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Abstract

The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms
of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples
from the Baltic Sea monitoring programs revealed (i) that within the major basins the proportion of dinoflagellates varied
from 0.1 (Kattegat) to .0.8 (central Baltic Proper), and (ii) substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland) in the
dinoflagellate proportion over four decades. During a recent decade (1995–2004) the proportion of dinoflagellates
increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4) and in the Gulf of Finland,
(0.4 to 0.6) which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal
events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers
under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-
start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing
diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the
relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major
elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes,
where ice-associated cold-water dinoflagellates successfully compete with diatoms.
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Introduction

On a geological time scale, the development of ocean and

atmosphere chemistry has been highly integrated with the

evolution of photosynthesis in the ocean, and still today,

approximately half the global C-fixation takes place in the sea

[1]. This production is mainly carried out in the free water masses

by phytoplankton, which is a highly heterogeneous group of

microscopic algae. The unique characteristics of different groups

and species of phytoplankton have over the last decades been

shown to have far-reaching implications for the environment. The

phytoplankton community composition may directly affect higher

trophic levels of the food web [2], ocean chemistry [1] and the

atmosphere, e.g. cloud albedo [3], and ocean productivity plays an

integral part of global biogeochemical feedback mechanisms. Two

of the most dominating phytoplankton groups: diatoms and

dinoflagellates, together changed the global oceanic biogeochem-

istry soon after their rise, ca. 250 Myr ago [4], and in the

contemporary oceans they contribute a major part of the primary

production.

These two phylogenetic groups exhibit unique and distinct,

often contrasting adaptive ecologies, explaining their global niche

partitioning on the turbulence-nutrient matrix of habitats and

onshore-offshore gradient [5]. In the temperate zone, the

successional cycle in coastal waters classically begins with a

winter-spring diatom bloom that is seasonally replaced by summer

communities dominated by dinoflagellates [6]. Diatom blooms are

of high species diversity, and a species succession generally occurs

[7,8]. Dinoflagellate blooms, in contrast, have low species

diversity, and exhibit a rudimentary species succession, if any [9].

The Baltic Sea is an exceptional coastal, brackish water body,

which functionally is much like a large estuary with both

horizontal and vertical salinity gradients. Due to the partly

enclosed geography and high anthropogenic influence, environ-

mental problems such as eutrophication are amplified in the Baltic

Sea. Environmental pressures related to eutrophication are getting

more common in coastal areas worldwide (e.g. [10]), resulting in

deteriorated ecosystem services and altered biogeochemical

functioning of coastal zones [11]. In addition to problems with

eutrophication, the Baltic Sea ecosystem is sensitive to climate

change, mainly because it is greatly affected by freshwater runoff,

predicted to increase in Northern Europe within decades, and by

saltwater intrusions from the North Sea, which are forced by

meteorological conditions [12].

The Baltic Sea is an exception to the general trend of diatom

dominance during spring with a unique and anomalous niche

overlap of diatoms and dinoflagellates during the spring bloom.

Large (20–30 mm) cold-water dinoflagellates match or even clearly

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21567



exceed the biomass of diatoms during spring bloom [13,14] in

parts of the Baltic Sea.

Despite their growth and nutrient uptake capabilities describing

r- and K-strategies (diatoms and dinoflagellates, respectively), the

two phylogenetic groups appear to be functional surrogates, as

both are separately capable of exhausting the wintertime inorganic

nutrient pools in spring, and of producing bloom-level biomasses

[13]. Diatoms and dinoflagellates have basically comparable

nutrient requirements (excluding the need for silica), and in the

Baltic Sea, both appear to provide similar ecosystem services with

respect to annual new production and nutrient uptake [15].

Several authors have suggested that the role of dinoflagellates in

the Baltic Sea spring bloom has increased over the last decades,

both in the northern Baltic Sea [15,16,17], as well as in the central

and southern parts [18,19]. Shift towards dinoflagellate domi-

nance has mostly been linked to climate variability and changes in

the physical environment, since nutrients are not limiting at the

beginning of the spring bloom [15].

We hypothesized that in relation to ongoing eutrophication in

the Baltic Sea, we should see the increase in both, the bloom

magnitude and share of the faster growing diatoms in the spring

bloom biomass. In contrast, dinoflagellates should be favored by

climatic and weather conditions enhancing the water column

stratification at the onset of the bloom, with distinct north-south

gradient (ice cover, importance of freshwater runoff), as well as by

topographical properties of sub-basins (proximity to the seed

banks). If proved correct, these general hypotheses would predict

different trajectories for the diatoms and dinoflagellates in different

Baltic Sea sub-basins, especially under climate change.

In the present study we analyze decadal-scale trends in the

Baltic Sea spring bloom dinoflagellates and diatoms. We

specifically asked the following questions: (a) have the proportions

of spring bloom diatoms and dinoflagellates changed on a decadal

time scale; (b) are there spatial differences in the biomass, relative

proportion, or rate of temporal change of either group over the

Baltic Sea; (c) is the intensity of spring bloom associated with the

dominance of either group; and (d) is there an association between

the proportion of dinoflagellates and winter-spring climate

variability, reflected by the North Atlantic Oscillation (NAO)

index?

