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Abstract
Purpose of Review The study aims to verify the advantages of nonsteroidal mineralocorticoid receptor blockers (MRBs) in 
the management of hypertension and cardiovascular and renal diseases, comparing with conventional MRBs.
Recent Findings Based on the unique structures, the nonsteroidal MRBs have higher selectivity for mineralocorticoid recep-
tors (MRs) and show no agonist activity for major steroid hormone receptors in contrast to steroidal MRBs. Today, there are 
two nonsteroidal MRBs, esaxerenone and finerenone, which completed phase 3 clinical trials. Series of clinical trials have 
shown that both agents achieve similar MR blockade with smaller doses as compared with steroidal MRBs, but have no off-
target side effect such as gynecomastia. Esaxerenone has persistent blood pressure-lowering effects in various hypertensive 
populations, including essential hypertension and those with diabetes and/or chronic kidney disease, while finerenone has 
demonstrated reduction of the cardiovascular risk rather than blood pressure in patients with diabetes and chronic kidney 
disease.
Summary Nonsteroidal MRBs are a more refined agent which contributes to appropriate MR blocking with minimized 
unpleasant adverse effects.

Keywords Esaxerenone · Finerenone · Nonsteroidal mineralocorticoid receptor blocker · Mineralocorticoid receptor · 
Hypertension

Introduction

Compelling evidence highlights that blocking of mineralo-
corticoid receptors (MRs) could benefit to various hyper-
tensive patients, regardless of the actual levels of peripheral 
aldosterone [1–3, 4•, 5–8]. Since the discovery in 1957 of 
a unique class of synthetic steroids, “spirolactones” which 
abolish aldosterone effects [9], several mineralocorticoid 
receptor blockers (MRBs) have been developed and proven 
to contribute to organ protection, particularly in heart failure 
(HF), diabetic kidney disease (DKD), and chronic kidney 

disease (CKD), beyond its antihypertensive effects [8, 
10–12]. In the current situation, spironolactone (SC-9420) 
and eplerenone (SC-66110, CGP-30083) are two major ste-
roidal MRBs supported by abundant clinical evidence from 
many momentous trials, while those studies also elucidate 
limitations of those steroidal MRBs in hypertension treat-
ment, including both renal-related and off-target side effects 
[13–15].

For the last 6 decades, continuous efforts to achieve more 
safe and efficient inhibition of MRs have advanced towards 
development of a novel class of nonsteroidal MRBs, employ-
ing high-throughput screening [14, 16, 17]. Several com-
pounds of nonsteroidal MRBs have proceeded with clinical 
trials, and in 2019, esaxerenone (CS-3150) was first mar-
keted for hypertension in Japan [18]. Esaxerenone is a novel 
oral selective nonsteroidal MRB which has a longer half-
life and higher selectivity for MRs than traditional MRBs 
[16, 19]. With the great selectivity for MRs, esaxerenone 
has demonstrated its solid effects on blood pressure (BP) 
without side effects related to sex steroid hormone recep-
tors (SSHRs) such as gynecomastia [20, 21, 22••, 23••]. 
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Those studies also reported a significant reduction of urinary 
albumin excretion in patients with DKD under esaxerenone 
treatment [23••, 24]. Finerenone (BAY 94–8862), another 
nonsteroidal MRB, has just been approved by the U.S. Food 
and Drug Administration (FDA) in July 2021. Several lines 
of evidence confirmed that finerenone can safely and effi-
ciently reduce the cardiovascular and renal risk in patients 
with DKD, CKD, and HF [25, 26•, 27••]. Nonsteroidal 
MRBs are, therefore, in the spotlight as a new key player in 
hypertension management.

Herein, we review recent findings of nonsteroidal MRBs, 
particularly esaxerenone and finerenone, in the field of 
hypertension, their clinical impacts, and potential, compar-
ing with traditional MRBs. In this article, we also argue 
what we could expect from nonsteroidal MRBs to provide, 
and remaining issues to be further investigated for our future 
practice.

