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Abstract: The system of wireless sensor networks is high of interest due to a large number of
demanded applications, such as the Internet of Things (IoT). The positioning of targets is one of
crucial problems in wireless sensor networks. Particularly, in this paper, we propose minimax particle
filtering (PF) for tracking a target in wireless sensor networks where multiple-RSS-measurements
of received signal strength (RSS) are available at networked-sensors. The minimax PF adopts
the maximum risk when computing the weights of particles, which results in the decreased
variance of the weights and the immunity against the degeneracy problem of generic PF. Via the
proposed approach, we can obtain improved tracking performance beyond the asymptotic-optimal
performance of PF from a probabilistic perspective. We show the validity of the employed
strategy in the applications of various PF variants, such as auxiliary-PF (APF), regularized-PF (RPF),
Kullback–Leibler divergence-PF (KLDPF), and Gaussian-PF (GPF), besides the standard PF (SPF) in
the problem of tracking a target in wireless sensor networks.

Keywords: degeneracy; minimax; particle filtering; risk; received signal strength; target tracking;
wireless sensor networks

1. Introduction

Recently, research related to Internet of Things (IoT) is a hot area where many people from diverse
fields are working due to the demand of smart systems that enable the ability to transfer data over a
network without requiring human interactions by using smart devices, such as smartphones [1–4].
In this smart system, a sensor network is formed to interconnect densely populated sensors for data
communications and processing among the sensors. A traditional field of wireless sensor networks
contributes to enabling the IoT [5,6]. There are many applications that can be enabled by wireless
sensor network-based IoT, such as health care systems, transportation, defense applications, and
smart-home systems.

Depending on applications, a sensor network can comprise different types of sensors. Tracking
a moving target is an important problem in wireless sensor networks where the position and/or
velocity of a moving object within the region of interest is estimated. The problem can be classified
by three main methods that can be employed for the tracking application according to the type of
physical measurement read at sensors. The main types of measurements are the time delay of arrival
(TDOA) [7,8], the direction of arrival (DOA) [9,10], and the received signal strength (RSS) [11–19] of
the signal generated from the tracked target, respectively. RSS measurement of the sensors represents
received energy or power emitted by the target. RSS-based sensors have advantages of simpler
architecture and less expensive cost than the cases of TDOA and DOA. In this paper, we propose a
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tracking approach that uses multi-RSS measurements. In particular, we propose the minimax particle
filtering (PF) approach for a target tracking, which estimates the trajectory and velocity.

Within the past few decades, since PF was proposed [20], PF has shown asymptotically optimal
performance in various time-varying state estimation problems, particularly for nonlinear problems.
Further, to advance the performance of the standard PF, various versions of PF have been proposed
since its initial proposal [21–30]. Based on the theoretical background, PF can perform optimally
by using an infinite number of particles in nonlinear problems. Nonetheless, from time to time,
we cannot obtain ideal results via PF due to various unexpected reasons. One main reason is the
degeneracy phenomenon, i.e., after a few time steps since the initialization of the algorithm, there
is only one particle that has significant weight, whereas all the other particles have nearly zeros
weights. Consequently, the variance of the weights of particles only increases over time, which results
in insufficient performance due to the loss of particle diversity [31]. To overcome the degeneracy
issue, the resampling [32,33] can be applied that regenerates high-quality particles duplicated. On the
other hand, as a by-effect of the resampling, PF undergoes particle impoverishment that we have only
identical particles over a short time, especially when the state noise is little. Therefore, maintaining a
constantly small variance of the weights of particles is desired to avoid the unsatisfactory performance
of PF. For this goal, we adopt the strategy of the minimax approach that incurs a significantly mitigated
variance of the weights of particles and results in improved performance of PF. In this approach,
we minimize the maximum risk function. That is, we adopt the maximum risk when computing the
weights of particles; consequently, the proposed approach minimizes the highly increased risk function
compared to the cases of regular PFs. In other words, we devalue the quality of a particle as low
as possible.

In this paper, we propose minimax-PF (MPF) for the target tracking based on
multi-RSS-measurements at up to ten sensors. The minimax PF approach was initially introduced
in Reference [34] recently, where a maneuvering target is tracked based on the range and bearing,
which are only two measurements; therefore, the methodology was not fully investigated in terms of
the number of measurements, clarity of the derivation of the approach, analysis of risk and weight
concerning to all compared variants of PFs. The investigation of the method in the application of
networked sensor measurements where a large number of sensors are available is more appropriate
for the verification of the approach. In Reference [35], the minimax strategy was adopted in
an interactive-multiple-model algorithm implemented by PF with a couple of range and bearing
measurements only. In this paper, we verify with up to ten RSS measurements in wireless sensor
networks to generalize the validity of the proposed approach with extensive experimental results and
analysis. The number of employed measurements is a key factor to assess and generalize the validity
of the proposed minimax PF approach. We show the outperforming results of the proposed MPFs
compared to the various regular PFs, i.e., standard PF, APF, GPF, RPF, and KLDPF.

For notations, matrices, vectors, and scalars are denoted by bold uppercase letters, bold lowercase
letters, and lowercase letters, respectively, and > denotes the transpose of a matrix.

2. Problem Formulation

We track a target based on a number of RSS measurements in a two-dimensional space.
The scenario also can be a localization problem, but tracking is necessary when we have limited
time or computational complexity in positioning the target.