Results

Long-term temporal trends reveal pronounced changes
in the spring bloom community structure

The biomass of diatoms and dinoflagellates in the major basins

(as defined in Fig. 1) of the Baltic Sea spring bloom has changed

considerably over the decadal time period (Fig. 2). The spring

blooms in the major basins of the Baltic Sea have shifted towards

lower diatom and higher dinoflagellate biomass. We used standard

deviations of the predicted annual values from the GAM models to

compare which of the two groups revealed higher long-term

biomass variability. In the Gulf of Finland, the biomass of both

groups varied with almost equal amplitude over time, while in the

other basins diatoms were the more variable component of the

spring bloom (Fig. 2 a panels).

The long-term dynamics of the proportion of dinoflagellates

had a different pattern (Fig. 2 b panels). The proportion of

dinoflagellates has increased considerably in the northern

Baltic Sea: the Gulf of Bothnia, the Gulf of Finland and the

north and northwestern Baltic Proper. The semi-enclosed Gulf

of Riga has normally diatom-dominated spring blooms, but

had a high proportion of dinoflagellates in mid 1990s due to

the decline of diatoms (see Discussion). The Southern Baltic

Sea and the Kattegat have strongly diatom-dominated spring

blooms.

In the predominantly ice-covered Gulf of Bothnia and Gulf of

Finland, proportion of dinoflagellates and diatoms showed no

consistent pattern through the spring bloom, in contrast to the ice-

free central and southern basins, where seasonal succession of the

spring bloom typically starts with a diatom dominance followed by

increase of dinoflagellates (Fig. 2 c panels).

Significant positive association between dinoflagellate domi-

nance and NAO index was found for the northwestern Baltic

Proper and the Gulf of Finland (Table 1). The relationship

weakened and was not significant in the basins further to the south

(Gulf of Riga, Southern Baltic Proper, Kattegat) (Table 1). The

model intercept parameter (0.54, variance 0.08), when back-

transformed, sine(0.54)2, suggests that the overall proportion of

dinoflagellates at zero NAO index was ca. 0.26. The average

dinoflagellate proportion in the Baltic Sea spring blooms has

exceeded 0.26, which is in line with the predominantly positive

NAO phase during the last decades in the region.

We were interested in the direction and strength of the effect of

the NAO index in different basins (the interaction term) and not so

much the main effect of basins. Therefore basin-specific intercepts

were not calculated; basins were treated as a random component

in the mixed effect statistical model, reducing the number of

estimated parameters and preserving the degrees of freedom.

Spatial variability in the spring bloom biomass, the
proportion of dinoflagellates, and rate of change of
dinoflagellate dominance

The spatial pattern of the average total spring bloom biomass

(Fig. 3) reflects the general knowledge of the Baltic Sea

eutrophication due to local nutrient loading [20], with the Gulf

of Finland and the Gulf of Riga showing the highest spring bloom

biomass values (.6 mg L21).

There was apparently no association between the spring bloom

biomass and dominance patterns of dinoflagellates or diatoms

(Fig. 4), as diatoms hold a strong position both in the oligotrophic

northern basins (Bothnian Bay) as well as in eutrophied Gulf of

Riga, Kattegat, Danish coastal waters and in the Southern Baltic

Sea, where the spring bloom biomass is relatively high (3–4 mg

L21), particularly in the Bay of Kiel (ca. 6 mg L21). Similarly,

dinoflagellates dominate the spring blooms both in the highly

eutrophied Gulf of Finland as well as in the offshore waters of the

northern Baltic Proper (.0.8), which shows moderate to low

average spring bloom biomass values (ca. 1.5 mg L21).

Figure 5 shows the spatial patterns of the direction and average

linear rate of the change of dinoflagellate proportion between 1995

and 2004. During this decade, dinoflagellates have increased in

most of the northern and eastern parts of the Baltic Sea,

particularly in the Gulf of Bothnia and the Gulf of Finland.

Notably, the rate of change is slightly negative in the deep offshore

areas of the central and northern Baltic Proper, where the average

proportion of dinoflagellates was particularly high (.0.8) during

1995–2004 (Fig. 4).

Discussion

The proportion of diatoms and dinoflagellates in the Baltic Sea

spring bloom has been highly variable in time and space during

the past 4 decades. No common all-Baltic trend or pattern can be

shown for the different areas of the Sea, indicating that

mechanisms driving the change have a strong regional and fine-

scaled component, characteristic for coastal ecosystems in general

[21].

Spring Bloom Community Change in the Baltic
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The most pronounced decadal-scale increase in the dinofla-

gellate proportion from 0.1 to 0.7 has taken place in the

eutrophied Gulf of Finland. Dinoflagellates have also increased

in the Bothnian Bay and the Bothnian Sea, but spring blooms

in these northern basins are still largely diatom-dominated. In

the central, offshore Baltic Sea, where the spring bloom

biomass is relatively low, dinoflagellates hold a strong,

dominating position (.0.7). The main basins where diatoms

dominate the spring bloom are the northern Bothnian Bay, the

southwestern Baltic Sea and also the eutrophied Gulf of Riga,

but in all these basins, long-term, temporal changes have been

distinct (Fig. 2).

No consistent association between the relative dominance of

diatoms or dinoflagellates, and the intensity of the spring bloom,

was found across the sub-basins. This supports the functionally

surrogate role of these phylogenetic groups in system-wide

biogeochemical cycles and undermines the hypothesis that

anthropogenic nutrient enrichment favors the fast-growing

diatoms.

