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Objective. To explore multiscale integrated analysis methods in identifying key regulators of esophageal cancer (ESCA). Methods. We
downloaded the ESCA dataset from The Cancer Genome Atlas (TCGA) database, which contained RNA-seq data, miRNA-seq data,
methylation data, and clinical phenotype information. Then, we combined ESCA-related genes from the NCBI-GENE and OMIM
databases and RNA-seq dataset from TCGA to analyze differentially expressed genes (DEGs). Meanwhile, differentially expressed
miRNAs (DEmiRNAs) and genes with differential methylation levels were identified. The pivot–module pairs were established using
the RAID v2.0 database and TRRUST v2 database. Next, the multifactor-regulated functional network was constructed based on the
above information. Additionally, gene corresponding targeted drug information was obtained from the DrugBank database. Moreover,
we further screened regulators by assessing their diagnostic value and prognostic value, especially the value of distinguishing patients
at TNM I stage from normal patients. In addition, the external database from the Gene Expression Omnibus (GEO) database was
used for validation. Lastly, gene set enrichment analysis (GSEA) was performed to explore the potential biological functions of key
regulators. Results. Our study indicated that CXCL8, CYP2C8, and E2F1 had excellent diagnostic and prognostic values, which may
be potential regulators of ESCA. At the same time, the good early diagnosis ability of the three regulators also provided new insights
for the diagnosis and early treatment of ESCA patients. Conclusion. We develop a multiscale integrated analysis and suggest that
CXCL8, CYP2C8, and E2F1 are promising regulators with good diagnostic and prognostic values in ESCA.

1. Introduction

Esophageal cancer (ESCA) ranks the seventh among all can-
cer incidences and the sixth in mortality overall with a 5-year
survival rate of about 19% [1, 2]. Endoscopy is emerging as a
frontline treatment option for ESCA patients at the early
stage with promising results [3, 4]. Unfortunately, most
patients with ESCA are detected at an advanced stage [5].
Therefore, despite the development of endoscopic therapy,
neoadjuvant chemoradiotherapy, and surgery, the prognosis
of patients with ESCA is still not optimistic [6–8]. The

identification of new biomarkers is critical to improve the
early diagnosis and treatment of ESCA.

Previous studies have developed a mass of methods to
explore the valuable factors in ESCA. For instance, Xue
et al. searched for key factors by constructing a specific
competitive endogenous RNA network in ESCA [9]. The
8-mRNA-based risk score model developed by Cai et al. suc-
cessfully predicted the survival of ESCA [10]. Ushiku et al.
confirmed that promoter DNA hypermethylation of CDO1
could be an independent prognostic factor in ESCC [11].
However, most studies are built on single-dimensional
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analysis, which is difficult to get convincing results, especially
in cancers with a small sample size such as ESCA. Therefore,
it is particularly crucial to explore multiscale integrated
analysis methods in identifying key regulators of cancer.

The Cancer Genome Atlas (TCGA) database contains a
wealth of publicly available datasets, providing multiple types
of genomic data and clinical information [12]. In this study,
we downloaded RNA-seq data, miRNA-seq data, methylation
data, and clinical phenotype information from the TCGA
database. The construction of a multifactor-regulated func-
tional network was then performed through differential
expression analysis, node degree analysis, and pivot analysis.
Next, we obtained key regulators and further explored their
targeted drugs. Furthermore, the diagnostic and prognostic
values of the key regulators for ESCA patients were considered
as the means of further screening. Ultimately, gene set enrich-
ment analysis (GSEA) was used to clarify the biological func-
tions of the key regulators. Overall, our study offers a novel
method and insight for the identification of key regulators in
ESCA based on multiscale integrated analysis (Figure 1).

2. Materials and Methods

2.1. Data Sources and Preprocessing. Data of ESCA was
obtained from the TCGA database, including gene expres-
sion data of 142 ESCA and 9 control samples, methylation
chip data of 162 ESCA and 14 normal samples, miRNA
expression profile data of 161 ESCA and 11 normal samples,
and clinical phenotype data. 505 genes related to ESCA from
the NCBI-GENE database [13] (http://www.ncbi.nlm.nih
.gov/gene) and OMIM database [14] (http://omim.org/) were
selected for analysis. Gene expression data of GSE53625
which contained 179 tumor samples and 179 paired normal
samples was downloaded from the Gene Expression Omni-
bus (GEO) database [15] for validation.