2.1. Dynamic State Model

The movement of the target is mainly driven by the state noise that is also the random acceleration
of the target. The state and measurement variables are denoted by ψ and m, respectively, and the
dynamic state function is described referring to Reference [36–38] as follows:

ψt = Dψt−1 + Eθt, (1)
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where

ψt = [ψ1,t, ψ2,t, . . . , ψ1,L]
> (2)

=
[
rx,t, ry,t, vx,t, vy,t

]> , (3)

ψt−1 =
[
rx,t−1, ry,t−1, vx,t−1, vy,t−1

]> , (4)

θt =
[
θx,t, θy,t

]> (5)

D =


1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

, E =


T2

s
2 0

0 T2
s

2
Ts 0
0 Ts

 , (6)

where r, v, θ, and (x, y) denote the position, speed, acceleration, and 2-D coordinates, respectively. L is
the number of state elements which is composed of 2-D location and 2-D velocity, Ts is the sampling
time period, and t is the discrete-time step. The state is driven by the random process of θt.

2.2. Measurement Model

The vector representation of the noisy measurements of the received signal strength (RSS) at M
multi-sensors can be described as

mt = g (ψt) + ηt, (7)

where g(·) and ηt are the observation function with respect to the state and additive measurement
noise, respectively, and can be described in detail as follows.

mt = [m1,t, m2,t . . . mM,t]
> , (8)

g (ψt) = [g1 (ψt) , g2 (ψt) . . . gM (ψt)]
> , (9)

ηt = [η1,t, η2,t . . . ηM,t]
> . (10)

The RSS model is discussed in Reference [39], where the received power is expressed in dBm. Thus,
the received signal power at the sensor i at the time step t is expressed as follows:

mi,t = gi (ψt) + ηi,t =P0 − 10α log10

(
|li − rt|

d0

)
+ ηi,t, for i = 1, · · · , M, (11)

where P0 is the received power at the sensor from a reference distance d0, li is the position of the i-th
sensor, rt =

[
rx,t, ry,t

]> is the location of the target at the time step t, α is an attenuation parameter that

depends on the transmission medium, ηi,t ∼ N
(

0, σ2
ηi ,t

)
is a Gaussian noise process with the variance

σ2
ηi ,t, and M is the number of employed sensors in the networks. In this case, the likelihood function

with respect to only mi,t becomesN
(

mi,t; gi (ψt), σ2
ηi ,t

)
, which denotes a Gaussian distribution function

at mi,t with the mean gi (ψt) and the variance σ2
ηi ,t, respectively.

3. Proposed Approach

In this section, we derive the minimax PF based on a fused manner of classical and Bayesian
methods. This approach is derived by adopting the minimax strategy to standard PF (SPF). In the SPF,
the risk function defined as the expected squared error is minimized, while the maximum risk function
is minimized when the minimax strategy is adopted. The minimax strategy is reflected in the process
of computing the weights of particles in the algorithm. Before we describe the minimax approach, we
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recall minimum mean square error estimator and PF first in order to derive the proposed approach
smoothly. A Bayesian estimator that minimizes a predefined risk function can be described as follows.

min
ψ̂t

Rt
(
ψt, ψ̂t

)
, (12)

where, ψt ∈ Ψt, and the estimator ψ̂t minimizes a risk function with respect to the random variable ψt.
In the case of minimum mean square error (MMSE) estimator, the risk function can be described by

Rt
(
ψt, ψ̂t

)
= E (Ct) , (13)

where E (·) denotes the expected value, and the cost function Ct (·) is defined by the squared error if
we let εt denotes the error of the estimator as follows.

Ct = ε2
t , εt = ψt − ψ̂t. (14)

The MMSE estimator that minimizes the mean square error defined as the risk function is described
as follows:

ψ̂
MMSE
t = min

ψ̂t

RMSE
t = min

ψ̂t

[E (Ct)] (15)

=
∫

ψt p(ψ0:t|m1:t)dψt, (16)

where p (ψ0:t|m1:t) is the posterior density.
In PF, the problem is formulated as follows.

ψ̂
PF
t = min

ψ̂t

RPF
t = min

ψ̂t

[
N

∑
κ=1

(wκ
t Cκ

t )

]
, (17)

where Cκ
t =

(
ψκ

t − ψ̂t
)2, εκ

t = ψκ
t − ψ̂t, N is the number of employed particles, κ is the particle index,

wκ
t is the weight of the particle κ at the time step t, and ψκ

t is the particle with the index κ. Then, the
MMSE estimate of PF can be derived as follows.