Different Blocking Profiles of Steroid Hormone 
Receptors by Steroidal and Nonsteroidal MRBs 
Based on Their Structural Features

As traditional MRBs originated from synthetic agents with 
structural elements of progesterone [14], both spironolac-
tone and eplerenone have a steroidal structure which enables 
them to smoothly pass across cell membrane as mineralocor-
ticoids (Fig. 1). Those drugs inhibit mineralocorticoids from 
activating MR signaling by competitively binding to MRs in 
the cytoplasm, resulting in reduction of BP and inflammation 
(Fig. 2) [28]. Both MRBs also act as a weak agonist for MRs 
[16]. In contrast, nonsteroidal MRBs show unique mode of 
MR antagonism. For esaxerenone, the chemical structure is 
relatively large and quite distinct from those of traditional 
MRBs (Fig. 1) [16]. Reflecting the difference between their 
structures, the crystallization experiment demonstrated that 

esaxerenone shares the same binding site of MRs with other 
steroidal MRBs, but additionally extended into the binding 
pocket [29•]. This deep binding of esaxerenone leads to its 
very high affinity for MRs, compared with spironolactone 
and eplerenone:  IC50 values are 3.7, 66, and 970 nM, respec-
tively (Table 1) [16]. Moreover, esaxerenone does not have 
any agonist potency for human MRs due to the modified 
MR structure by esaxerenone which precludes coactivators 
from binding to MRs (Fig. 2) [29•]. Besides, finerenone 
also has a “bulky” structure with higher potency for MRs 
(a  IC50 value of 18 nM) than the steroidal MRBs (Fig. 1) 
[17]. Intriguingly, finerenone has been reported not only 
to inhibit aldosterone-MR complex formation but also to 
decrease basal gene transcription as an inverse antagonist 
[30]. This reverse effect may result from the protrusion of 
MR helix 12 due to finerenone binding, which suppresses 
coactivator recruitment for MR signaling as esaxerenone 
[30]. From an aspect of pharmacokinetics, esaxerenone has 
a longer half-life time (18.6 h) than spironolactone and its 
major metabolites (up to 16.5 h), and eplerenone (up to 6 h), 
whereas finerenone has the shortest half-life time (around 
2 h) among them (Table 1) [16, 31–33]. Despite the less 
lipophilic nature of the nonsteroidal MRBs than the others, 
esaxerenone and finerenone enter cells as steroidal MRBs, 
and exhibit antihypertensive effects, including natriuresis, 
and antiinflammatory and antifibrotic response in kidneys, 
heart, and blood vessels, by abrogating MR activation [14, 
34, 35].

Of note, those nonsteroidal MRBs show different dis-
tribution patterns from the steroidal MRBs. Experiments 
using quantitative autoradiography indicated that both 
radio-labeled spironolactone and eplerenone show a higher 
accumulation of drug-equivalent concentrations in kidneys 
than in cardiac tissues in rodents [36], while radio-labeled 
esaxerenone and finerenone have balanced accumulation 
between kidneys and heart [37, 38]. However, what this 

Fig. 1  Molecular structures of 
steroids and mineralocorticoid 
receptor blockers. The struc-
tures of steroidal and nonsteroi-
dal mineralocorticoid receptor 
blockers (MRBs) are shown, 
compared with aldosterone, a 
representative mineralocorticoid 
in human, and progesterone. 
Spironolactone was generated 
by mimicking the structure of 
progesterone, while eplerenone 
was developed to improve the 
selectivity of spironolactone 
for mineralocorticoid receptors. 
Nonsteroidal MRBs are rela-
tively “bulky” and quite distinct 
molecules from those steroidal 
agents
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distributional difference means in the real-world practice 
remains unknown, although a few animal studies have 
reported slight differences in cardiac protective effects 
between nonsteroidal and steroidal MRBs [34, 38]. For 
central nerve system, it was common across all examined 

MRBs that the radioactivity in brain was significantly lower 
than in blood.