2.2. Differential Expression Analyses. Based on RNA-seq data
and miRNA-seq data, differential expression analysis was
performed by DESeq2 R package [16]. Based on the methyl-
ation data, differential expression analysis was performed by
limma R package [17]. Furthermore, differential methylation
sites were mapped to corresponding genes. Genes with ultra-
high and ultralow methylation levels were then screened out
by annotating these differential sites. The pheatmap R pack-
age [18] was used to visualize the heatmap.

2.3. Construction of Coexpression Network. The STRING
database [19] (https://string-db.org/) was used to construct
a protein–protein interaction (PPI) network, and the interac-
tion network of candidate genes was selected based on
score > 900. Visualization was performed using Cytoscape
software [20]. Furthermore, interactive network clustering
analysis on candidate gene interaction networks was per-
formed using ClusterONE plugin in Cytoscape software.

2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) Enrichment Analyses. Functional
enrichment analyses, including Gene Ontology (GO) com-
prising biological process (BP) and Kyoto Encyclopedia of
Genes and Genomes (KEGG), were performed on key gene

interaction modules using enrichGO and enrichKEGG func-
tions of clusterProfiler R package [21]. The P value < 0.05
adjusted by the Benjamini and Hochberg method was
deemed to be statistically significant.

2.5. Identification of ncRNAs and TFs Based on Pivot
Analysis. Pivot analysis refers to screening out strongly
related genes of module genes by hypergeometric test, and
the pivot nodes mean (i) at least two interaction pairs with
module genes and (ii) significant interaction between the
node and each module. Moreover, the pivot nodes with
P value < 0.05 were considered significant.

Based on the identification criteria of pivot nodes, using
the ncRNA–mRNA interaction relationship included in the
RAID v2.0 database [22] (http://www.rna-society.org/raid2/
index.html) as the interaction background, the interaction
pairs of ncRNAs and module genes were established. Simi-
larly, using the TF–mRNA regulation relationship included
in the TRRUST v2 database [23] (https://www.grnpedia
.org/trrust/) as the interaction background, the interaction
pairs of TFs and module genes were established.

2.6. Construction of Multifactor-Regulated Functional
Network. Based on the establishment of network modules,
DEmiRNAs, differentially expressed methylation level genes,
and significantly related TFs and ncRNAs screened by pivot
analysis, the multifactor-regulated functional network was
established. Through the analysis of node degrees and func-
tional enrichment analysis, further screening for possible
key genes related to ESCA was performed. Besides, the infor-
mation of the drugs corresponding to the candidate regula-
tors was obtained from the DrugBank database [24].

2.7. Identification of Key Regulators. ROC curve analysis was
performed using the pROC R package [25], assessing the diag-
nostic value of the key genes for ESCA and TNM I stage of can-
cer. Genes with the area under the ROC curve ðAUCÞ > 0:7
were considered to be diagnosis-related genes for ESCA
patients. The Kaplan-Meier analysis was performed using the
Kaplan-Meier plotter [26] (http://kmplot.com/analysis/), and
the boxplots were used to visualize the expression levels of
prognosis-related genes between ESCA and normal samples.
The P value < 0.05 was considered to be statistically significant.

2.8. GSEA of Key Regulators. To explore the potential biolog-
ical functions of the key regulators, GSEA was performed
using GSEA4.0.3 software. The samples were divided into
high and low groups using themedian of the expression levels
of key regulators as the cutoff value. The hall mark gene set
(h.all.v7.1.symbols.gmt) was downloaded from the MSigDB
database [27]. The gene sets with P value < 0.05 after 1000 per-
mutations were considered significantly enriched gene sets.