ψ̂
PF
t =

N

∑
κ=1

wκ
t ψκ

t . (18)

In the problem of estimating a deterministic variable ψt ∈ Ψt based on observation, an estimator
ψ̂
M
t is the minimax estimator if its maximum risk is the minimum value by all possible estimators,

which can be described as follows.

max
ψt∈Ψt

Rt

(
ψt, ψ̂

M
t

)
= min

ψ̂t

max
ψt∈Ψt

Rt
(
ψt, ψ̂t

)
, (19)

Therefore, the criterion of this classical estimator is avoiding the maximum risk by minimizing the
maximum risk. To formulate the minimax strategy in PF framework, from Equations (13) and (14),
we define a new minimax risk function as follows:

RMt = maxRPF
t (20)

= max
N

∑
κ=1

(wκ
t Cκ

t ) (21)

=
N

∑
κ=1

(
wM,κ

t Cκ
t

)
, (22)
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where wM,κ
t denotes the modified weight associated with the particle index κ in minimax PF (MPF)

because the minimax strategy is reflected when computing the weights of particles. Specifically,
we select only one RSS-sensor-measurement among M that may incurs the highest risk. In other
words, concerning M RSS-sensor-measurements, we use only one measurement that provides not the
maximum weight but the minimum weight, which is highly counter-intuitive approach in terms of
probabilistic point of view. In Equation (22), i.e., the risk function of MPF, only wM,κ

t is the factor of the
magnitude of the risk because the particles are given, and we cannot modify them. When we associate
the weight with only a single sensor-measurement, the weight is described as follows.

wM,κ
t ∈

{
wκ

i,t
}M

i=1 , (23)

where the weight of the particle ψκ
t can be computed in M ways, and wκ

i,t is the weight only based
on the measurement mi,t. Each particle is associated with the argument i, individually. Therefore, by
associating the minimum weight among M weights for individual particle, we can maximize the risk
function Equations (20)−(22), in minimax PF. If we consider the deterministic variable of classical
minimax estimator as a random variable, we can modify the minimax Equation (19) with respect to
MPF as follows.

ψ̂
M
t = min

ψ̂t

RMt (24)

= min
ψ̂t

maxRPF
t (25)

= min
ψ̂t

max
{wκ

i,t}
N
κ=1

RPF
t

({
wκ

i,t
}N

κ=1 , ψ̂t

)
(26)

= min
ψ̂t

max
{wκ

i,t}
N
κ=1

N

∑
κ=1

(
wκ

i,tCκ
t
)

(27)

= min
ψ̂t

N

∑
κ=1

(
wM,κ

t Cκ
t

)
, (28)

where
{

wM,κ
t

}N

κ=1
are defined as the weights in minimax PF that maximize the minimax risk function.

If we let wM,κ
t , wκ

τ,t, where
τ = argmin

i∈{1,...,M}
wκ

i,t, (29)

the estimate of MPF at time step t is obtained from Equation (18) as follows.

ψ̂
M
t =

N

∑
κ=1

ωM,κ
t ψκ

t , (30)

=
N

∑
κ=1

ωκ
τ,tψ

κ
t . (31)

In this approach, we may select a different RSS-sensor-measurement that devalues the quality of
the particle as low as possible for the computation of the weight of each particle. The minimax PF
algorithm for the standard PF in wireless sensor networks is described in Algorithm 1 as follows:
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Algorithm 1: The minimax PF algorithm for the standard PF in wireless sensor networks
2 Initialization

for κ = 1, . . . , N, where N is the number of particles.
1. Random generation of initial particles:

ψκ
0 ∼ p (ψ0), and assign initial weights: ωκ

0 = 1
N .

end
2 Sequential update

for t = 1, . . . , T, where T is the total time steps.
for κ = 1, . . . , N,
2. Propagation of particles via a proposal density:

ψκ
t ∼ q

(
ψt|ψ

κ
t−1, mt

)
. (32)

end
for κ = 1, . . . , N,
3. Computing the weights of particles:

ωκ
i,t = p(mi,t|ψκ

t ) for i = 1, . . . , M (33)

assuming the proposal density,
q
(
ψt|ψκ

t−1, mt
)
= p

(
ψk|ψ

κ
t−1
)
.

end
for κ = 1, . . . , N,
4. Normalization.

ω̄κ
i,t =

ωκ
i,t

∑N
κ=1 ωκ

i,t
for i = 1, . . . , M. (34)

5. Selecting the minimum weight among M weights.

ωM,κ
t = ω̄κ

τ,t, where τ = argmin
i∈{1,...,M}

ω̄κ
i,t.

end
6. Normalization of the weights:

ω̄M,κ
t =

ωM,κ
t

∑N
κ=1 ωM,κ

t

for κ = 1, . . . , N. (35)

7. Computing the estimate at the time step t:

ψ̂
M
t =

N

∑
κ=1

ω̄M,κ
t ψκ

t . (36)

8. Resampling N particles.
end

Therefore, as long as the computation of the weights of particles is performed with multiple
measurements, this approach can be applied to any variants of PF. We only need to modify the step
of computing the weights of particles in their algorithms to significantly mitigate the degeneracy of
particles.
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4. Performance Assessment

We evaluate the performance of the proposed MPFs, and compare with those of original PF
variants, i.e., sequential-importance-resampling PF (SPF), regularized PF (RPF), auxiliary PF(APF),
Kullback–Leibler-divergence PF (KLDPF), and Gaussian PF (GPF) for tracking a target in wireless
sensor networks. We employ multi-sensors from two up to ten sensors in the experiments, and obtain
various results depending on the number of employed sensors. We also compare the mean-risk based
on Equation (20) and the variance of the weights of particles for both MPFs and original PF variants.
The performance is assessed based on 300 runs of computer simulations, and 1000 particles (we do
not improve the performance anymore beyond 1000) are used for all approaches. We consider two
scenarios in terms of the target-motion-pattern: relatively a large or a small variance is considered for
the state process noise based on Equation (1), where the larger the noise variance is, the larger the
acceleration of the motion of the target becomes. The scenarios of large and small noises are denoted
by SL and SS, respectively. Therefore, the motion of the target is much greater under SL compared to
the case under SS in a single time step, and particles undergo severe degeneracy under SL. We denote
the noise variances of the sate and the sensor-measurement, by σ2

θ , σ2
η , and Σ2 =

(
σ2

θ , σ2
η

)
, respectively.