In addition, nonsteroidal MRBs show greater selectiv-
ity for MRs compared with traditional MRBs. Due to the 
imitated structure for progesterone, spironolactone and 

Fig. 2  Binding mode of mineralocorticoid receptor blockers to min-
eralocorticoid receptors. Mineralocorticoids (A) and mineralocorti-
coid receptor blockers (MRBs; B and C) bind to mineralocorticoid 
receptors (MRs) in the cytoplasm. (A) The complexes of a mineralo-
corticoid and a MR form a homodimer after translocation into the 
nucleus. Then, the homodimer complex binds to the hormone respon-
sive element (HRE) of the target gene, leading to DNA transcrip-
tion supported by co-activators (Co-A). (B) Steroidal MRBs prevent 

mineralocorticoids from binding to MRs, but themselves have partial 
agonist activity for MRs. Therefore, steroidal MRBs could also some-
what prompt transcription of the target gene. (C) Due to the “bulky” 
structure, nonsteroidal MRBs alter the shape of MR when binding. 
This modified MR complex precludes not only mineralocorticoid 
binding but also the recruitment of co-activators, resulting in inhibi-
tion of MR signaling

Table 1  Summary of mineralocorticoid receptor blockers

MR mineralocorticoid receptor, GR glucocorticoid receptor, AR androgen receptor, PR progesterone receptor, SSHR sex steroid hormone recep-
tor, FDA food and drug administration

Spironolactone Eplerenone Esaxerenone Finerenone

Drug code SC-9420 SC-66110, CGP-30083 CS-3150 BAY 94–8862
Drug type Steroidal Steroidal Nonsteroidal Nonsteroidal
Half-life time Up to 16.5 h (including its 

metabolites)
4–6 h 18.6 h 2–3 h

Affinity  (IC50 values, nM)
  For MRs 66 970 3.7 18
  For GRs 2600 36,000  > 5000  > 10,000
  For ARs 640 42,000  > 5000  > 10,000
  For PRs 180 7400  > 5000  > 10,000

Agonist activity for MRs Weak Weak None None
Clinical utility
  Blood pressure Effective Effective Effective Relatively weak?
  Organ protection Effective Effective Potentially effective Effective

Side effects
  Renal-related Common Less frequent Less frequent Less frequent
  SSHR-related Common Less frequent None None
  Availability Worldwide Worldwide Only in Japan Approved by FDA
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its metabolites possess certain binding ability for various 
steroid hormone receptors [14]. Evaluation of the transcrip-
tional activity of those steroidal receptors demonstrated that 
spironolactone blocks ligand binding to human glucocorti-
coid receptors (GR), androgen receptors (AR), and proges-
terone receptors (PR) with  IC50 values of 2600, 640, and 
180 nM, respectively (Table 1) [16]. Furthermore, spirono-
lactone also acts as a moderate agonist for ARs and PRs, 
contributing to off-target side effects such as gynecomastia 
and irregular menstruation [15]. To compensate for those 
unfavorable nature of spironolactone, eplerenone was syn-
thesized as a more selective MRB. In particular,  IC50 val-
ues of eplerenone for ARs and PRs are increased to 42,000 
and 7400 nM, respectively, while its  IC50 value for MRs is 
also increased from 66 to 970 nM (Table 1) [16]. In con-
trast, esaxerenone and finerenone have very high affinity for 
MRs and no agonist or antagonist effect on the other steroid 
hormone receptors as in vitro experiments demonstrated 
[16, 17]. This very high selectivity for MRs is considered 
attributable to the side-chain rearrangement by nonsteroidal 
MRBs which could occur in MRs, but not in GRs, ARs, and 
PRs [29•]. Accordingly, nonsteroidal MRBs are expected 
to exert MR-blocking effects with relatively small doses, 
following less side effects, particularly in SSHR-associated 
ones.