3. Results

3.1. Identification of DEGs and DEmiRNAs. Based on down-
loaded RNA-seq data, differential expression analysis was
performed using the DESeq2 R package. According to the
threshold (∣log 2FC ∣ >2 and P value < 0.0001), 1341 DEGs
(733 upregulated and 608 downregulated) were obtained
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(Figure S1). Similarly, DEmiRNAs were analyzed using ∣log
2FC ∣ >1 and P value < 0.01 as the cutoff criteria based on
the miRNA-Seq data, 95 DEmiRNAs (51 upregulated and
36 downregulated) were identified (Figure S2).

3.2. Identification of Key Gene Interaction Modules. The
candidate gene set contained 1793 genes was obtained by
combining the DEGs with the ESCA-related genes from
the NCBI-GENE and OMIM databases. Based on the
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from the TCGA database 
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Figure 1: Flowchart of identification of key regulators based on multiscale integrated analysis.

3BioMed Research International



candidate gene set, a PPI interaction network was con-
structed, including a total of 2785 edges and 1793 points
(Figure S3). Next, the ClusterONE plugin was used to
mine modules on the network and filter the modules
that interact significantly (P < 0:05); a total of 17 modules
were obtained (Supplementary Table 1). Then, the top 3
related gene interaction network modules were selected
for further analysis, named key gene interaction modules
(Figures 2(a)–2(c)).

To further explore whether key gene interaction modules
have the ability to guide the stage of ESCA, we visualized the
expression levels of 65 genes in the modules. Moreover, the
65 genes could distinguish tumor samples from normal
samples, and cancer stage ii and iii could be well clustered
together. The genes of the three modules also showed unique
expression patterns. The genes in each module were well
clustered, especially Cluster 3 (Figure S4).

3.3. Functional and Pathway Enrichment Analyses of Key
Gene Interaction Modules. Furthermore, to elucidate key
gene interaction modules involved in the development of
ESCA, functional and pathway enrichment analyses were
performed using the ClusterProfiler package in R. As the
result showed, Cluster 1 was enriched in pathways such as
retinol metabolism and drug metabolism, and Cluster 2 was
enriched in chemokine, IL-17, and TNF signaling pathway,

while Cluster 3 participated in biological processes such as
cell cycle (Figures 3(a)-–3(c)).

3.4. Regulation Relationships of ncRNAs and TFs on Key Gene
Interaction Modules. Based on the 51913 pairs of ncRNA–
mRNA interactions included in the RAID v2.0 database,
the pivot nodes (ncRNAs) that regulated the key gene inter-
action modules were identified; with P value <0.01 as the
screening criteria, a total of 43 ncRNA–module interaction
pairs were screened (Supplementary Table 2). Similarly,
based on the 9396 human TF–mRNA interactions included
in the TRRUST v2 database, a total of 11 TF–module
interaction pairs were screened by using P value < 0.005 as
the screening criteria (Supplementary Table 3).

3.5. Identification of Genes with Differential Methylation
Levels. Based on the ESCA methylation data, according to
the threshold (∣log 2FC ∣ >2 and P value < 0.0001), 11025
differential methylation sites were obtained. Further, these
sites were mapped to corresponding genes, 202 genes of
∣log 2FC ∣ >2 were identified (10 with high methylation
level and 192 with low methylation level).

3.6. Multifactor-Regulated Functional Network Construction
and Mining. Based on the 43 ncRNAs and 11 TFs obtained
from the pivot analysis above, combined with DEmiRNAs
and genes with differential methylation levels, 128 candidate
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regulators were used to construct the multifactor-regulated
functional network according to protein–protein interaction
and protein–ncRNA interaction information (Figure 4).
Then, 28 drugs related to ESCA and 89 corresponding drug
genes were retrieved from the DrugBank database. Next, 6
genes were obtained from the intersection of drug genes
and the candidate regulators, and the corresponding drugs
were cisapride, omeprazole, dexloxiglumide, fluorouracil,
voriconazole, and ethanolamine oleate (Figures 5(a) and
5(b)). Moreover, based on the calculation of the degree of
each node (Supplementary Table 4), the top 3 nodes of
each type of regulators were selected as the key regulators
of ESCA (Table 1).