Does dissolved silicate decrease drive dinoflagellate
expansion in the Baltic Sea?

Decreasing dissolved silica (DSi) availability and lowering DSi:N

ratios, associated with eutrophication [22,23] and decreasing

riverine DSi inputs [24], have been suggested to limit diatom

growth in the Baltic Sea, and thus indirectly support the expansion

of dinoflagellate blooms. However, as shown recently, the most

common Baltic spring diatoms are well adapted to low DSi

concentrations and not directly affected by decreased surface levels

[25]. DSi concentrations are sufficient during the early phase of

the spring bloom when the competition determining the

composition at the bloom peak is largely decided [15].

However, some spring bloom diatoms in the Baltic Sea rely

entirely on benthic resting stages to survive the warm summer, and

require large amounts of DSi when heavily silicified spores are

formed [26]. At the late phase of the bloom, low DSi may thus

lead to poor sporulation and subsequently compromise the seeding

and competitive success of the next generation of these diatoms.

Late-bloom DSi depletion is also likely to affect the competition

Figure 1. Spatial distribution of the data. Gray symbols mark the sampled stations with the symbol area proportional to the number of samples.
Lines and polygons indicate the regions pooled together for long-term analyses. The numbers represent the total amount of spring bloom samples,
and the number of basin-wide weakly means used for long-term analysis.
doi:10.1371/journal.pone.0021567.g001

Spring Bloom Community Change in the Baltic
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between different diatom species, as the degree of silicification

varies significantly between Baltic Sea bloom-forming diatoms

[25].

In specific cases, low DSi may set the upper limit of diatom

spring bloom magnitude. Long-term data analysis showed that the

semi-enclosed Gulf of Riga went through a DSi depletion event

culminating in 1993 [27], coinciding with the significant increase

of dinoflagellate abundance (Fig. 2). The likely cause was a

complex interplay between exceptional blooms of heavily silicified

diatom species, and slow dissolution of biogenic silica resulting in

drawdown of DSi stocks for several years. Since 1995, the DSi

concentrations and the proportion of diatoms in the Gulf of Riga

have recovered, leading to rapidly decreasing dinoflagellate

proportion.

Figure 2. Long-term trends of diatoms and dinoflagellates in the Baltic Sea. Lines depict the long-term trends of dinoflagellate and diatom
biomass (column a), dinoflagellate proportion (column b) and seasonal pattern of dinoflagellate proportion (column c) in six major basins of the Baltic
Sea; GoB – Gulf of Bothnia; GoF – Gulf of Finland and Archipelago Sea; NW – northwestern Baltic Proper; GoR – Gulf of Riga; SB – Southern Baltic Sea;
Ka – Kattegat, the Belt Sea and the Sound. Symbols represent basin wide weekly averages; trend lines are predicted by GAM smoothers. Eastern
Gotland Basin is not shown due to poor data coverage.
doi:10.1371/journal.pone.0021567.g002

Spring Bloom Community Change in the Baltic
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Habitat specialists vs. generalists
Globally, diatoms are ubiquitous generalists thriving in most

aquatic habitats, while habitat specialization of dinoflagellates is

considered to make them particularly responsive to niche changes.

Altered niche structure and community ecology leads to

geographic range expansion, newly achieved competitive domi-

nance, and bloom expansion of dinoflagellates [5,9]. However, the

conditions, factors and mechanisms selecting for the phylogenetic

group, genus, and species for bloom time windows remain poorly

understood especially in variable coastal environments, and the

outcome is thus highly unpredictable.

The spring bloom dinoflagellates of the Baltic Sea are inferior

growth competitors compared to diatoms when nutrients are

plentiful. They also tend to have a lower light saturation level, and

appear to be better competitors when nutrients are low [15,28]. In

an experimental multi-year study with mixed natural communi-

ties, Kremp et al. [15] argued that the size of the inoculums

population is decisive for which phylogenetic group becomes

selected. Once the head-start population had been established,

nutrient levels, nutrient ratios, or light intensity had only a limited

effect on the outcome of the competition or biomass distribution

among functional groups [15].

Competition between cold-water diatoms and dinoflagellates

can therefore be interpreted in a planktonic r vs. K-selection

framework. Small fast-growing diatoms thrive in unstable,

turbulent conditions (corresponding to classical r-strategy), while

slow-growing, large and motile dinoflagellates seem to require a

specific habitat setting for bloom formation, allowing them to

acquire competitive advantage through building a superior head-

start biomass (K-strategy).

Stratification dynamics driving bloom habitats
Stratification of the water column is generally a prerequisite for

most dinoflagellate blooms to develop in temperate areas (e.g.

[29]). As the coastal planktonic habitat fluctuates interannually

and within the spring season, success strategy shifts between the

habitat specialist, monospecific dinoflagellate blooms, and the

high-diversity, generalist diatom blooms [9].

In the Baltic Sea, dinoflagellates are more sensitive to

hydrographic conditions and climate fluctuations than to the

nutrient conditions at the bloom onset. It has been shown that

initial stratification, necessary for spring bloom commencement, is

due to spreading of freshwater from the coastal zone in the Baltic

Sea, instead of the temperature-driven stratification characteristic

Table 1. Effect of NAO on dinoflagellate proportions in six
major basins.