Clinical Evidence of Nonsteroidal MRBs 
in Hypertension

BP‑Lowering Effects

To date, in nonsteroidal MRBs, only esaxerenone has 
been launched as an antihypertensive agent in Japan. For 
monotherapy with esaxerenone, a phase 2 double-blind 
study enrolling 426 patients with essential hyperten-
sion (EH) without CKD showed the significant decrease 
of sitting BP after 12-week treatment compared with the 
placebo group: the least squares mean changes (95% con-
fidence interval) in systolic and diastolic BP were − 7.0 
(− 9.5, − 4.6)/ − 3.8 (− 5.2, − 2.4) mmHg in the placebo 
group, and − 10.7 (− 13.2, − 8.2)/ − 5.0 (− 6.4, − 3.6), − 14.3 
(− 16.8,  − 11.9)/  − 7.6 (− 9.1,  − 6.2),  and − 20.6 
(− 23.0, − 18.2)/ − 10.4 (− 11.8, − 9.0) mmHg in the esax-
erenone groups of 1.25, 2.5, and 5.0 mg once daily, respec-
tively [20]. The BP-lowering effects were dose-dependent 
and similar even when esaxerenone was initiated in com-
bination with a calcium channel blocker or an inhibitor of 
renin-angiotensin system (RAS) [21, 22••]. Of note, the sub-
group analysis showed that BP reduction under esaxerenone 
is numerically greater in females, elderly, and those with 
lower levels of plasma renin activity [22••]. In comparison 
between esaxerenone and eplerenone, a phase 3 clinical trial, 

ESAX-HTN study, including 1001 adult patients with EH, 
demonstrated that esaxerenone (2.5 mg daily) is not inferior 
to eplerenone (50 mg daily) for the antihypertensive effect 
on clinic sitting BP [22••]. In this study, the proportion of 
the patients who achieved target BP levels (< 140/90 mmHg) 
were 31.5, 41.2, and 27.5% in the esaxerenone groups (2.5 
and 5 mg daily) and the eplerenone group (50 mg daily), 
respectively [22••]. Ambulatory BP monitoring also showed 
similar BP trends between 2.5 mg/day of esaxerenone and 
50 mg/day of eplerenone within daytime, while nighttime 
systolic BP was more dramatically improved in the esaxer-
enone group than the eplerenone group [39].

The antihypertensive effect of esaxerenone was fur-
ther assessed for the following populations: CKD, DKD, 
and primary aldosteronism (PA). In hypertensive patients 
with CKD (estimated glomerular filtration ratio [eGFR] 
between 30 and 60 mL/min/1.73  m2), 5 mg/day of esax-
erenone monotherapy significantly lowered BP by − 18.5 
(− 23.7, − 13.3)/ − 8.8 (− 11.9, − 5.7) mmHg with no renal-
related adverse effect [24]. Similar BP improvement was 
also observed with smaller doses of esaxerenone (median: 
2.5 mg/day) in CKD patients under treatment with a RAS 
inhibitor [24]. In hypertensive type 2 DKD patients, add-
on therapy of esaxerenone to a RAS inhibitor significantly 
decreased BP by − 13.7 (− 17.6, − 9.8)/ − 6.2 (− 7.8, − 4.6) 
mmHg, and reduced urine albumin-to-creatinine ratio 
(UACR) by about 30% [40]. The antihypertensive effects 
were consistent across subgroups of age and glycemic con-
trol. Finally, the efficacy of esaxerenone was evaluated in 
PA patients. In the study with 44 PA patients, esaxerenone 
was initiated at 2.5 mg/day and titrated to 5 mg/day [41•]. At 
the end of 12-week treatment, 93% (41/44) of study partici-
pants were treated with 5 mg/day of esaxerenone, and 68% 
had concomitant antihypertensive agents, a calcium chan-
nel blocker or an alpha blocker. Under esaxerenone treat-
ment, BP was decreased by − 17.7 (− 20.6, − 14.7)/ − 9.5 
(− 11.7, − 7.3) mmHg, resulting in 47.7% achievement of 
target BP levels (< 140/90 mmHg) in PA [41•]. Those find-
ings indicate that esaxerenone possesses at least equivalent 
BP-lowering ability to other steroidal MRBs in various 
conditions, although all the clinical data shown here were 
obtained from Japanese cohorts.