3.7. Identification of Key Regulators and Verification Based on
an External Database. Firstly, based on the key regulators
identified, ROC curve analysis was performed to evaluate
the diagnostic value in distinguishing ESCA patients from
normal controls (Figure 6). In order to further test the
early diagnosis ability of key regulators, regulators with
AUC > 0:7 were selected to analyze the diagnostic perfor-
mance in distinguishing ESCA patients at TNM I stage from
normal individuals (Figure 7). CXCL8, MAD2L1, BIRC5,

KIF18A, CYP2C8, CYP4A11, NFKB1, RELA, and E2F1
showed excellent diagnostic value. Furthermore, through
analysis of gene expression levels in tumor and normal
samples and survival analysis, CXCL8, KIF18A, and E2F1
showed high expression and poor prognosis, which indicated
that they may play a role in promoting ESCA progression.
Conversely, CYP2C8 and CYP4A11 showed high expression
and good prognosis, suggesting a potential protective role
against cancer pathogenicity (Figure 8). Finally, the 5 regula-
tors also showed good diagnostic performance in the valida-
tion dataset from the GEO database (Figure S5). Notably,
CXCL8, CYP2C8, and E2F1 also had a good value in
distinguishing patients at TNM I stage from normal
controls, which might be promising biomarkers for early
diagnosis of ESCA (Figure S6).

3.8. GSEA of CXCL8, CYP2C8, and E2F1. To clarify the
potential biological functions of CXCL8, CYP2C8, and
E2F1, GSEA was performed. The results suggested that the
key regulators were significantly associated with cancer-
related pathways. For instance, the high expression level of
CXCL8 was associated with apoptosis, P13K/AKT/mTOR
signaling, and TGF beta signaling (Figure 9(a)). The low
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expression level of CYP2C8 was mainly involved in hyp-
oxia, epithelial mesenchymal transition, and P53 pathway
(Figure 9(b)). Additionally, highly expressed E2F1 was
correlated with DNA repair, fatty acid metabolism, and
glycolysis (Figure 9(c)).

4. Discussion

In this study, we identified DEGs, DEmiRNAs, and genes
with differential methylation levels based on the data from
TCGA. Then, PPI network was constructed by using the
candidate gene set. After the module screening of the
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coexpression network, the key gene interaction modules
containing 65 genes was obtained. The 43 ncRNA–module
pairs and 11 TF–module pairs were established. Besides, the

multifactor-regulated functional network containing 128
candidate regulators was constructed base on the above data.
Through the screening of the node degree, we got the top 3
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Figure 7: Continued.
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nodes of each type of regulators. Subsequently, CXCL8,
CYP2C8, and E2F1 were selected with satisfactory diagno-
sis and prognostic value in ESCA. Finally, GSEA results
showed the potential biological functions of these three
key regulators.

Heatmap cluster analysis showed that 65 genes of the key
gene interaction modules might guide the stage of ESCA.
Meanwhile, the key gene interaction modules were mainly
enriched in the cancer-related pathway and biological
process, such as retinol metabolism signaling pathways, che-
mokine signaling pathways, and cell cycle. Chemokine-
neutralizing antibodies might significantly attenuate the
effect of CAF on hepatocellular carcinoma metastasis [28].
More notably, the key gene interaction modules contained
a large number of CXC family genes. As a family of cytokines,
CXC chemokines had been confirmed to be pleiotropic in
regulating tumor-associated angiogenesis and cancer cell
metastasis [29]. Research by Yasumoto et al. proved that
the CXCR4/CXC12 axis plays an important role in the

development of peritoneal carcinomatosis from gastric
carcinoma [30].