The noise variance for the state is assumed that σ2
θ = σ2

θx
= σ2

θy
. We used (10−3, 10−5) and (10−1, 10−5)

for Σ2, in SS and SL, respectively. In the experiments of SPF, we used (1, 10−5) for Σ2, in SS. In the
experiments of APF, we used (10−3, 10−3) and (10−1, 10−3) for Σ2, in SS and SL, respectively. The true
initial state was generated with the expected values of [1, 1, 0.1, 0.1]> within a uniform distribution,
and the support-interval-length of [0.1 1] were used for [SS SL], respectively. The initial particles were
generated in the same way as the true state. The number of total time steps T = 100. We performed
300 runs to obtain mean square error (MSE) of distance (MSED) and mean distance error (MDE) for
each location over the T time steps. Cramér-Rao lower bound (CRLB) for the problem is provided in
the Appendix A. In the simulations, we generated true trajectories based on the state model first and
then deploy sensors uniformly in the area based on the starting and ending points of the target.

4.1. Standard Particle Filter

We begin with the sequential importance resampling particle filter as the standard particle filter
(SPF) to compare the performance of the original and minimax versions. please add a and b for the
subfigures and provide explanation in the caption. Mean distance error (MDE) of RPF and MRPF is
compared in Figure 1. The left of Figure 1 shows the results under the scenario of SS with the various
number of employed sensors M (i.e., 2, 5, and 10 sensors). When we use 2 sensors, both PF and MPF
show similar MDE performance, while MPF outperforms PF when 5 and 10 sensors are employed. As
M increases, the overall performances of both methods are improved. The right of Figure 1 shows the
results under the scenario of SL with the various number of employed sensors M. The overall results
under SL of both methods are worse than those under SS due to larger accelerations of the target. The
superiority of MPF over PF is clear when M = 5, while the superiority is not increasing significantly
when 10 sensors are employed. When M = 2, the performance difference between PF and MPF is not
clear between the two methods, as in the case of SS. Overall, MPF outperforms PF in terms of MDE as
M increases, while the performance gain is not significantly increased beyond five sensors. The result
shows that the minimax strategy is more effective under the SL scenario.

Based on Equation (20), we computed the risk function for both PF and MPF associated with the
MDE-result of Figure 1, and the mean values over 300 runs are shown in Figure 2. The left and right of
Figure 2 show the results under the scenarios of SS and SL with various M, respectively. The overall
risk decreases as M increases regardless of the scenario. The gap of mean-risks between two methods
is severer as M increases. The results show larger risks under SL compared to the case of SS. The result
of Figure 1 was obtained by minimizing the risk shown in Figure 2.
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Figure 1. Mean distance error (MDE) performance comparison between particle filtering (PF) and
minimax PF (MPF). Three hundred runs were performed with 1000 particles, where M, SS, and SL

denote the number of sensors, the scenario of the small state noise variance, and the scenario of the
large state noise variance, respectively.

0 20 40 60 80 100
10-6

10-5

10-4

10-3

10-2

10-1

M
ea

n 
ris

k 
(m

2 )

0 20 40 60 80 100
10-4

10-3

10-2

10-1

M
ea

n 
ris

k 
(m

2 )

Figure 2. Mean-risk over 300 runs with 1000 particles based on Equation (20) for PF and MPF. Results
regarding only rx are shown, and those regarding ry showed similar results. Legend: line style
(dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: PF; red: MPF).

We computed the mean-variance of the weights of particles for both PF and MPF associated with
the MDE/risk-results of Figures 1 and 2, and the mean values over 300 runs are shown in Figure 3.
The overall variances show similar patterns regardless of the scenario, and only depend on M while
the variance-gap between two methods are severer as M increases; therefore, the minimax strategy
is more effective as M increases, which is related to the MDE performance-result of Figure 1. In all
cases, we obtained the significantly reduced variances of the weights of particles by MAPF compared
to those of APF. We may keep increasing the size of M to obtain improved performance; however, the
performance improvement may be saturated at a certain point with highly intensive computational
complexity. Therefore, we confirmed that the proposed minimax strategy is highly effective in this
problem with multi-RSS-measurements of sensor networks. Further, we verify the validity of the
proposed strategy in more examples of variants of PFs in the following sections.
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Figure 3. Mean-variance of the weights of particles over 300 runs with 1000 particles for PF and MPF.
These results are associated with the results of MDE and mean-risk of Figures 1 and 2. Legend: line
style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: PF; red: MPF).