Basin
Parameter
estimate

Standard
error p-value

Gulf of Bothnia 20.04 0.04 0.28

Gulf of Finland 0.08 0.03 0.003

Northwestern Baltic Proper 0.11 0.04 0.01

Gulf of Riga 0.07 0.05 0.16

Southern Baltic Sea 0.08 0.06 0.14

Kattegat and Danish straits 20.02 0.04 0.56

Basin-specific slope parameters (dinoflagellate proportion vs NAO index) from
the mixed effects model with estimated standard errors and p-values. The
parameter values quantify the change of the arcsin-square root transformed
dinoflagellate proportion (range 0 to 1.5) per unit change of the NAO index.
doi:10.1371/journal.pone.0021567.t001

Figure 3. Spatial variability of the spring bloom peak biomass
(wet weight, mg L21) in the Baltic Sea. High biomass is
characteristic to the eutrophied basins (Gulf of Finland, Gulf of Riga),
with a biomass .6 mg L21. For most of the Baltic Sea, peak biomass of
the spring bloom samples falls between 1.5–3 mg L21.
doi:10.1371/journal.pone.0021567.g003

Figure 4. Spatial variability in the proportion of dinoflagellates
interpolated with ordinary kriging. The thick contour line
separates dinoflagellate dominance (.0.5) and diatom dominance
(,0.5).
doi:10.1371/journal.pone.0021567.g004

Spring Bloom Community Change in the Baltic
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of lakes and full-saline marine regions [30], indicating also

different bloom start situations for coast-near and offshore regions

of the Baltic Sea.

Early salinity stratification is found in biotopes with large

freshwater inflow, such as estuaries, and in the literature, there are

a few examples of dinoflagellate-dominated estuarine spring

blooms, e.g. in the uppermost Chesapeake Bay [31], and in parts

of the Neuse River Estuary [32]. However, dinoflagellate

dominance during spring bloom in estuaries is not a general

phenomenon, as for example strong tidal mixing favors diatoms

over dinoflagellates [33], and hence stratification cannot be the

sole reason for the dinoflagellate dominance during spring bloom

in the Baltic Sea.

Life-history strategies of Baltic spring dinoflagellates
promote bloom expansion

The life-cycle strategy of the dominant dinoflagellate species in the

Gulf of Finland and the northern Baltic Sea, Biecheleria baltica involves

massive cyst formation at the end of the bloom. Extensive cyst beds

formed in the Gulf of Finland [17,34,35] are gradually growing and

spreading with bottom water transport in the benthic nepheloid layer.

These processes fuel the expanding and ever larger dinoflagellate

blooms in the relatively shallow basin of the Gulf of Finland. The

close proximity to the cyst beds is likely to promote a successful return

of the species to surface waters here. Notably, B. baltica has negligible

bloom intensity in the nearby Gulf of Riga, where cysts of this species

are virtually absent from the sediment [17].

The strategy of B. baltica to produce such large quantities of

survival stages is relatively uncommon among the better known

dinoflagellate species. Cyst yields of most dinoflagellates studied in

this respect, are significantly lower than of B. baltica, with cyst

fluxes and cyst concentrations in the sediment differing by orders

of magnitudes [17,36]. We assume that in an environment that

allows successful re-introduction of seeds to the euphotic layer, the

strategy of excessive ‘‘seed’’ formation makes B. baltica more

competitive with diatoms than other dinoflagellates.

Large inocula of seeds at the beginning of the growth season

may compensate for the slow growth of the dinoflagellates and

enable them to persist against diatoms, which, due to their high

growth rates, are generally very effectively seeded even from minor

inocula of resting propagules [37]. In the northern Baltic Sea,

resting propagules of all common spring diatoms are abundant in

coastal sediments and likely to be seeded successfully (Kremp,

unpublished data) when mixed into the water column. In the open

Baltic Proper, the main spring bloom dinoflagellate, a recently

described Gymnodinium corollarium, produces also conspicuous

quantities of resting cysts [38].

A habitat succession hypothesis for the Baltic Sea
dinoflagellate expansion

Specific hydrological settings and a seasonal sequence of events

are required for the dominance of cold-water dinoflagellates

during the spring bloom in coastal waters. Wintertime mixing

incidents promote introduction of benthic seed populations to the

upper water column [39]. As also diatoms deposit resting stages to

sediments, the mixing events are necessary, but not sufficient for

dinoflagellate dominance. A consequent period of water column

stability, particularly under the ice cover, disfavors competing

diatoms, which are prone to sedimentation, while irradiance is still

insufficient for bloom development. This concomitantly favors

shade-adapted motile dinoflagellates and promotes the build-up of

high cell densities. These dense populations in thin surface layers

provide the necessary head-start by the onset of the spring bloom,

which is decisive for the dominance of dinoflagellates during the

peak of the spring bloom, confounding the conventional sequence

from diatoms to dinoflagellates [15,40].

