposited by a mid-frequency magnetron sput-
tering technique. There were two kinds of substrate materials: monocrystal Si wafer was used for control analysis 
of the structure, whilst cemented carbide YG 8 (WC-Co 8%) was used for the analysis of the graphene structure. 
The sample preparation method included following steps: (1) the substrate was cleaned in both acetone and 
absolute ethanol by ultrasonication in each medium for 10 min, and (2) the substrate was dried by nitrogen and 
placed in a vacuum chamber for deposition. The reaction of Si target and acetylene, which provided the source of 
silicon and carbon atoms, respectively, was used for the a-SiC film deposition. The main experimental parameters 

Figure 8.  Schematic illustration of the graphene matrix growth process: (a) The substrate of cemented carbide. 
(b) a-SiC sputtered on the substrate to produce carbon source. (c) Heating in a vacuum high-temperature 
furnace. (d) After cooling, C precipitates and forms the graphene sheets and balls. (e) Annealing process.
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include basic pressure (3.0 × 10−3 Pa), Ar ion bombardment duration (20 min), bias (−800 V), deposition pres-
sure (0.5 Pa), C2H2 flow rate (35 SCCM), substrate bias (−100 V), target current (22 A) and deposition tempera-
ture (150 °C). The film thickness was approximately 2.0 μm.

The a-SiC coating films deposited on both kinds of substrates were shortly isothermally treated at 450 °C in 
a vacuum high-temperature furnace. Subsequently, the coated films were heated and annealed in the vacuum 
furnace at annealing temperatures of 700, 850, 1000 and 1150 °C for 90 min, and the pressure in the furnace was 
maintained below 5 × 10−4 Pa. The binding phase, Co, of cemented carbide, was used to catalyse the in-situ for-
mation of the graphene matrix from the a-SiC film. After annealing, the test blocks were cooled with the furnace 
in vacuum. Figure 8 shows the steps required for the growth graphene matrix.

Characterisation of the synthesised graphene layers.  Crystal structure analysis was performed 
by X-ray diffraction (XRD; Bruker D8 Advance, CuKα, 40 kV, 40 mA, the diffraction angle is 2° (2θ), 2θ range 
20–80° and a step size of 0.02°). Valence bond and the number of layers of graphene films were determined by 
Raman spectroscopy (LabRAM HR Evolution, HOEIBA Jobin Yvon, France) using 532 nm laser excitation at 
room temperature, and layer uniformity is revealed by Raman mapping; surface morphology was identified by 
scanning electron microscopy (SEM, JEOL JSM 6301 F), while compositions of the film surfaces were analysed by 
energy-dispersive X-ray spectrometry (EDS). The atomic composition was obtained by taking the average of six 
measurements on the surface of the individual sample.
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