4.2. Auxiliary Particle Filter (APF)

Compared to SIRPF, the advantage of APF is that it naturally generates particles from the ones at
the time step k− 1 that are highly close to the true state [40]. In APF, the resampling is performed based
on a certain particle estimate µκ

k that characterizes p(ψk|ψκ
k−1). When the process noise is very small,

APF tends to be effective because µκ
k characterizes p(ψk|ψκ

k−1) well. Then, APF does not generate
outliers often unlike SIRPF, and the weights are more even, which results in APF’s better performance
than that of SIRPF. Therefore, APF can effectively show the outperforming result compared to SIRPF
and is robust against the PI phenomenon due to the resampling procedure. APF returns to previous
time steps of currently resampled particles, and then propagates the particles again for the current
time step. The weights of the particles are computed based on the ratio of the likelihood functions of
the resampled particles and newly propagated particles. We used the measurement noise variances
σ2

η = 10−3 instead of 10−5 in the experiments.
MSED of APF, MAPF, and CRLB is compared in Figure 4. The left of Figure 4 shows the results

under the scenario of SS with various M. Under the scenario SS, MAPF outperforms APF with any
M, and the MSED performance gap is much severer as M increases. Overall, as M increases, the
performances of both methods are improved under SS. The right of Figure 4 shows the results under
the scenario of SL with various M. The overall performances for both methods are worse than those
under SS, and the outperforming results of MAPF over APF are similar to the case under SS. Overall,
MAPF outperforms APF in terms of the MSED performance, and the performance gap is severer as M
increases and the minimax strategy is more effective, along with increasing M.

We computed the risk function based on Equation (20) for both APF and MAPF associated with
the MSED-result of Figure 4, and the mean values over 300 runs are shown in Figure 5. The left
and right of Figure 5 show the mean-risk results under the scenarios of SS and SL with various M,
respectively. The overall risk is reduced as M increases regardless of the scenario. The gap of the
risks between the two methods becomes severer as M increases. We obtained larger risks under SL
compared to those under SS.
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Figure 4. Mean square error of distance (MSED) performance comparison between auxiliary-PF (APF)
and minimax APF (MAPF). Three hundred runs were performed with 1000 particles, where M, SS,
SL denote the number of sensors, the scenario of the small state noise variance, the scenario of the
large state noise variance, respectively. Comparison with Cramér-Rao lower bound was also shown, as
derived in the Appendix A. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line
color: blue: APF; red: MAPF; black: CRB).
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Figure 5. Mean-risk over 300 runs with 1000 particles based on Equation (20) for APF and MAPF.
Results regarding only rx are shown, and those regarding ry showed similar results. Legend: line style
(dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: APF; red: MAPF).

We computed the mean-variance of the weights of particles for both APF and MAPF associated
with the MSED/risk-results of Figures 4 and 5, and the mean values over 300 runs are shown in
Figure 6. For APF, the overall variance is similar regardless of the scenario and the size of M, whereas
the variance of MAPF is significantly decreased as M increases. For both APF and MAPF, the variances
do not depend on the scenario. Therefore, the variances gap between the two methods becomes
severer as M increases. This means that the minimax strategy is more effective as the number of the
sensor-measurements increases, which is related to the MSED performance results shown in Figure 4.
The result of mean-variance is similar to that of PF/MPF shown in Figure 3, while the variance-gap
between the two methods is more significant in the case of APF/MAPF than that in the case of PF/MPF.
Therefore, the results show that the proposed minimax strategy is highly effective in the case of APF,
as well, in this problem with multi-RSS-measurements of sensor networks.
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Figure 6. Mean-variance of the weights of particles over 300 runs with 1000 particles for APF and
MAPF. These results are associated with the results of mean square error of distance (MSED) and
mean-risk of Figures 4 and 5. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10);
(line color: blue: APF; red: MAPF).

4.3. Regularized PF (RPF)

PI phenomenon is another defect of the SPF besides the degeneracy issue in the practical
implementations. The SPF is modified to resolve the PI problem in the RPF algorithm [41]. A kernel
density that perturbs the state of particles is employed to develop the diversity of the states of the
particles. In RPF, the posterior density is approximated by a rescaled kernel density.

Mean distance error (MDE) of RPF and MRPF is compared in Figure 7. We assess the MDE
performance instead of MSED because we could see the result more clearly with MDE rather than
MSED in this case of RPF/MRPF. The left of Figure 7 shows the results under the scenario of SS with
various M. Under the SS scenario, MRPF outperforms RPF when M = 5, 10, while the performance is
similar when M = 2. Overall, as M increases, the performances of both methods are improved.
The right of Figure 7 shows the results under the scenario of SL with various M. The overall
performance is worse than that under the SS scenario, and the performances of the two methods are
similar when M = 2 under both scenarios. Overall, MRPF outperforms RPF in terms of MDE, and the
performance gap becomes severer as M increases, and the minimax strategy becomes more effective.
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Figure 7. Mean distance error (MDE) performance comparison between regularized PF (RPF) and
minimax RPF (MRPF). Three hundred runs were performed with 1000 particles, where M, SS, and SL

denote the number of sensors, the scenario of the small state noise variance, and the scenario of the
large state noise variance, respectively.
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We computed, the risk function based on Equation (20) for both RPF and MRPF associated with
the MDE-result of Figure 7, and the mean values over 300 runs are shown in Figure 8. The left and right
of Figure 8 show the mean-risk results under the scenarios of SS and SL with various M, respectively.
The overall risk is reduced as M increases regardless of the scenario as in the case of previous results
of PFs. The gap of the mean-risks between the two methods becomes severer as M increases. We have
larger risks under SL compared to the case of SS. The mean-risk result of RPF/MRPF is similar to that
of PF/MPF.
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Figure 8. Mean-risk over 300 runs with 1000 particles based on Equation (20) for RPF and MRPF.
Results regarding only rx are shown, and those regarding ry showed similar results. Legend: line style
(dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: RPF; red: MRPF).