The conspicuous dominance of dinoflagellates in the ice-free

central Baltic Proper calls for further research. We believe the

permanent halocline at 60–80 m depth in the Gotland Basin is a

strong barrier for local cyst re-suspension from the sediment

surface to the euphotic layer. Anoxic sediments and bottom waters

in the deep parts of the Gotland Basin are not favorable for cyst

germination [41,42], but when re-suspended to oxic conditions

and germinating, the motility of dinoflagellates is a major

advantage over the non-motile diatoms to cross the salinity

stratification and reach the surface layer. We are not aware of

comparable investigations from the Baltic Sea, but modeling

studies from the Gulf of Maine (US east coast) suggest that

germinating cells from the offshore dense cyst beds at 150 m and

deeper largely determine the timing and intensity of the

dinoflagellate blooms, supported by their average upwards

swimming speed of 5–15 m day21[43,44].

The observed differences in bloom dominance between Baltic

Sea sub-basins can thus be assumed to reflect physical habitat

properties: topographical differences (proximity to sediment seed

banks), distance to major freshwater discharges promoting initial

stratification, and the N-S gradient governing the probability and

extent of ice cover, and the permanent salinity stratification in

deeper off-shore areas.

It remains open, however, exactly how these physical differences

relate to the different dominance patterns and trends in different

sub-basins. If ice cover, freshwater-induced stratification, and

relatively shallow seed banks are instrumental for the observed

Figure 5. Shifts in the proportion of dinoflagellates over the
period of ten years (1995 to 2004). The predictions were made by
geographically weighted linear regression and interpolated with
ordinary kriging. Positive and negative values represent the areas of
increasing and decreasing dinoflagellate proportion, respectively. Thick
contour lines denote boundary between areas of increasing and
decreasing trend.
doi:10.1371/journal.pone.0021567.g005
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Biecheleria baltica success in the Gulf of Finland, why does the

species not thrive in the Gulf of Bothnia, where these habitat

properties play even a stronger role? Instead, the recent increase in

dinoflagellate proportion in both the latter Gulf and the deep,

usually ice-free Baltic proper is due to another effective cyst

former, Gymnodinium corollarium while the Gulf of Riga, which

witnessed strongly increasing dinoflagellate proportions in 1990’s,

appears to be a domain of Peridiniella catenata.

A combination of a founder effect, low connectivity between

basins, and a threshold in cyst accumulation in sediments, before a

hang-around species is able to build the necessary head-start under

supportive physical conditions, and thus to secure future success in

the habitat, seems a plausible hypothesis for the demonstrated

dinoflagellate expansion, but it cannot be verified by the current

data. Coupling of data on species-specific life cycles and succession

to physical circulation and mixing models, as well as to ice cover

dynamics, appears necessary to explain the different outcomes in

different neighboring habitats. The overall picture anyhow

emphasizes the habitat specialist character of cold-water dinofla-

gellates, as previously addressed to their warm-water relatives.

Can climate variability influence the spring bloom
composition?

Inter-annual variability in weather conditions, e.g. mild or harsh

winters, the ice cover and its extent, and the sea surface

temperature have frequently been suggested to shape the vernal

phytoplankton assemblage in the different sub-regions of the Baltic

Sea [13,14]. Our data indicate that in the northwestern Baltic

Proper and in the Gulf of Finland, the phase of NAO is linked to

the spring bloom species composition and the relative proportions

of diatoms and dinoflagellates. However, in most of the Baltic Sea

basins the relation between dinoflagellate proportion and NAO

index is weak, lacking, or even opposite (e.g. the Gulf of Bothnia),

suggesting that other factors, not accounted for here, have been

important.

In the predominantly ice-free northwestern Baltic Proper, the

significant effect of NAO could be explained by the strong seasonal

sequence of the spring blooms, starting with diatoms and

proceeding with dinoflagellates. Our preliminary analysis (data

not shown) suggests that the successional shift from diatoms to

dinoflagellates takes place earlier in the season in years of positive

NAO phase, leading to significantly higher overall dominance of

dinoflagellates. Increasing dinoflagellate proportion towards the

end of the spring bloom appears to be characteristic for all ice-free

central and southern areas of the Baltic Sea. Yet higher

dinoflagellate proportions do not appear to link specifically with

positive NAO phase anywhere else than in the Gulf of Finland and

northwestern Baltic Proper.

In areas with regular ice-cover (the Gulfs of Bothnia and

Finland), development of stratification is less predictable and

therefore less connected to a climate proxy as coarse as the winter

NAO index. The local extent and the type of the ice-cover seem to

pose the highest uncertainty on the seeding success of the spring

blooms, and require in-depth analysis.

Spring bloom composition affects biogeochemical cycles
Shifts in the spring bloom composition have consequences on

the biogeochemical cycling and fate of the new production. In the

northern temperate and boreal seas, including the Baltic Sea, the

spring bloom typically dominates the annual phytoplankton

productivity cycle. The spring bloom lasts approximately 1 month,

but contributes 40 to 60% of the annual carbon fixation, and due

to the mismatch between the timing of spring bloom and

development of main grazers in the Baltic Sea, up to 80% of

this fixed carbon sinks out of the euphotic layer, feeding the

benthic system [13,45].

The relative abundance of diatoms or dinoflagellates, or the

dominance of either group determines the proportion and quality

of the new production that settles to the sea floor, and how much is

disintegrated in the upper water column [13]. Diatom-dominated

spring blooms terminate with a conspicuous flux of fresh organic

matter and intact cells sink out of the pelagic zone and into the

sediments [46]. In contrast, dinoflagellate-dominated spring

blooms either disintegrate in the upper mixed layer and fuel the

microbial food-web while retaining the nutrients in the productive

layer [47], or go through sexual reproduction and encystment,

producing cysts that are resistant to degradation in the sediment.