In contrast, international trials targeting for chronic 
HF and CKD suggested that finerenone has a relatively 
weak effect on BP compared to esaxerenone. In the ARTS 
(MinerAlocorticoid Receptor antagonist Tolerability 
Study) trial, the reductions of systolic BP were signifi-
cantly smaller in the finerenone group (the dose of 10 mg/
day: mean ± standard deviation, − 4.2 ± 15.5 mmHg) than 
in the spironolactone group (the mean dose of 37  mg/
day: − 10.1 ± 15.0 mmHg) [25]. Similarly, the decrease of 
systolic BP by finerenone was relatively small, but similar 
to eplerenone in the ARTS-HF (MinerAlocorticoid Receptor 
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antagonist Tolerability Study- Heart Failure) trial: the least 
squares mean changes of systolic BP were − 2.365 (− 5.287, 
0.558) mmHg in the eplerenone group (the average dose 
of 38.6  mg/day) and − 0.825 (− 3.929, 2.278), − 2.532 
(− 5.630, 0.566), − 2.697 (− 5.757, 0.363), and − 2.397 
(− 5.348, 0.554) mmHg in the finerenone groups (2.5 to 
5, 5 to 10, 7.5 to 15, and 10 to 20 mg daily, respectively) 
[42]. Those results were consistent with those of its phase 3 
trial, FIDELIO-DKD (Finerenone in Reducing Kidney Fail-
ure and Disease Progression in Diabetic Kidney Disease) 
[27••]. However, those studies were designed to evaluate 
the benefits of finerenone treatment on cardiac and renal 
outcomes, but not on BP. Due to the limited analysis on BP, 
the actual antihypertensive effect of finerenone should be 
further investigated.

Protective Effects on Cardiac and Renal Diseases

Several Japanese studies indicate the antialbuminuric effect 
of esaxerenone in DKD. In a study enrolling 51 patients 
with type 2 diabetes and albuminuria under a RAS inhibi-
tor, esaxerenone initiation improved not only BP but also 
UACR during a 12-week observational period [40]. In this 
study, the dosage of esaxerenone was gradually titrated from 
1.25 to 5 mg/day based on monitoring of serum potassium 
and eGFR, and at the end, 15.7, 47.1, and 37.3% of patients 
were treated with 1.25, 2.5, and 5 mg daily of esaxerenone. 
Overall, UACR decreased by 32.4% from baseline levels 
with improvement of urinary β2-microglobulin excretion 
[40]. Consequently, the ESAX-DN study, a more focused 
study on microalbuminuria, also demonstrated the long-term 
effect of esaxerenone on UACR in diabetes patients treated 
with a RAS inhibitor [23••]. Total 455 diabetes patients with 
microalbuminuria (UACR within 45 to 300 mg/g creatinine) 
were randomly allocated to the placebo and the esaxerenone 
groups, and in the latter group, esaxerenone was initiated at 
1.25 mg/day and titrated to 2.5 mg/day. After 52-week treat-
ment with esaxerenone, the UACR was significantly reduced 
by 58% from baseline values compared with the placebo 
group (8%) [23••]. Further analysis revealed that this antial-
buminuric effect was independent of its BP-lowering effect. 
Moreover, of these, 22% of patients treated with esaxerenone 
achieved remission in UACR, which was more frequent 
than those with placebo (4%) [23••]. Similar improvement 
of UACR was also observed in a small study of 52 type 2 
diabetes patients with macroalbuminuria (UACR > 300 mg/g 
creatinine): mean UACR decreased to less than half of base-
line, and 52% of the study cases no longer had macroalbumi-
nuria after esaxerenone treatment for 28 weeks [43]. From 
a cardio-protective aspect, a retrospective analysis reported 
the significant decrease of plasma B-type natriuretic peptide 
(BNP) levels by esaxerenone treatment in patients with HF 
[44]. Thus, clinical evidence on organ-protective benefits of 

esaxerenone is accumulating, but still limited. Future studies 
on hard outcomes such as CKD progression and the onset of 
cardiovascular disease are in great demand.