We computed the mean-variance of the weights of particles for both RPF and MRPF associated
with the MDE/risk-results of Figures 7 and 8, and the mean values over 300 runs are shown in Figure 9.
For RPF, the variance of RPF increases along with the increased M, whereas that of MRPF remains
similarly regardless of the increased M; therefore, the gap of variance difference is increased along with
the increased M regardless of the scenario. This means that the minimax strategy is more effective as
M increases, which is related to the MDE performance result of Figure 7. The result of mean-variance
is similar to the case of PF/MPF as shown in Figure 3. Therefore, we also confirmed that the proposed
minimax strategy is highly effective in the case of RPF with multiple measurements of sensor networks.
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Figure 9. Mean-variance of the weights of particles over 300 runs with 1000 particles for RPF and
MRPF. These results are associated with the results of MDE and mean-risk of Figures 7 and 8. Legend:
line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: RPF; red: MRPF).
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4.4. Kullback-Leibler Divergence PF (KLDPF)

In KLDPF, the number of employed particles is optimized based on a predetermined error bound
at each time step [23]. The number of employed particles is adjusted to reduce redundant particles and
also unnecessary computations, accordingly, while the performance is not affected. In this assessment,
we apply the error bound of 0.001, the initial number of employed particles is 500 and the maximum
number of particles is bounded by 1000; the probability bound is 0.01, the bin size is 1/2×√σθ × 4(L);
1/2 is determined from Ts/2 in E. Although KLDPF adaptively optimizes the number of particles
at every time step, the algorithm inherently requires a higher computational cost than those of other
PF variants.

MDE of KLDPF and MKLDPF is compared in Figure 10. The left of Figure 10 shows the results
under the scenario of SS with various M. Under the SS scenario, MKLDPF outperforms KLDPF
when M is equal to 5 or larger, while the performance is similar to each other when M = 2. Overall,
MKLDPF outperforms KLDPF when M is increased above 2. The right of Figure 10 shows the results
under the scenario of SL with various M. The overall results are worse than those under SS for both
methods. The superiority of MKLDPF over KLDPF is clear when M = 5, 10. When M = 2 under SL,
the performance difference between KLDPF and MKLDPF is not clear as in the case of SS. Overall,
MKLDPF outperforms KLDPF in terms of MDE, and the performance gap is severer and the minimax
strategy is more effective as M increases. The pattern of the MDE result of KLDPF/MKLDPF shown in
Figure 10 is highly similar to that of RPF/MRPF shown in Figure 7.
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Figure 10. Mean distance error (MDE) performance comparison between Kullback–Leibler
divergence-PF (KLDPF) and minimax KLDPF (MKLDPF). Three hundred runs were performed with
1000 particles, where M, SS, and SL denote the number of sensors, the scenario of the small state noise
variance, and the scenario of the large state noise variance, respectively.

We computed the risk function based on Equation (20) for both KLDPF and MKLDPF associated
with the MDE-result of Figure 10, and the mean values over 300 runs are shown in Figure 11. The left
and right of Figure 11 show the mean-risk results under the scenarios of SS and SL with various M,
respectively. The overall risk decreases as M increases regardless of the scenario. The gap of the risks
between the two methods is severer as M increases. We obtain larger risks under SL compared to the
case of SS regardless of the method and M. The MDE-result of Figure 10 was obtained by minimizing
the risk in Figure 11. The pattern of the mean-risk-result shown in Figure 11 is also highly similar to
that of RPF/MRPF shown in Figure 8.
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Figure 11. Mean-risk over 300 runs with 1000 particles based on Equation (20) for KLDPF and MKLDPF.
Results regarding only rx are shown, and those regarding ry showed similar results. Legend: line style
(dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: KLDPF; red: MKLDPF).

We computed the mean-variance of the weights of particles for both KLDPF and MKLDPF
associated with the MDE/risk-results of Figures 10 and 11, and the mean values over 300 runs are
shown in Figure 12. The gap of the variances between the two methods becomes severer as M increases
regardless of the scenario. This means that the minimax strategy is more effective as M increases,
which is closely related to the MDE performance result of Figure 10. In all cases, we obtained the
significantly reduced variance of the weights of particles by the minimax strategy as shown in Figure 12.
The pattern of all the results of MDE-performance, mean-risk, mean-variance of KLDPF/MKLDPF
are highly similar to that of RPF/MRPF, while the computational complexities of RPF and KLDPF
are quite different, as we show in the result of it shortly. Therefore, we confirmed that the proposed
minimax strategy is highly effective in the case of KLDPF, as well.
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Figure 12. Mean-variance of the weights of particles over 300 runs with 1000 particles for KLDPF and
MKLDPF. These results are associated with the results of MDE and mean-risk of Figures 10 and 11.
Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: KLDPF;
red: MKLDPF).
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4.5. Gaussian PF (GPF)

In the GPF algorithm, an additional particle generation step is required prior to the particle
propagation step. That is, particles are generated based on a Gaussian distribution where the mean
value and the covariance are adopted from the previous estimate

(
ψ̂k−1

)
and the weighted sample

covariance, Ck−1 = ∑N
κ=1 ωκ

k−1

(
ψκ

k−1 − ψ̂k−1

) (
ψκ

k−1 − ψ̂k−1

)>
. Then, particles are propagated by

the prior density. There is no resampling process in the GPF algorithm, which significantly reduces its
computational complexity. For details about GPF, refer to Reference [26].