Spring bloom dinoflagellates can deposit up to 361011 cysts

m22, equivalent to 16 g C m22, during a strong bloom [17,35],

which is a substantial fraction of the annual organic carbon flux in

the region (30 to 50 g C m22). Spilling & Lindström [48]

demonstrated that when most of the settling material consisted of

dinoflagellate resting cysts, oxygen consumption at the sediment

surface was notably lower compared to material consisting of

vegetative cells of diatoms or dinoflagellates, suggesting that

biomass in the form of cysts is not readily available to the benthic

decomposers.

Benthic decomposition rates directly affect basin-wide eutro-

phication processes through associated oxygen decomposition and

phosphorus release. The northern Baltic Sea spring blooms are

nitrogen-limited, while summertime planktonic communities

display spatially extensive N2-fixing cyanobacterial blooms,

promoted by the benthic P release [49,50]. These intertwined

biogeochemical cycles can boost system eutrophication into a self-

enforcing vicious cycle, with increased spring biomass sedimenta-

tion as the driver [49]. Because the composition of the spring

bloom has a direct impact on benthic processes, a shift to more

cyst-producing dinoflagellates could potentially dampen internal

nutrient loading and consequently alleviate eutrophication pro-

cesse.

Global perspectives
Much of the discussion on dinoflagellates as habitat specialists

and global expansion focuses on warm-water ’red tide’ species,

which are temporally and often spatially distinct from the spring

bloom, or upwelling-induced diatom blooms [5,6]. The main-

stream ecological literature has largely ignored the role and

widespread occurrence of cold-water dinoflagellates, which co-

occur and successfully compete with spring bloom diatoms. Such

habitats are found along the vast Eurasian Arctic shelves, which

host the ice-associated Peridiniella catenata [51], one of the major

spring bloom dinoflagellates also in the Baltic Sea. Cold-water

dinoflagellates are apparently abundant in the Arctic estuaries and

river plumes [52,53], but also in Antarctic saline lakes [54] and sea

ice [55].

This ignorance is unfortunate, since climatic forcing is most

accentuated in the polar regions, projected to cause future changes

in habitats over large oceanic and shelf areas. In all these regions,

early stratification is induced by salinity, either due to ice melt or

river plumes, rather than by temperature. This feature, together

with the relatively shallow depths enabling the formation of

extensive benthic cyst beds, seem to be the key features associated

with success of dinoflagellates over diatoms, in the Baltic Sea as

well as worldwide.

In the era of rapid environmental changes in the polar regions,

either due to climate change or direct anthropogenic pressure, we

can expect cold-water bloom-forming dinoflagellates to success-

fully exploit the newly opened niches, leading to their increased
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role in the coastal carbon cycles, as has taken place in the Baltic

Sea during the past decades. The interplay between local

hydrography, climatic and weather forcing, and the adaptive

strategies of species are an obvious source of this variability [21],

which remains a challenge for prognostic coastal spring bloom

models.

Materials and Methods

The spatial and temporal distribution of phytoplankton was

obtained from monitoring datasets provided by national monitor-

ing agencies around the Baltic Sea (see Acknowledgements). The

original data tables from national agencies or international

organizations (HELCOM) were structurally unified and the

taxonomy was carefully harmonized. With a few exceptions, the

phytoplankton data were counted from Lugol fixed, surface mixed

layer integrated samples (0–5 or 0–10 m) with an inverted

microscope after settling for 24 h as suggested by Edler [56].

The spring bloom species in the Baltic Sea do not form

conspicuous sub-surface maxima, as the seasonal stratification

only starts to evolve during the bloom period, and we believe that

the surface mixed layer gives an unbiased representation of the

proportion and volumetric biomass of dinoflagellates and diatom

populations. Species-specific cell volumes were used to calculate

the wet weight biomass [56]. No semi-quantitative samples were

used.

The onset and duration of the spring bloom varies with latitude

in the Baltic Sea. Based on seasonal development of the total

phytoplankton biomass we used the following basin-specific time

windows: day of the year 100–200 in the Bothnian Bay, 100–180

in the Bothnian Sea and Quark, 80–160 in the Northern Baltic

Proper and Archipelago Sea, 100–170 in the Gulf of Finland, 80–

160 in the Eastern Gotland Basin and the Gulf of Riga, 60–120 in

the Southern Baltic Proper (incl. Bornholm basin) and 50–100 in

the Sound, Belt Sea and Kattegat. Altogether 3500 quantitative

spring blooms samples were used in the study.

All statistics were done in the R computing environment [57],

with specific analysis relying on libraries detailed below.

Long-term trends and seasonal patterns of diatoms and
dinoflagellates

The long-term trends in dinoflagellate and diatom biomass, and

the proportion of dinoflagellates (the biomass of dinoflagellates

divided by the combined biomass of diatoms and dinoflagellates),

were analyzed for the entire temporal time span according to the

basin specific availability of data. In order to show the most

general trends, we pooled the data into six datasets after the major

basins: Gulf of Bothnia (Bothnian Sea and Bothnian Bay), Gulf of

Finland and the Archipelago Sea, northwestern Baltic Proper,

Gulf of Riga, Southern Baltic Sea, and Kattegat with the straits of

Denmark (the Sound and the Belt Sea) (Fig. 1). To account for the

high variability of the raw biomass data, the basin-wide weekly

averages of the log-transformed biomass of diatoms and

dinoflagellates, and dinoflagellate proportion were used.