On the other hand, there are two large, randomized tri-
als, ARTS and FIDELIO-DKD, which confirmed improved 
clinical outcome by finerenone treatment in HF with reduced 
ejection fraction (HFrEF) and/or DKD [25, 27••]. First, the 
ARTS study was initially conducted to assess the safety 
and tolerability of finerenone in patients with HFrEF and 
DKD, incorporating with 10 countries worldwide. Within 
the original study, finerenone treatment was associated with 
reductions of BNP, N-terminal pro-BNP, and UACR as was 
spironolactone treatment [25]. Furthermore, targeting for a 
composite outcome of any death, hospitalization for CVD, 
and emergency presentation for exacerbated HF, those who 
received once-daily administration of finerenone (10 mg 
once daily or more) had a lower incidence of the composite 
endpoint at day 90 than those treated with eplerenone (the 
average dose of 38.6 mg/day) in the ARTS-HF study [42]. 
Especially, comparing with the eplerenone group, the haz-
ard ratio (HR) in the 10- to 20-mg group of finerenone was 
0.56 (0.35, 0.90) at the composite outcome: HRs, 0.13 (0.02, 
1.07), 0.56 (0.34, 0.93), and 0.58 (0.33, 1.02) for any death, 
cardiovascular hospitalization, and emergency presentation 
for worsening chronic HF, respectively [42]. In addition, the 
ARTS-DN study confirmed the dose-dependent improve-
ment of UACR after finerenone initiation [45]. However, 
we must consider that the ARTS trial was not designed for 
comparison between finerenone and steroidal MRBs.

Recently, results of the FIDELIO-DKD trial have been 
announced [27••], advancing finerenone towards FDA 
approval. This phase 3 trial recruited adults with type 2 dia-
betes mellitus and CKD treated with a RAS inhibitor across 
the world, and finally, 5734 patients were randomly allo-
cated to the finerenone or placebo groups. With a median 
follow-up period of 2.6 years, the finerenone group showed 
a lower incidence of the renal composite outcome, includ-
ing kidney failure, over 40% decrease of eGFR and death 
from renal causes, than the placebo group (17.8% vs. 21.1%, 
respectively: HR, 0.82 [0.73, 0.93]) [27••]. Particularly, the 
sustained decrease of eGFR from baseline was less frequent 
in the finerenone group than in the placebo group (HR, 0.82 
[0.72, 0.92]), while neither kidney failure nor death from 
renal causes was significantly different between them [27••]. 
For the cardiovascular arm of the trial, the finerenone group 
also had a lower incidence of the secondary composite out-
come of death from CVD, nonfatal CVD, and hospitalization 
for HF compared with the placebo group (13.0% vs. 14.8%, 
respectively: HR, 0.86 [0.75, 0.99]) irrespective of a history 
of CVD [27••, 46]. In addition, subgroup analysis revealed 
that the incidence of new-onset atrial fibrillation or flutter 
is lower in the finerenone group than in the placebo group 
(3.2% vs. 4.5%, respectively: HR, 0.71 [0.53, 0.94]) [26•]. 
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Those outcomes in the finerenone group were obtained 
with minimal changes of systolic BP from baseline: − 3.0 
and − 2.1 mmHg at months 1 and 12 after finerenone initia-
tion, respectively [27••]. Finerenone is, therefore, expected 
as an organ-protective agent rather than an antihypertensive 
one in type 2 diabetes.