MDE of GPF and MGPF is compared in Figure 13. The left and right of Figure 13 show the results
under the scenarios of SS and SL with various M, respectively. Overall, MGPF slightly outperforms
GPF when M is increased above 2. The overall results under SL are worse than those under SS.
The superiority of MGPF over GPF is not as much as that of the other PF variants that have been
investigated so far. Nonetheless, overall, MGPF outperforms GPF in terms of MDE performance when
we increase the number of employed sensors. It needs to be noted that GPF does not require the
resampling process that also incurs the side effect, such as particle impoverishment. Therefore, the
minimax strategy is not as effective as the cases of the other PF variants.
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Figure 13. Mean distance error (MDE) performance comparison between Gaussian-PF (GPF) and
minimax GPF (MGPF). Three hundred runs were performed with 1000 particles, where M, SS, SL

denote the number of sensors, the scenario of the small state noise variance, the scenario of the large
state noise variance, respectively. Legend: line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10);
(line color: blue: GPF; red: MGPF).

We computed the risk function based on Equation (20) for both GPF and MGPF associated with
the MDE-result of Figure 13, and the mean values over 300 runs are shown in Figure 14.

The left and right of Figure 14 show the mean-risk results under the scenarios of SS and SL with
various M, respectively. The overall risk decreases as M increases, regardless of the scenario, like the
previously shown results of the other PFs. The relative gap of the risks between the two methods
becomes severer as M increases for both scenarios. Overall, we have larger risks under SL compared
to the case of SS;

We also note that the relative gap of the mean-risks is the severest when M = 10 under SL among
all results in Figure 14.
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Figure 14. Mean-risk over 300 runs with 1000 particles based on Equation (20) for GPF and MGPF.
Results regarding only rx are shown, and those regarding ry showed similar results. Legend: line style
(dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: GPF; red: MGPF).

We computed the mean-variance of the weights of particles for both GPF and MGPF associated
with the MDE/risk-results of Figures 13 and 14, and the mean values over 300 runs are shown in
Figure 15. The gap of the variances between two methods becomes severer as M increases in both
scenarios, and the relative gap is slightly severer under SL compared to the case under SS. This
means that the minimax strategy is more effective as M and σ2

θ increases. The pattern of the overall
variance-results of GPF and MGPF shown in Figure 15 is highly similar to those of RPF/MRPF and
KLDPF/MKLDPF shown in Figures 9 and 12. The pattern of all results of MDE performance, mean-risk,
and mean-variance of GPF/MGPF is highly similar to those of RPF/MRPF and KLDPF/MKLDPF.
Therefore, we confirmed that the proposed minimax strategy is effective in the case of GPF, as well,
although the effect is not as much as that in the other PF variants.
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Figure 15. Mean-variance of the weights of particles over 300 runs with 1000 particles for GPF and
MGPF. These results are associated with the results of MDE and mean-risk of Figures 13 and 14. Legend:
line style (dash-dot: M = 2; dotted: M = 5; solid: M = 10); (line color: blue: GPF; red: MGPF).

4.6. Processing Time

For all methods, we measured the processing time in terms of the average-elapsed-time for the
one time step out of T during the MATLAB simulations, and the result is shown in Figure 16. The top
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and bottom figures are concerning two and ten sensors, respectively, in the networks. The elapsed time
concerning ten sensors is not five times longer than the case of two sensors but elapsed approximately
between 1.5 and 2 times longer. As clearly seen, KLDPF requires the most duration of elapsed time
among all the PFs. GPF and MGPF require the least duration of elapsed time because GPF does not
require the resampling process. There is no significant time difference between minimax and original
PF variants. The minimax strategy affects the processing time in terms of the computation of finding
the minimum value of the weights among M, while original PF variants require the computation of
joint probability density function of M densities; therefore, overall computational complexities of two
frameworks do not show significant time-difference. The minimax PFs do not require the computation
of the joint probability density, which can be intractable sometimes.

Processing time per step, 2 sensors

GPF PF APF RPF KLDPF
0

0.5

1

1.5

2

E
la

ps
ed

 ti
m

e 
(s

)

10-3

Original, 2 sensors
Minimax, 2 sensors

Processing time per step, 10 sensors

GPF PF APF RPF KLDPF
0

1

2

3

E
la

ps
ed

 ti
m

e 
(s

)

10-3

Original, 10 sensors
Minimax, 10 sensors

Figure 16. Mean-elapsed time for the one time step over 300 runs with 1000 particles for all PFs.
Note that there is no resampling process required for GPF.