With no reason to assume any parametric relationship between

the phytoplankton biomass variables and the time, the long-term

trends (sampling year as explanatory variable) and seasonal

succession patterns (day of the year as explanatory variable) were

analyzed with generalized additive models (GAM). GAM is a non-

parametric method that fits a smoothing curve through the data.

‘gam’ function from ‘mgcv’ package in R [58] was chosen, as it uses

cross-validation, a process that automatically determines the

optimal amount of smoothing. The function uses cubic regression

spline method, where the x-axis (here observation year) is divided

into a certain number of intervals. In each interval, a cubic

polynomial is fitted, and the fitted values per segment are linked

together to form the smoothing curve [59]. When the proportion

data was the response variable, we used arcsine square root

transformation to normalize error distribution, and for clarity

present the data in back-transformed format.

Spatial variability in the spring bloom biomass
Phytoplankton samples from the period 1995–2004 (1500

samples) were used to estimate the spatial distribution of the

spring bloom peak biomass in the Baltic Sea. For each unique

sampling location (latitude, longitude) present in the dataset, the

mean of the upper quartile of log-transformed biomass values was

calculated based on the samples within 50 km radius.

The point estimates were then spatially interpolated using a

geostatistical kriging method (‘geoR’ software library [60]). First, an

empirical exponential variogram model was fitted to the point

estimates of spring bloom biomass to explore the spatial structure

of autocorrelation. Next, the spatial prediction of the biomass over

a regular grid of the Baltic Sea was calculated using ordinary

kriging algorithm with covariance parameters estimated from the

variogram model. All data points were given equal weight and the

best linear, unbiased estimate at each grid location was calculated.

The uneven distribution of stations leads to uncertainty in the

predictions in areas with low sampling density, but the broad

basin-wide distribution features are robust, as indicated by

convergent results obtained by varying kriging options and

variogram models.

Spatial patterns in the average proportion and decadal
change of dinoflagellates

Ordinary kriging (as in previous section) was also used to

estimate the average proportion of dinoflagellates in 1995 to 2004

over the Baltic Sea grid. The proportion of dinoflagellates in all the

1500 samples was used with equal weight in the kriging algorithm.

In addition, the direction and rate of change of dinoflagellate

proportion was analyzed with geographically weighted regression

(GWR) (library ‘spgwr’ in R). GWR is a statistical tool for analyzing

spatially varying linear relationships [61]. Briefly, global linear

regression model was first calculated for the entire dataset and

then calibrated for each regression point (pre-defined geographic

location) with an arbitrarily chosen spatial resolution. For the

latter, a geographic region was delineated around each regression

point, and observations within the region were used to calibrate

the global model. Based on the geographic distance between the

regression point and each observation, a gaussian weighting

scheme was used. Hence, observations closer to the regression

point had more weight in the local regression model [61]. All

unique geographic locations present in the original data

(geographical coordinates of samples) were used as regression

points. As a result, GWR returned local regression coefficients for

each sampled point. The point estimates of regression coefficients

were then spatially interpolated using an ordinary kriging method

as already described in previous sections.

Climate variability and spring bloom dinoflagellate
proportion

NAO index, describing the major variability of the climatic

conditions over the northern hemisphere, is frequently used as a

proxy to characterize the climate-related physical forcing (tem-

perature, precipitation, ice cover, onset of spring stratification) on

the biological components of the Baltic Sea ecosystem [19]. We

were interested in the association between NAO index and the
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proportion of dinoflagellates, and if this association differs in

various Baltic Sea basins. We modeled dinoflagellate proportion as

a function of NAO index in the six major basins as defined in

section ‘Long-term trends and seasonal patterns of diatoms and

dinoflagellates’. We used a linear mixed effects model (‘nlme’

package in R) with NAO index–basin interaction term as a fixed

effect (estimating an individual slope for each basin), and intercept

per basin as a random effect. The dinoflagellate proportion was

arcsine - square root transformed to normalize the error

distribution. Phytoplankton field populations have high spatial

and temporal variability (patchiness). Sampling these populations

inevitably incorporates both, spatial and temporal autocorrelation,

which are not trivial to separate with the existing statistical

methods. We used basin-wide averages of dinoflagellate propor-

tions to reduce the effect of spatial variation and autocorrelation.

To account for temporal autocorrelation we used weekly averages

of dinoflagellate proportions and a correlation structure based on

exponential variogram model. Values of NAO index are freely

available from the Climate Analysis Section, NCAR, Boulder,

USA (http://www.cgd.ucar.edu/cas/jhurrell/indices.html).

Acknowledgments

We are thankful to the Institute of Aquatic Ecology (University of Latvia),

Estonian Marine Institute (Tartu University), Finnish Environment

Institute, Finnish Institute of Marine Research, the City of Helsinki

Environment Centre (Finland), Stockholm University and the Baltic

Environment Database BED (Sweden), Deutsches Ozeanographisches

Datenzentrum DOD (Germany), National Environmental Research

Institute (Denmark), International Council for the Exploration of the Sea

(ICES) and Helsinki Commission (HELCOM), for providing the

quantitative phytoplankton data. The data set was collected and

harmonized during the European Commission through the 6th FP project

THRESHOLDS (GOCE-003900). We thank Prof. O. Ovaskainen and M.