Safety Profiles of Nonsteroidal MRBs: 
Renal‑Related and Off‑target Side Effects

Basically, decrease of eGFR followed by elevation of serum 
potassium is closely tied to the MR-blocking effect under 
MRB treatment. In patients with essential hypertension 
and preserved renal function (eGFR > 60  mL/min/1.73 
 m2), esaxerenone monotherapy lowered eGFR depending 
on its doses: the mean eGFR changes with standard devia-
tion between baseline and week 12 were − 2.31 ± 6.85, − 3
.69 ± 7.98, and − 6.36 ± 8.08 mL/min/1.73  m2 in the 1.25-, 
2.5-, and 5-mg daily groups, respectively, while those of pla-
cebo and eplerenone (50 to 100 mg daily) were 0.06 ± 6.05 
and − 2.11 ± 6.35 mL/min/1.73  m2, respectively [20]. Con-
currently, serum potassium levels elevated under esaxer-
enone treatment by 0.2 to 0.3 mM at weeks 1 and 2, and 
then gradually decreased to nearly baseline levels. Finally, 
in the phase 2 trial, adverse events of hyperkalemia or renal 
dysfunction were reported in 0, 3.6, and 3.4% and 3.6, 0, and 
3.4% of the esaxerenone groups of 1.25, 2.5, and 5 mg daily, 
respectively, compared with 2.3 and 1.1% of the placebo 
group [20]. Consequently, the phase 3 trial also confirmed 
that the incidence of renal-related adverse effects was not 
different between treatment of eplerenone and esaxerenone 
[22••]. With careful assessment of those parameters, esax-
erenone could be safely used in patients with moderate renal 
dysfunction (eGFR between 30 and 60 mL/min/1.73  m2) and 
those who treated with a RAS inhibitor [24, 40], while when 
used in combination with a RAS inhibitor, esaxerenone use 
tended to more frequently cause serum potassium elevation 
(12.1%) and eGFR decrease (5.2%) [24].

Probably reflecting the mild effect on BP, finerenone in 
combination with other antihypertensives was associated 
with a lower incidence of hyperkalemia and worsening renal 
function than spironolactone in the patients with HFrEF and 
CKD: 4.5 and 10.4% in the 10-mg daily finerenone group, 
and 11.1% and 38.1% in the 25- to 50-mg daily spironol-
actone group, respectively [25]. On the other hand, in the 
ARTS-HF trial, the incidence of hyperkalemia (> 5.5 mM) 
and the degree of eGFR decline were similar between 
eplerenone and finerenone groups [42]. The prevalence of 
those adverse events by finerenone was compatible with the 
results of FIDELIO-DKD trial [27••]. Accordingly, renal-
related side effects by nonsteroidal MRBs are considered 

almost equivalent to those of eplerenone, and maybe less 
frequent than those of spironolactone.

During trials of esaxerenone and finerenone, nonspecific 
symptoms, including nasopharyngitis, upper respiratory 
tract inflammation, and headache, were commonly observed 
across the study groups of the placebo, nonsteroidal MRBs, 
and other steroidal MRBs [20, 22••, 25, 42]. Expectedly and 
importantly, no adverse effect related to SSHRs was reported 
in the patients treated with nonsteroidal MRBs. In addition, 
there were no other significant differences of the safety 
profiles between nonsteroidal and steroidal MRBs. Liver 
function plays a key role for the metabolism of nonsteroidal 
MRBs as cytochrome P450 3A4 predominantly regulates its 
metabolic process. Nevertheless, evaluation of their pharma-
cokinetics suggested that those nonsteroidal MRBs could be 
safely used in mild to moderate hepatic impairment [47, 48].