4.7. Discussion

In all PF variants, the minimax versions showed better tracking performance than original PF
variants in terms of MSED/MDE, while both frameworks showed similar processing-time-performance
during the MATLAB experiments. The experimental simulation results can be summarized as follows.
Concerning MSED/MDE performance, overall: both original and minimax PFs showed similar
performances in terms of MSED/MDE with two sensors, while minimax PFs clearly outperformed
original PFs with sensors over two. Besides, the performance gap is slightly more evident under
SL compared to that under SS due to the severer degeneracy problem under SL. Nevertheless, the
performance gap was not significantly different between the results with five sensors and those with
ten sensors. Concerning the mean-risk, overall, the risk was the lowest with the maximum number
of sensors under SS, while the difference gap between two PF-frameworks is relatively the largest
with the maximum number of sensors regardless of the scenario. When two sensors are employed,
unlike the case of the MSED/MDE-performance, the mean-risk of the minimax PFs is clearly higher
than that of original PF variants. Concerning the mean-variance of the weights of particles, the
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results only depend on the number of employed sensors regardless of the scenario, and the gap of
the mean-variance is severer as M increases due to the effect of minimax strategy that results in the
improved tracking performance.

5. Conclusions

In this paper, we proposed the minimax PF for the problem of tracking a target based on RSS
measurements in wireless sensor networks where a large number of sensor-measurements are available.
We verified the validity of the proposed minimax strategy in various scenarios in terms of M (the
number of sensors) and σ2

θ (the variance of the state noise) by applying to various variants of PF.
The adopted minimax strategy is more effective when we employ a large number of the sensors in the
networks compared to the case of a small number of the sensors employed; therefore, we obtained
the significantly reduced variance of the weights of particles that derives the robustness against the
degeneracy problem of generic PF. The robustness against the degeneracy resulted in the improved
tracking performance beyond the asymptotically optimal performance of the original PF variants.
Furthermore, the strategy is more effective when the dynamic state-space model varies with a larger
variance, where the particles undergo a severer degeneracy problem. It needs to be noted that the
minimax strategy is effective on condition that the signal-to-noise ratio is above a certain value that is
good enough for tracking. Otherwise, MPFs may not outperform regular PFs.
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Appendix A. Derivation of Cramér-Rao Lower Bound

The variance of any unbiased estimate, ψ̂ is bounded as follows:

Var(ψ̂e) ≥
[
I−1(ψ)

]
ee

, for e = 1, . . . , L, (A1)

where I is the Fisher information matrix, ψ is a vector state, e is the element index, and L is the
dimension of the state vector. When the measurement noise is Gaussian and the measurement is
given by

m ∼ N
(

g(ψ), Cη(ψ)
)

, (A2)

we can obtain the following, for e, l = 1, . . . , L,

[I(ψ)]el =

[
∂g(ψ)

∂ψe

]>
Cη
−1(ψ)

[
∂g(ψ)

∂ψl

]
+

1
2

tr
[(

Cη
−1(ψ)

∂Cη(ψ)

∂ψe
Cη
−1(ψ)

∂Cη(ψ)

∂ψl

)] (A3)

where
∂g(ψ)

∂ψi
=

[
∂ [g(ψ)]1

∂ψi
,

∂ [g(ψ)]2
∂ψi

, · · · ,
∂ [g(ψ)]M

∂ψi

]>
, (A4)
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∂Cη(ψ)

∂ψi
=



∂[Cη(ψ)]11
∂ψi

∂[Cη(ψ)]12
∂ψi

· · · ∂[Cη(ψ)]1M
∂ψi

∂[Cη(ψ)]21
∂ψi

∂[Cη(ψ)]22
∂ψi

· · · ∂[Cη(ψ)]2M
∂ψi

...
...

. . .
...

∂[Cη(ψ)]M1
∂ψi

∂[Cη(ψ)]M2
∂ψi

· · · ∂[Cη(ψ)]MM
∂ψi

 , (A5)

g(ψ) = [g1 · · · gM]>, and the covariance matrix Cη(ψ) = diag
(

σ2
η1
· · · σ2

ηM

)
, where diag (·) denotes

a diagonal matrix, and the variance (power) of the measurement noise ηi:

σ2
ηi
= gi

2 · 10(−SNRmi /10), (A6)

where SNRmi is the signal-to-noise ratio (SNR) in dB for the corresponding mi, and are computed
as follows:

SNRmi = 10 log10

[
gi

2

σ2
ηi

]
. (A7)

The Fisher information is a 4× 4 matrix, and [I(ψ)]11 and [I(ψ)]22 are the corresponding elements for
rx and ry, respectively. Therefore,

Var(r̂x) ≥
[
I−1(ψ)

]
11

, Var(r̂y) ≥
[
I−1(ψ)

]
22

. (A8)

If CRLB for the distance estimation, i.e.,
√

r2
x + r2

y is to be computed, we can use vector parameter

CRLB for transformations, and is easily derived as follows [42]. If we define α = h(ψ) =
√

r2
x + r2

y,
CRLB is derived as

Var(α̂) ≥ ∂h(ψ)

∂ψ
I−1(ψ)

∂h(ψ)>

∂ψ
, (A9)

where a Jacobian matrix ∂h(ψ)
∂ψ is described as

∂h(ψ)

∂ψ
=
[

∂h(ψ)
∂ψ1

∂h(ψ)
∂ψ2

· · · ∂h(ψ)
∂ψL

]
. (A10)
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