In order to analyze as many potential regulators as possi-
ble, we constructed pivot-mRNA pairs based on the key gene
interaction modules. Moreover, the multifactor-regulated
functional network containing 128 candidate regulators was
constructed. DrugBank is a freely available database that
combines detailed drug data with comprehensive drug-
target information [31]. By searching for ESCA-related genes
and drugs and combining 128 candidate regulators, 6 genes
and their targeted drugs were screened. It was worth noting
that CYP2C8 as the final selected regulator was related to
cisapride, omeprazole, and fluorouracil. Previous research
had indicated that CYP2C8 could be used as a reliable predic-
tor of drug response [32]. Among the drugs obtained, omep-
razole may yield valuable insight into clinical treatment of
Barrett’s esophagus progression [33]. Also, the trimodality
therapy with fluorouracil as a standard treatment for patients
with ESCA reflects a long-term survival advantage [34].
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Among the regulators that were not finally selected, there
were also some well-known factors that had been declared in
cancer. Silencing KIF18A induced apoptosis in lung adeno-
carcinoma cells and blocked the cell cycle at G2/M phase,
while overexpression of KIF18A might promote cell prolif-
eration and inhibit apoptosis [35]. Moreover, Kim et al.
suggested that CYP4A11 expression was a potential poor
prognostic factor of renal cell carcinoma [36]. After asses-
sing the diagnosis and prognostic values of identified key
regulators in both the TCGA and GEO verification datasets,
CXCL8, CYP2C8, and E2F1 were selected, which were
reported as potential biomarkers in some cancers. Overex-
pression of CXCL8 was related to tumor progression,
metastasis, higher preoperative levels of proinflammatory
cytokines, CRP, activation of exogenous coagulation factors,
and poor prognosis in esophageal squamous cell carcinoma
patients [37]. Moreover, the CYP2C8 gene expression level
was confirmed as a potential prognostic marker for hepato-
cellular carcinoma after hepatectomy [38]. E2F1 could
induce TINCR transcriptional activity and accelerated the
progression of gastric cancer by activating the TINCR/
STAU1/CDKN2B signaling axis [39]. It was more note-
worthy that these genes showed good early diagnosis abil-
ity, which was of great significance for the timely diagnosis
of ESCA patients. Identification of biomarkers for early
diagnosis had always been the focus of ESCA research.
Plasma POU3F3 was confirmed as a potential biomarker
for diagnosis of ESCC, and the combination of POU3F3

and SCCA was efficient for early tumor screening [40].
Nonetheless, there were few biomarkers with early diag-
nostic value that have been proven in ESCA. Our results
provided directions for further experimental and clinical
validation.

Furthermore, we performed GSEA to clarify the potential
biological functions of CXCL8, CYP2C8, and E2F1. The
results indicated that some crucial cancer-related pathways
were related to the high expression of CXCL8 and E2F1
and the low expression of CYP2C8, which was consistent
with the expression level results and prognostic results.
Targeting apoptosis in cancer is feasible, and the exploration
of treatment strategies aimed at enhancing apoptosis
remained an essential direction in tumor treatment [41].
P13K/AKT/mTOR signaling had been confirmed to play an
important role in proliferation, migration, invasion, and
chemotherapy resistance [42]. TGF beta signaling, as a
widely concerned pathway in cancer, affected tumor cells
and the tumor microenvironment, accordingly affecting can-
cer development [43]. Additionally, epithelial mesenchymal
transition could be induced by TGF-β, in which epithelial
cells acquired mesenchymal phenotype, leading to enhanced
motility and invasion in cancer progression [44]. Genes
involved in DNA repair responses presented various types
of mutations and abnormal expressions in cancer cells, which
might cause genomic instability and promote cancer progres-
sion [45]. Moreover, glycolysis, the process of conversion of
glucose into pyruvate followed by lactate production, played
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Figure 8: The boxplot of expression levels and survival curves for key regulators associated with overall survival in ESCA. (a) CXCL8.
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a crucial role in energy metabolism. Therefore, glycolysis
could be used as a target for cancer therapy according to
the general situation of altered energy metabolism in tumor
progression [46].

In conclusion, our study provides a novel method and
insight for exploring key regulators in cancer. Differential
expression analysis, node degree analysis, pivot analysis,
and the construction of a multifactor-regulated functional
network are fully taken into account. Based on such multidi-
mensional comprehensive analysis, more interesting results
will be explored.

5. Conclusion

This study focuses on multiscale integrated analysis and
suggests that CXCL8, CYP2C8, and E2F1 are promising
regulators in ESCA.

Data Availability

The datasets analyzed in this study are available in The
Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO).
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Figure 9: Gene set enrichment analysis of CXCL8, CYP2C8, and E2F1. (a) CXCL8, (b) CYP2C8, and (c) E2F1 (P value < 0.05).
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