Perspectives of MR Blocking Strategy

Recent studies have provided compelling evidence that aber-
rant MR activation is deeply involved in end-organ damage. 
Several factors such as sympathetic hyperactivity and obe-
sity cause MR overactivation via aldosterone excess, leading 
to pro-inflammatory immune responses and vascular fibrosis 
[49, 50]. Without aldosterone, salt intake also induces Rac1-
mediated MR activation in the target tissues, heart, and kid-
neys [51–53]. As another mechanism, glucocorticoids could 
act as an agonist for MRs in the condition where inactiva-
tion of cortisol by 11β-hydroxysteroid dehydrogenase type 
2 is impaired by endogenous and exogenous factors [54]. 
Therefore, in hypertensive cases, MRBs could be initiated to 
abolish such MR-related organ damage regardless of aldos-
terone levels.

While accumulating evidence has established the solid 
position of spironolactone as an add-on drug in patients 
with resistant hypertension and CVD, SSHR-related adverse 
events often preclude them from continuing spironolactone. 
In the RALES (Randomized Aldactone Evaluation Study) 
trial enrolling severe HF patients, spironolactone use was 
associated with a higher risk for gynecomastia or breast pain 
in men compared with the placebo (10% vs. 1%, respec-
tively) [55]. Similarly, such adverse events were reported in 
10% of men treated with spironolactone for resistant hyper-
tension [56]. In women, irregular menstruation is reported 
as the most common adverse effect of spironolactone [57]. In 
contrast, with decreased affinity for SSHRs, eplerenone less 
frequently cause those symptoms, but does not completely 
resolve them [58]. Also, due to the shorter half-life time and 
the lower potency compared with spironolactone, eplerenone 
needs to be taken twice daily [59], possibly leading to poor 
adherence.



221Current Hypertension Reports (2022) 24:215–224 

1 3

As forementioned, the notable advantage of nonsteroidal 
MRBs is their outstanding selectivity for MRs (Table 1). 
Based on the unique binding mode, both esaxerenone and 
finerenone have no agonist activity for MRs and cause no 
sexual adverse effects. Furthermore, the results of several 
trials indicate that once daily administration of those MRBs 
leads to antihypertensive and organ-protective benefits at 
least equivalent to steroidal MRBs. Particularly, esaxer-
enone is considered useful as a standard antihypertensive 
drug in everyday practice. Therefore, the nonsteroidal 
agents enable us to extend MR-blocking therapy even to the 
patients who cannot pursue the treatment with conventional 
MRBs because of sexual side effects and/or poor adherence, 
resulting in better clinical outcomes of CVD. Besides, it 
also seems worthy investigating additional benefits specific 
to nonsteroidal MRBs, e.g., action on arteriosclerosis and 
cerebrovascular disease. Inversely, spironolactone may still 
serve as a key drug in certain endocrine-related conditions 
involving overactivation of other steroid hormone recep-
tors. Recent studies focusing on steroid profiles revealed 
disorganized production of multiple steroid hormones in 
endocrine disorders [60–62]. However, a common thing in 
both steroidal and nonsteroidal MRBs is that their effects are 
closely associated with renal function and serum potassium. 
We further need to determine proper selection of and man-
agement with MRBs depending on the patient’s condition.

Conclusion

As expected, nonsteroidal MRBs, esaxerenone and finer-
enone, have great potential in management of hypertension 
and its complications. Their distinctive structures allow 
themselves to rigidly bind to just MRs, but not other steroid 
hormone receptors. Consequently, with no off-target sexual 
symptoms, the intended effect of MR blocking can be effi-
ciently achieved by initiation of nonsteroidal MRBs. Recent 
trials confirmed the antihypertensive effect of esaxerenone 
in both monotherapy and combination therapy, and the pre-
ventive effects of nonsteroidal MRBs on cardiac and renal 
damage. In addition, other candidates of nonsteroidal MRBs 
are being examined in rapid succession [63–65]. Although 
further examination on their clinical utility is required to 
enrich our understanding about those agents, nonsteroidal 
MRBs will contribute to lowered risks for CVD and CKD 
progression, particularly in the patients who are intolerant 
of steroidal MRBs. A new era is coming to reappraise our 
antihypertensive strategy using MRBs.
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