Delgado (Mathematical Biology Group, Department of Biological and

Environmental Sciences, University of Helsinki, Finland) for helping with

the statistical analysis.

Author Contributions

Analyzed the data: RK KO. Wrote the paper: RK TT AK KS KO.

References

1. Falkowski PG, Raven JA (2007) Aquatic Photosynthesis New Jersey: Princeton
University Press. 484 p.

2. Reynolds CS (2006) Phytoplankton Ecology Cambridge University Press. 550 p.

3. Charlson RJ, Lovelock JE, Andrea MO, Warren SG (1987) Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:

635–661.

4. Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:
185–192.

5. Smayda TT (2002) Adaptive ecology, growth strategies and the global bloom
expansion of dinoflagellates. Journal of Oceanography 58: 281–294.

6. Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems:

Seeding, variability, and contrasts with diatom bloom behaviour. Progress in
Oceanography 85: 92–107.

7. Guillard RRL, Kilham P (1977) The ecology of marine plankton diatoms.

Werner D, ed. Berkeley: University California Press.

8. Smayda TJ (1980) Species Succession. Morris I, ed. Berkeley, CA: University

California Press.

9. Smayda TT, Reynolds CS (2003) Strategies of marine dinoflagellate survival and

some rules of assembly. Journal of Sea Research 49: 95–106.

10. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for
marine ecosystems. Science 321: 926–929.

11. Cloern JE (2001) Our evolving model of the coastal eutrophication problem.
Marine Ecology Progress Series 210: 223–253.

12. The BACC Author Team (2008) Assessment of Climate Change for the Baltic

Sea Basin; H-J B, Menenti M, Rasool J, eds. Berlin Heidelberg: Springer-Verlag.

13. Heiskanen A-S (1998) Factors governing the sedimentation and pelagic nutrient

cycles in the northern Baltic Sea. Helsinki: Helsinki University. 80 p.
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and potential loss mechanisms of bacterial biomass in the southern Gulf of Riga.

Journal of Marine Systems 23: 185–196.

48. Spilling K, Lindström M (2008) Phytoplankton life cycle transformations lead to
species-specific effects on sediment processes in the Baltic Sea. Continental Shelf

Research 28: 2488–2495.
49. Tamminen T, Andersen T (2007) Seasonal phytoplankton nutrient limitation

patterns as revealed by bioassays over Baltic Sea gradients of salinity and

eutrophication. Marine Ecology Progress Series 340: 121–138.
50. Vahtera E, Conley D, Gustafsson BG, Kuosa H, Pitkänen H, et al. (2007)

Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and
complicate management in the Baltic Sea. Ambio 36: 186–194.

51. Okolodkov Y (1999) An ice-bound planktonic dinoflagellate Peridiniella catenata

(Levander) Balech: Morphology, ecology and distribution. Botanica Marina 42:

333–341.

52. Anderson JT, Roff JC, Gerrath J (1981) The diatoms and dinoflagellates of

Hudson Bay. Canadian Journal of Botany 59: 1793–1810.

53. Li WKW, Harrison WG, Head EJH (2006) Coherent assembly of phytoplankton

communities in diverse temperate ocean ecosystems. Proceedings of the Royal

Society B Biological Sciences 273: 1953–1960.

54. Logares R, Daugbjerg N, Boltovskoy A, Kremp A, Laybourn-Larry J, et al.

(2008) Recent evolutionary diversification of a protist lineage. Environmental

Biology 10: 1231–1243.

55. Stoecker DK, Gustafson DE, Merrell JR, Black MMD, Baier CT (1997)

Excystment and growth of chrysophytes and dinoflagellates at low temperatures

and high salinities in Antarctic sea-ice. Journal of Phycology 33: 585–595.

56. Edler L (1979) Recommendations for marine biological studies in the Baltic Sea -

phytoplankton and chlorophyll. Baltic Marine Biologist 5: 1–38.

57. R Development Core Team (2009) R: A language and environment for

statistical computing. Austria, R Foundation for Statistical Computing, http://

www.R-project.org.

58. Wood SN (2006) Generalized Additive Models. An Introduction with R.

Carlin BP, Chatfield C, Tanner M, Zidek J, eds. Chapman & Hall/CRC.392 p.

59. Zuur AF, Ieno EN, Walker NJ, Saveljev AA, Smith GM (2009) Mixed Effects

Models and Extension in Ecology with R. Gail M, Krickeberg K, Samet JM,

Tsiatis A, Wong W, eds. Springer.

60. Ribeiro PJ, Diggle PJ (2001) geoR: a package for geostatistical analysis. R-

NEWS 1: 15–18.

61. Fotheringham SA, Brunsdon C, Charlton M (2002) Geographically Weighted

Regression: The Analysis of Spatially Varying Relationships. Wiley. 282 p.

Spring Bloom Community Change in the Baltic

PLoS ONE | www.plosone.org 10 June 2011 | Volume 6 | Issue 6 | e21567


